Advertisement for orthosearch.org.uk
Results 1 - 20 of 29
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 114 - 114
14 Nov 2024
Yalcinkaya A Tirta M Rathleff MS Iobst C Rahbek O Kold S
Full Access

Introduction. The heterogeneity of outcomes used in the field of lower limb lengthening surgery (LLLS) affects our ability to synthesize evidence. This hampers robust systematic reviews and treatment recommendations for clinical practice. Ultimately this reduces the impact of research for both patients and healthcare professionals. This scoping review aimed to describe the outcomes and outcome measurement instruments (OMIs) used within the field of LLLS. Method. A systematic literature search of WOS, Scopus, Embase, MEDLINE, and the Cochrane Library identified all studies reporting outcomes in children and adults after LLLS. All outcomes and OMIs were extracted verbatim. An iterative process was used to group outcome terms under standardized outcome headings categorized using the COMET Taxonomy of Outcomes. Result. Data saturation was achieved in 2020. A total of 142 studies were included between 2024-2020, reporting 2964 verbatim outcomes with 663 standardized outcome terms collapsed into 119 outcome headings (subdomains). A total of 29 patient-reported and 26 clinician-reported outcome instruments were identified. The most commonly reported outcome was “Lengthening amount”, reported in over 72% of the included studies, while “health-related quality of life” was measured in 16% and all life impact outcomes were reported in 19% of the included studies. Conclusion. A large number of peer-reviewed publications are available, demonstrating that significant resources are being devoted to research on LLLS. However, reported outcomes for people with LLLS are heterogeneous, subject to reporting bias, and vary widely in the definitions and measurement tools used to collect them. Outcomes likely to be important to patients, such as quality of life and measures of physical function, have been neglected. This scoping review identifies a need to standardize outcomes and outcome measures reported on patients recovering from lower limb lengthening surgery; this can be addressed by creating a core set of outcomes


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1306 - 1311
1 Nov 2024
Watts AC McDaid C Hewitt C

Aims

A review of the literature on elbow replacement found no consistency in the clinical outcome measures which are used to assess the effectiveness of interventions. The aim of this study was to define core outcome domains for elbow replacement.

Methods

A real-time Delphi survey was conducted over four weeks using outcomes from a scoping review of 362 studies on elbow replacement published between January 1990 and February 2021. A total of 583 outcome descriptors were rationalized to 139 unique outcomes. The survey consisted of 139 outcomes divided into 18 domains. The readability and clarity of the survey was determined by an advisory group including a patient representative. Participants were able to view aggregated responses from other participants in real time and to revisit their responses as many times as they wished during the study period. Participants were able to propose additional items for inclusion. A Patient and Public Inclusion and Engagement (PPIE) panel considered the consensus findings.


Bone & Joint 360
Vol. 13, Issue 5 | Pages 8 - 17
1 Oct 2024
Holley J Lawniczak D Machin JT Briggs TWR Hunter J


Bone & Joint Research
Vol. 12, Issue 4 | Pages 294 - 305
20 Apr 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims

Open lower limb fracture is life-changing, resulting in substantial morbidity and resource demand, while inconsistent outcome-reporting hampers systematic review and meta-analysis. A core outcome set establishes consensus among key stakeholders for the recommendation of a minimum set of outcomes. This study aims to define a core outcome set for adult open lower limb fracture.

Methods

Candidate outcomes were identified from a previously published systematic review and a secondary thematic analysis of 25 patient interviews exploring the lived experience of recovery from open lower limb fracture. Outcomes were categorized and sequentially refined using healthcare professional and patient structured discussion groups. Consensus methods included a multi-stakeholder two-round online Delphi survey and a consensus meeting attended by a purposive sample of stakeholders, facilitated discussion, and voting using a nominal group technique.


Bone & Joint Open
Vol. 4, Issue 3 | Pages 146 - 157
7 Mar 2023
Camilleri-Brennan J James S McDaid C Adamson J Jones K O'Carroll G Akhter Z Eltayeb M Sharma H

