Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care. Cite this article:
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests.Aims
Methods
Aims. Spinopelvic pathology increases the risk for instability following total hip arthroplasty (THA), yet few studies have evaluated how pathology varies with age or sex. The aims of this study were: 1) to report differences in spinopelvic parameters with advancing age and between the sexes; and 2) to determine variation in the prevalence of THA instability risk factors with advancing age. Methods. A multicentre database with preoperative imaging for 15,830 THA patients was reviewed. Spinopelvic parameter measurements were made by experienced engineers, including anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), sacral slope (SS), lumbar lordosis (LL), and pelvic incidence (PI). Lumbar flexion (LF), sagittal spinal deformity, and hip user index (HUI) were calculated using parameter measurements. Results. With advancing age, patients demonstrate increased posterior APPT, decreased standing LL, decreased LF, higher pelvic incidence minus lumbar lordosis (PI-LL) mismatch, higher prevalence of abnormal
Aims. Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA. Methods. This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery. Results. There were no significant differences for any of the baseline characteristics including
Excessive posterior pelvic tilt (PT) may increase the risk of anterior instability after total hip arthroplasty (THA). The aim of this study was to investigate the changes in PT occurring from the preoperative supine to postoperative standing position following THA, and identify factors associated with significant changes in PT. Supine PT was measured on preoperative CT scans and standing PT was measured on preoperative and one-year postoperative standing lateral radiographs in 933 patients who underwent primary THA. Negative values indicate posterior PT. Patients with > 13° of posterior PT from preoperative supine to postoperative standing (ΔPT ≤ -13°) radiographs, which corresponds to approximately a 10° increase in functional anteversion of the acetabular component, were compared with patients with less change (ΔPT > -13°). Logistic regression analysis was used to assess preoperative demographic and spinopelvic parameters predictive of PT changes of ≤ -13°. The area under receiver operating characteristic curve (AUC) determined the diagnostic accuracy of the predictive factors.Aims
Methods
Modular dual-mobility (DM) articulations are increasingly used during total hip arthroplasty (THA). However, concerns remain regarding the metal liner modularity. This study aims to correlate metal artifact reduction sequence (MARS)-MRI abnormalities with serum metal ion levels in patients with DM articulations. A total of 45 patients (50 hips) with a modular DM articulation were included with mean follow-up of 3.7 years (SD 1.2). Enrolled patients with an asymptomatic, primary THA and DM articulation with over two years’ follow-up underwent MARS-MRI. Each patient had serum cobalt, chromium, and titanium levels drawn. Patient satisfaction, Oxford Hip Score, and Forgotten Joint Score-12 (FJS-12) were collected. Each MARS-MRI was independently reviewed by fellowship-trained musculoskeletal radiologists blinded to serum ion levels.Aims
Methods
Aims. The risk factors for abnormal
It has been well documented in the arthroplasty literature that lumbar degenerative disc disease (DDD) contributes to abnormal spinopelvic motion. However, the relationship between the severity or pattern of hip osteoarthritis (OA) as measured on an anteroposterior (AP) pelvic view and spinopelvic biomechanics has not been well investigated. Therefore, the aim of the study is to examine the association between the severity and pattern of hip OA and spinopelvic motion. A retrospective chart review was conducted to identify patients undergoing primary total hip arthroplasty (THA). Plain AP pelvic radiographs were reviewed to document the morphological characteristic of osteoarthritic hips. Lateral spine-pelvis-hip sitting and standing plain radiographs were used to measure sacral slope (SS) and pelvic femoral angle (PFA) in each position. Lumbar disc spaces were measured to determine the presence of DDD. The difference between sitting and standing SS and PFA were calculated to quantify spinopelvic motion (ΔSS) and hip motion (ΔPFA), respectively. Univariate analysis and Pearson correlation were used to identify morphological hip characteristics associated with changes in spinopelvic motion.Aims
Methods
Evaluation of patient specific
The February 2023 Hip & Pelvis Roundup360 looks at: Total hip arthroplasty or internal fixation for hip fracture?; Significant deterioration in quality of life and increased frailty in patients waiting more than six months for total hip or knee arthroplasty: a cross-sectional multicentre study; Long-term cognitive trajectory after total joint arthroplasty; Costal cartilage grafting for a large osteochondral lesion of the femoral head; Foley catheters not a problem in the short term; Revision hips still a mortality burden?; How to position implants with a robotic arm; Uncemented stems in hip fracture?