Aims. Chronic osteomyelitis (COM) of the lower limb in adults can be surgically managed by either limb reconstruction or amputation. This scoping review aims to map the outcomes used in studies surgically managing COM in order to aid future development of a core outcome set. Methods. A total of 11 databases were searched. A subset of studies published between 1 October 2020 and 1 January 2011 from a larger review mapping research on limb reconstruction and limb amputation for the management of lower limb COM were eligible. All outcomes were extracted and recorded verbatim. Outcomes were grouped and categorized as per the revised Williamson and Clarke taxonomy. Results. A total of 3,303 records were screened, of which 99 studies were included. Most studies were case series (77/99; 78%) and assessed one method of reconstruction (68/99; 69%). A total of 511 outcomes were reported, which were grouped into 58 distinct outcomes. Overall, 143/511 of all outcomes (28%) were provided with a clear, in-text definition, and 231 outcomes (45%) had details reported of how and when they were measured. The most commonly reported outcome was ‘recurrence of osteomyelitis’ (62; 12%). The single-most patient-reported outcome measure was ‘pain’. Conclusion. This study has highlighted significant inconsistencies in the defining, reporting, and measuring of outcomes across studies investigating surgical management for chronic osteomyelitis of the lower limb in adults. Future studies should clearly report complete details of how outcomes are defined and measured, including timing. The development of a standardized core outcome set would be of significant benefit in order to allow evidence synthesis and comparison across studies. Cite this article: Bone Jt Open 2023;4(3):146–157


Bone & Joint Research
Vol. 12, Issue 2 | Pages 138 - 146
14 Feb 2023
Aquilina AL Claireaux H Aquilina CO Tutton E Fitzpatrick R Costa ML Griffin XL

Aims. Open lower limb fracture is a life-changing injury affecting 11.5 per 100,000 adults each year, and causes significant morbidity and resource demand on trauma infrastructures. This study aims to identify what, and how, outcomes have been reported for people following open lower limb fracture over ten years. Methods. Systematic literature searches identified all clinical studies reporting outcomes for adults following open lower limb fracture between January 2009 and July 2019. All outcomes and outcome measurement instruments were extracted verbatim. An iterative process was used to group outcome terms under standardized outcome headings categorized using an outcome taxonomy. Results. A total of 532 eligible studies were identified, reporting 1,803 outcomes with 786 unique outcome terms, which collapsed to 82 standardized outcome headings. Overall 479 individual outcome measurement instruments were identified, including 298 outcome definitions, 27 patient- and 18 clinician-reported outcome measures, and six physical performance measures. The most-reported outcome was ‘bone union/healing’ reported in over 50% of included studies, while health-related quality of life was only measured in 6% of included studies. Conclusion. Outcomes reported for people recovering from open lower limb fracture are heterogeneous, liable to outcome reporting bias, and vary widely in the definitions and the measurement tools used to collect them. Outcomes likely to be important to patients, such as quality of life and measures of physical functioning, have been neglected. This systematic review identifies the need to unify outcome measures reported on patients recovering from open lower limb fracture; this may be addressed by creating a core outcome set. Cite this article: Bone Joint Res 2023;12(2):138–146


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes.

Cite this article: Bone Joint J 2023;105-B(2):102–108.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1148 - 1155
1 Oct 2022
Watts AC Hamoodi Z McDaid C Hewitt C

Aims

Arthroplasties of the elbow, including total elbow arthroplasty, radial head arthroplasty, distal humeral hemiarthroplasty, and radiocapitellar arthroplasty, are rarely undertaken. This scoping review aims to outline the current research in this area to inform the development of future research.

Methods

A scoping review was undertaken adhering to the Joanna Briggs Institute guidelines using Medline, Embase, CENTRAL, and trial registries, limited to studies published between 1 January 1990 and 7 February 2021. Endnote software was used for screening and selection, and included randomized trials, non-randomized controlled trials, prospective and retrospective cohort studies, case-control studies, analytical cross-sectional studies, and case series of ten or more patients reporting the clinical outcomes of elbow arthroplasty. The results are presented as the number of types of studies, sample size, length of follow-up, clinical outcome domains and instruments used, sources of funding, and a narrative review.


The Bone & Joint Journal
Vol. 104-B, Issue 8 | Pages 911 - 914
1 Aug 2022
Prijs J Liao Z Ashkani-Esfahani S Olczak J Gordon M Jayakumar P Jutte PC Jaarsma RL IJpma FFA Doornberg JN

Artificial intelligence (AI) is, in essence, the concept of ‘computer thinking’, encompassing methods that train computers to perform and learn from executing certain tasks, called machine learning, and methods to build intricate computer models that both learn and adapt, called complex neural networks. Computer vision is a function of AI by which machine learning and complex neural networks can be applied to enable computers to capture, analyze, and interpret information from clinical images and visual inputs. This annotation summarizes key considerations and future perspectives concerning computer vision, questioning the need for this technology (the ‘why’), the current applications (the ‘what’), and the approach to unlocking its full potential (the ‘how’).

Cite this article: Bone Joint J 2022;104-B(8):911–914.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 214 - 225
20 Apr 2022
Hao X Zhang J Shang X Sun K Zhou J Liu J Chi R Xu T

Aims

Post-traumatic osteoarthritis (PTOA) is a subset of osteoarthritis (OA). The gut microbiome is shown to be involved in OA. However, the effect of exercise on gut microbiome in PTOA remains elusive.

Methods

A total of 18 eight-week Sprague-Dawley rats were assigned into three groups: Sham/sedentary (Sham/Sed), PTOA/sedentary (PTOA/Sed), and PTOA/treadmill-walking (PTOA/TW). PTOA model was induced by transection of the anterior cruciate ligament (ACLT) and the destabilization of the medial meniscus (DMM). Treadmill-walking (15 m/min, 30 min/d, five days/week for eight weeks) was employed in the PTOA/TW group. The response of cartilage, subchondral bone, serology, and gut microbiome and their correlations were assessed.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 85 - 85
1 Dec 2021
Goswami K Shope A Wright J Purtill J Lamendella R Parvizi J
Full Access

Aim. While metagenomic (microbial DNA) sequencing technologies can detect the presence of microbes in a clinical sample, it is unknown whether this signal represents dead or live organisms. Metatranscriptomics (sequencing of RNA) offers the potential to detect transcriptionally “active” organisms within a microbial community, and map expressed genes to functional pathways of interest (e.g. antibiotic resistance). We used this approach to evaluate the utility of metatrancriptomics to diagnose PJI and predict antibiotic resistance. Method. In this prospective study, samples were collected from 20 patients undergoing revision TJA (10 aseptic and 10 infected) and 10 primary TJA. Synovial fluid and peripheral blood samples were obtained at the time of surgery, as well as negative field controls (skin swabs, air swabs, sterile water). All samples were shipped to the laboratory for metatranscriptomic analysis. Following microbial RNA extraction and host analyte subtraction, metatranscriptomic sequencing was performed. Bioinformatic analyses were implemented prior to mapping against curated microbial sequence databases– to generate taxonomic expression profiles. Principle Coordinates Analysis (PCoA) and Partial Least Squares-Discriminant Analysis were utilized to ordinate metatranscriptomic profiles, using the 2018 definition of PJI as the gold-standard. Results. After RNA metatranscriptomic analysis, blinded PCoA modeling revealed accurate and distinct clustering of samples into 3 separate cohorts (infected, aseptic, and primary joints) – based on their active transcriptomic profile, both in synovial fluid and blood (synovial anosim p=0.001; blood anosim p=0.034). Differential metatranscriptomic signatures for infected versus noninfected cohorts enabled us to train machine learning algorithms to 84.9% predictive accuracy for infection. Multiple antibiotic resistance genes were expressed, with high concordance to conventional antibiotic sensitivity data. Conclusions. Our findings highlight the potential of metatranscriptomics for infection diagnosis. To our knowledge, this is the first report of RNA sequencing in the orthopaedic literature. Further work in larger patient cohorts will better inform deep learning approaches to improve accuracy, predictive power, and clinical utility of this technology


The Bone & Joint Journal
Vol. 103-B, Issue 12 | Pages 1743 - 1744
1 Dec 2021
Haddad FS


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_15 | Pages 78 - 78
1 Dec 2021
Benech N LEVAST B Gasc C Cecile B Senneville E Lustig S Boutoille D Dauchy F Zeller V Cazanave C Josse J Laurent F Ferry T
Full Access

Aim. Bone and joint infections (BJI) need frequently prolonged antibiotic treatment at high dosage for a total of 6 or 12 weeks depending the type of infection. Impact of such prolonged antibiotic exposure on the gut microbiota has never been assessed. Method. We performed a national multicentric prospective study of patients with BJI to monitor the gut microbiota dynamic all along antimicrobial treatment. Clinical data and stool collection were performed at the baseline visit (B) within 24h before starting antibiotics, at the end of the treatment (EOT) and 2 weeks after antibiotic withdrawal during a follow-up visit (FU). Microbiota composition was determined by shotgun metagenomic sequencing. Biological markers of gut permeability and inflammation were monitored at each time point. Results. Sixty-two patients were enrolled: 27 native BJI, 14 osteosynthesis-related BJI and 21 prosthetic joint infections (PJI). At EOT there was a significant loss of alpha-diversity that recovered at FU in patients with native BJI and PJI but not in patients with osteosynthesis-related BJI (p<0.05, Wilcoxon test). At EOT, we observed an increase of Proteobacteria and Bacteroidetes that partially recovered at FU. Principal Component Analysis (PCoA) of the Bray Curtis distance, showed a significant change of the gut microbiota at the end of treatment compared to baseline (p<0.01, PERMANOVA) that only partially recover at FU. The taxonomic analysis showed that microbiota composition at FU does not differ significantly at the genus level when comparing patients treated for 6 weeks to patients treated for 12 weeks. No particular antibiotic (especially fluoroquinolones) was associated with a lower Shannon index or distinct dynamic of recovery at the end of treatment. PCoA analysis of the Bray Curtis distance shows that patients with elevated plasma level of CRP (≥5mg/L) at EOT had a distinct gut microbial composition compared to others. Conclusions. In patients with BJI, antibiotics altered the gut microbiota diversity and composition with only partial recovery 2 weeks after antibiotic withdrawal, independently on the duration of the therapy and on the type of the antibiotic used. Elevated CRP at EOT might reflect persistent alteration of the gut microbiota. Assessment of long-term impact after the end of treatment is on-going


Bone & Joint 360
Vol. 10, Issue 5 | Pages 3 - 3
1 Oct 2021
Ollivere B


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1189 - 1196
1 Jul 2021
Murray IR Makaram NS Rodeo SA Safran MR Sherman SL McAdams TR Murray AD Haddad FS Abrams GD

Aims

The aim of this study was to prepare a scoping review to investigate the use of biologic therapies in the treatment of musculoskeletal injuries in professional and Olympic athletes.

Methods

Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews and Arksey and O’Malley frameworks were followed. A three-step search strategy identified relevant published primary and secondary studies, as well as grey literature. The identified studies were screened with criteria for inclusion comprising clinical studies evaluating the use of biologic therapies in professional and Olympic athletes, systematic reviews, consensus statements, and conference proceedings. Data were extracted using a standardized tool to form a descriptive analysis and a thematic summary.


Bone & Joint Research
Vol. 10, Issue 1 | Pages 51 - 59
1 Jan 2021
Li J Ho WTP Liu C Chow SK Ip M Yu J Wong HS Cheung W Sung JJY Wong RMY

Aims

The effect of the gut microbiota (GM) and its metabolite on bone health is termed the gut-bone axis. Multiple studies have elucidated the mechanisms but findings vary greatly. A systematic review was performed to analyze current animal models and explore the effect of GM on bone.

Methods

Literature search was performed on PubMed and Embase databases. Information on the types and strains of animals, induction of osteoporosis, intervention strategies, determination of GM, assessment on bone mineral density (BMD) and bone quality, and key findings were extracted.


The Bone & Joint Journal
Vol. 101-B, Issue 8 | Pages 960 - 969
1 Aug 2019
Odgaard A Laursen MB Gromov K Troelsen A Kristensen PW Schrøder H Madsen F Overgaard S

Aims

The aim of this study was to give estimates of the incidence of component incompatibility in hip and knee arthroplasty and to test the effect of an online, real-time compatibility check.

Materials and Methods

Intraoperative barcode registration of arthroplasty implants was introduced in Denmark in 2013. We developed a compatibility database and, from May 2017, real-time compatibility checking was implemented and became part of the registration. We defined four classes of component incompatibility: A-I, A-II, B-I, and B-II, depending on an assessment of the level of risk to the patient (A/B), and on whether incompatibility was knowingly accepted (I/II).


Bone & Joint Research
Vol. 8, Issue 8 | Pages 367 - 377
1 Aug 2019
Chen M Chang C Chiang-Ni C Hsieh P Shih H Ueng SWN Chang Y

Objectives. Prosthetic joint infection (PJI) is the most common cause of arthroplasty failure. However, infection is often difficult to detect by conventional bacterial cultures, for which false-negative rates are 23% to 35%. In contrast, 16S rRNA metagenomics has been shown to quantitatively detect unculturable, unsuspected, and unviable pathogens. In this study, we investigated the use of 16S rRNA metagenomics for detection of bacterial pathogens in synovial fluid (SF) from patients with hip or knee PJI. Methods. We analyzed the bacterial composition of 22 SF samples collected from 11 patients with PJIs (first- and second-stage surgery). The V3 and V4 region of bacteria was assessed by comparing the taxonomic distribution of the 16S rDNA amplicons with microbiome sequencing analysis. We also compared the results of bacterial detection from different methods including 16S metagenomics, traditional cultures, and targeted Sanger sequencing. Results. Polymicrobial infections were not only detected, but also characterized at different timepoints corresponding to first- and second-stage exchange arthroplasty. Similar taxonomic distributions were obtained by matching sequence data against SILVA, Greengenes, and The National Center for Biotechnology Information (NCBI). All bacteria isolated from the traditional culture could be further identified by 16S metagenomics and targeted Sanger sequencing. Conclusion. The data highlight 16S rRNA metagenomics as a suitable and promising method to detect and identify infecting bacteria, most of which may be uncultivable. Importantly, the method dramatically reduces turnaround time to two days rather than approximately one week for conventional cultures. Cite this article: M-F. Chen, C-H. Chang, C. Chiang-Ni, P-H. Hsieh, H-N. Shih, S. W. N. Ueng, Y. Chang. Rapid analysis of bacterial composition in prosthetic joint infection by 16S rRNA metagenomic sequencing. Bone Joint Res 2019;8:367–377. DOI: 10.1302/2046-3758.88.BJR-2019-0003.R2


Bone & Joint Research
Vol. 7, Issue 1 | Pages 36 - 45
1 Jan 2018
Kleinlugtenbelt YV Krol RG Bhandari M Goslings JC Poolman RW Scholtes VAB

Objectives

The patient-rated wrist evaluation (PRWE) and the Disabilities of the Arm, Shoulder and Hand (DASH) questionnaire are patient-reported outcome measures (PROMs) used for clinical and research purposes. Methodological high-quality clinimetric studies that determine the measurement properties of these PROMs when used in patients with a distal radial fracture are lacking. This study aimed to validate the PRWE and DASH in Dutch patients with a displaced distal radial fracture (DRF).

Methods

The intraclass correlation coefficient (ICC) was used for test-retest reliability, between PROMs completed twice with a two-week interval at six to eight months after DRF. Internal consistency was determined using Cronbach’s α for the dimensions found in the factor analysis. The measurement error was expressed by the smallest detectable change (SDC). A semi-structured interview was conducted between eight and 12 weeks after DRF to assess the content validity.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_22 | Pages 101 - 101
1 Dec 2017
Street T Sanderson N Atkins B Brent A Cole K Foster D McNally M Oakley S Peto L Taylor A Peto T Crook D Eyre D
Full Access

Aim. Culture of multiple periprosthetic tissue samples is the current gold-standard for microbiological diagnosis of prosthetic joint infections (PJI). Additional diagnostic information may be obtained through sonication fluid culture of explants. These current techniques can have relatively low sensitivity, with prior antimicrobial therapy or infection by fastidious organisms particularly influencing culture results. Metagenomic sequencing has demonstrated potential as a tool for diagnosis of bacterial, viral and parasitic infections directly from clinical samples, without the need for an initial culture step. We assessed whether metagenomic sequencing of DNA extracts from sonication fluid can provide a sensitive tool for diagnosis of PJI compared to sonication fluid culture. Method. We compared metagenomic sequencing with standard aerobic and anaerobic culture in 97 sonication fluid samples from prosthetic joint and other orthopaedic device-related infections. Sonication fluids were filtered to remove whole human cells and tissue debris, then bacterial cells were mechanically lysed before DNA extraction. DNA was sequenced and sequencing reads were taxonomically classified using Kraken. Using 50 derivation samples, we determined optimal thresholds for the number and proportion of bacterial reads required to identify an infection and confirmed our findings in 47 independent validation samples. Results. A total of 131 sonication fluids were aerobically and anaerobically cultured and underwent metagenomic sequencing. From the first 72 sonication fluid samples sequenced 22 samples from six batches were excluded, as these samples and negative controls from the same batches showed similar contamination. The remaining 50 samples, the derivation set, were used to determine optimal sequence thresholds for identifying true infection. Of 59 subsequently sequenced validation samples, 12 from a single batch were excluded as the negative control was contaminated with Propionibacterium acnes, leaving 47 validation samples. Compared to sonication fluid culture, the species-level sensitivity of metagenomic sequencing was 61/69(88%,95%CI 77–94%)(derivation samples 35/38[92%,79–98%]; validation samples 26/31[84%,66–95%]), and genus-level sensitivity was 64/69(93%,84–98%). Species-level specificity, adjusting for plausible fastidious causes of infection, species found in concurrently obtained tissue samples, and prior antibiotics, was 85/97(88%,79–93%)(derivation 43/50[86%,73–94%], validation 42/47[89%,77–96%]). High levels of human DNA contamination were seen despite use of laboratory methods to remove it. Conclusions. We demonstrate as a proof of principle that metagenomic sequencing can provide accurate diagnostic information in PJI. Further depletion of human DNA will lead to improved genomic information on the cause of infection, strengthening the case for metagenomic sequencing as a diagnostic tool in PJI