A stiff spine leads to increased demand on the hip, creating an increased risk of total hip arthroplasty (THA) dislocation. Several authors propose that a change in sacral slope of ≤10° between the standing and relaxed-seated positions (ΔSSstanding→relaxed-seated) identifies a patient with a stiff lumbar spine and have suggested use of dual-mobility bearings for such patients. However, such assessment may not adequately test the lumbar spine to draw such conclusions. The aim of this study was to assess how accurately ΔSSstanding→relaxed-seated can identify patients with a stiff spine. This is a prospective, multi-centre, consecutive cohort series. Two-hundred and twenty-four patients, pre-THA, had standing, relaxed-seated and flexed-seated lateral radiographs. Sacral slope and lumbar lordosis were measured on each functional X-ray. ΔSSstanding→relaxed-seated seated was determined by the change in sacral slope between the standing and relaxed-seated positions. Lumbar flexion (LF) was defined as the difference in lumbar lordotic angle between standing and flexed-seated. LF≤20° was considered a stiff spine. The predictive value of ΔSSstanding→relaxed-seated for characterising a stiff spine was assessed. A weak correlation between ΔSSstanding→relaxed-seated and LF was identified (r2= 0.15). Fifty-four patients (24%) had ΔSSstanding→relaxed-seated ≤10° and 16 patients (7%) had a stiff spine. Of the 54 patients with ΔSSstanding→relaxed-seated ≤10°, 9 had a stiff spine. The positive predictive value of ΔSSstanding→relaxed-seated ≤10° for identifying a stiff spine was 17%. ΔSSstanding→relaxed-seated ≤10° was not correlated with a stiff spine in this cohort. Utilising this simplified approach could lead to a six-fold overprediction of patients with a stiff lumbar spine. This, in turn, could lead to an overprediction of patients with abnormal
Pelvic tilt is believed to affect the symptomology of osteoarthritis (OA) of the hip by alterations in joint movement, dysplasia of the hip by modification of acetabular cover, and femoroacetabular impingement by influencing the impingement-free range of motion. While the apparent role of pelvic tilt in hip pathology has been reported, the exact effects of many forms of treatment on pelvic tilt are unknown. The primary aim of this study was to investigate the effects of surgery on pelvic tilt in these three groups of patients. The demographic, radiological, and outcome data for all patients operated on by the senior author between October 2016 and January 2020 were identified from a prospective registry, and all those who underwent surgery with a primary diagnosis of OA, dysplasia, or femoroacetabular impingement were considered for inclusion. Pelvic tilt was assessed on anteroposterior (AP) standing radiographs using the pre- and postoperative pubic symphysis to sacroiliac joint (PS-SI) distance, and the outcomes were assessed with the Hip Outcome Score (HOS), International Hip Outcome Tool (iHOT-12), and Harris Hip Score (HHS).Aims
Methods
Aims. Adverse spinal motion or balance (spine mobility) and adverse pelvic mobility, in combination, are often referred to as adverse
Aims. Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative
The aim of this study was to evaluate the incidence of liner malseating in two commonly used dual-mobility (DM) designs. Secondary aims included determining the risk of dislocation, survival, and clinical outcomes. We retrospectively identified 256 primary total hip arthroplasties (THAs) that included a DM component (144 Stryker MDM and 112 Zimmer-Biomet G7) in 233 patients, performed between January 2012 and December 2019. Postoperative radiographs were reviewed independently for malseating of the liner by five reviewers. The mean age of the patients at the time of THA was 66 years (18 to 93), 166 (65%) were female, and the mean BMI was 30 kg/m2 (17 to 57). The mean follow-up was 3.5 years (2.0 to 9.2).Aims
Methods
Pelvic incidence (PI) is a position-independent spinopelvic parameter traditionally used by spinal surgeons to determine spinal alignment. Its relevance to the arthroplasty surgeon in assessing patient risk for total hip arthroplasty (THA) instability preoperatively is unclear. This study was undertaken to investigate the significance of PI relative to other spinopelvic parameter risk factors for instability to help guide its clinical application. Retrospective analysis was performed of a multicentre THA database of 9,414 patients with preoperative imaging (dynamic spinopelvic radiographs and pelvic CT scans). Several spinopelvic parameter measurements were made by engineers using advanced software including sacral slope (SS), standing anterior pelvic plane tilt (APPT), spinopelvic tilt (SPT), lumbar lordosis (LL), and PI. Lumbar flexion (LF) was determined by change in LL between standing and flexed-seated lateral radiographs. Abnormal pelvic mobility was defined as ∆SPT ≥ 20° between standing and flexed-forward positions. Sagittal spinal deformity (SSD) was defined as PI-LL mismatch > 10°.Aims
Methods
Dislocation following total hip arthroplasty (THA) is a well-known and potentially devastating complication. Clinicians have used many strategies in attempts to prevent dislocation since the introduction of THA. While the importance of postoperative care cannot be ignored, particular emphasis has been placed on preoperative planning in the prevention of dislocation. The strategies have progressed from more traditional approaches, including modular implants, the size of the femoral head, and augmentation of the offset, to newer concepts, including patient-specific component positioning combined with computer navigation, robotics, and the use of dual-mobility implants. As clinicians continue to pursue improved outcomes and reduced complications, these concepts will lay the foundation for future innovation in THA and ultimately improved outcomes. Cite this article: