Aims. The “2 to 10% strain rule” for fracture healing has been widely interpreted to mean that interfragmentary strain greater than 10% predisposes a fracture to nonunion. This interpretation focuses on the gap-closing strain (axial micromotion divided by gap size), ignoring the region around the gap where osteogenesis typically initiates. The aim of this study was to measure gap-closing and 3D interfragmentary strains in plated ovine osteotomies and associate local strain conditions with callus mineralization. Methods. MicroCT scans of eight female
Extracellular matrix (ECM) is a critical determinant of tissue mechanobiology, yet remains poorly characterized in joint tissues beyond cartilage in osteoarthritis (OA). This review aimed to define the composition and architecture of non-cartilage soft joint tissue structural ECM in human OA, and to compare the changes observed in humans with those seen in animal models of the disease. A systematic search strategy, devised using relevant matrix, tissue, and disease nomenclature, was run through the MEDLINE, Embase, and Scopus databases. Demographic, clinical, and biological data were extracted from eligible studies. Bias analysis was performed.Aims
Methods
Electromagnetic induction heating has demonstrated in vitro antibacterial efficacy over biofilms on metallic biomaterials, although no in vivo studies have been published. Assessment of side effects, including thermal necrosis of adjacent tissue, would determine transferability into clinical practice. Our goal was to assess bone necrosis and antibacterial efficacy of induction heating on biofilm-infected implants in an in vivo setting. Titanium-aluminium-vanadium (Ti6Al4V) screws were implanted in medial condyle of New Zealand giant rabbit knee. Study intervention consisted of induction heating of the screw head up to 70°C for 3.5 minutes after implantation using a portable device. Both knees were implanted, and induction heating was applied unilaterally keeping contralateral knee as paired control. Sterile screws were implanted in six rabbits, while the other six received screws coated with Aims
Methods
Introduction. When designing a new osteosynthesis device, the biomechanical competence must be evaluated with respect to the acting loads. In a previous study, the loads on the proximal phalanx during rehabilitation exercises were calculated. This study aimed to assess the safety of a novel customizable osteosynthesis device compared to those loads to determine when failure would occur. Method. Forty proximal phalanges were dissected from skeletally mature female
Introduction. Low back pain (LBP) is a worldwide leading cause of disability. This preclinical study evaluated the safety of a combined advanced therapy medicinal product developed during the European iPSpine project (#825925) consisting of mesendoderm progenitor cells (MEPC), derived from human induced pluripotent stem cells, in combination with a synthetic poly(N-isopropylacrylamide) hydrogel (NPgel) in an ovine intervertebral disc degeneration (IDD) model. Method. IDD was induced through nucleotomy in 4 adult
Introduction. Transosseous flexion-distraction injuries of the spine typically require surgical intervention by stabilizing the fractured vertebra during healing with a pedicle-screw-rod constructs. As healing is taking place the load shifts from the implant back to the spine. Monitoring the load-induced deflection of the rods over time would allow quantifiable postoperative assessment of healing progress without the need for radiation exposure or frequent hospital visits. This approach, previously demonstrated to be effective in assessing fracture healing in long bones and monitoring posterolateral spinal fusion in
Introduction. Degenerative meniscal tears are the most common meniscal lesions, representing huge clinical and socio-economic burdens. Their role in knee osteoarthritis (OA) onset and progression is well established and demonstrated by several retrospective studies. Effective preventive measures and non-surgical treatments for degenerative meniscal lesions are still lacking, also because of the lack of specific and accurate animal models in which test them. Thus, we aim to develop and validate an accurate animal model of meniscus degeneration. Method. Three different surgical techniques to induce medial meniscus degenerative changes in ovine model were performed and compared. A total of 32
Introduction. In daily clinical practice, progression of spinal fusion is typically monitored during clinical follow-up using conventional radiography and Computed Tomography scans. However, recent research has demonstrated the potential of implant load monitoring to assess posterolateral spinal fusion in an in-vivo
The outcomes of patients with unexpected positive cultures (UPCs) during revision total hip arthroplasty (THA) and total knee arthroplasty (TKA) remain unknown. The objectives of this study were to establish the prevalence and infection-free implant survival in UPCs during presumed aseptic single-stage revision THA and TKA at mid-term follow-up. This study included 297 patients undergoing presumed aseptic single-stage revision THA or TKA at a single treatment centre. All patients with at least three UPCs obtained during revision surgery were treated with minimum three months of oral antibiotics following revision surgery. The prevalence of UPCs and causative microorganisms, the recurrence of periprosthetic joint infections (PJIs), and the infection-free implant survival were established at minimum five years’ follow-up (5.1 to 12.3).Aims
Methods
Background. Chronic low back pain is strongly linked to degeneration of the intervertebral disc (IVD), which currently lacks any targeted treatments. This study explores NPgel, a biomaterial combined with notochordal cells (NC), developmental precursor cells, as a potential solution. NCs, known for anti-catabolic effects on IVD cells, present a promising avenue for regenerating damaged IVD tissue. Methods. Bovine IVDs underwent enzymatic degeneration before NPgel (+/- NC) injection. Degenerated bovine IVDs were cultured under biomechanical loading for 21 days. Histology and immunohistochemistry assessed NC survival, phenotype, and matrix production. Within an in vivo
Current diagnostic tools are not always able to effectively identify periprosthetic joint infections (PJIs). Recent studies suggest that circulating microRNAs (miRNAs) undergo changes under pathological conditions such as infection. The aim of this study was to analyze miRNA expression in hip arthroplasty PJI patients. This was a prospective pilot study, including 24 patients divided into three groups, with eight patients each undergoing revision of their hip arthroplasty due to aseptic reasons, and low- and high-grade PJI, respectively. The number of intraoperative samples and the incidence of positive cultures were recorded for each patient. Additionally, venous blood samples and periarticular tissue samples were collected from each patient to determine miRNA expressions between the groups. MiRNA screening was performed by small RNA-sequencing using the miRNA next generation sequencing (NGS) discovery (miND) pipeline.Aims
Methods
Accurate diagnosis of chronic periprosthetic joint infection (PJI) presents a significant challenge for hip surgeons. Preoperative diagnosis is not always easy to establish, making the intraoperative decision-making process crucial in deciding between one- and two-stage revision total hip arthroplasty (THA). Calprotectin is a promising point-of-care novel biomarker that has displayed high accuracy in detecting PJI. We aimed to evaluate the utility of intraoperative calprotectin lateral flow immunoassay (LFI) in THA patients with suspected chronic PJI. The study included 48 THAs in 48 patients with a clinical suspicion of PJI, but who did not meet European Bone and Joint Infection Society (EBJIS) PJI criteria preoperatively, out of 105 patients undergoing revision THA at our institution for possible PJI between November 2020 and December 2022. Intraoperatively, synovial fluid calprotectin was measured with LFI. Cases with calprotectin levels ≥ 50 mg/l were considered infected and treated with two-stage revision THA; in negative cases, one-stage revision was performed. At least five tissue cultures were obtained; the implants removed were sent for sonication.Aims
Methods
To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections. EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Aims
Methods
Low back pain (LBP) is a worldwide leading cause of disability. Treatment of intervertebral disc (IVD) with stem cells has been used on degenerate discs (IDD), cause of around 40% of LBP cases. Despite pain reduction, clinical studies' follow-up have not shown a structural IVD improvement. A valid alternative may be the use of notocordal cells (NC) or their precursors. Mesendoderm progenitor cells (MEPC) have the ability to replicate and differentiate toward NC. In this preliminary study we evaluated in a preclinical IDD model the viability and NC differentiation of MEPC derived from induced pluripotent stem cells (iPSC). MEPC derived from iPSC were developed during the iPSpine project (# 825925), thawed, plated for 24h on laminin and labeled with PKH26. Two adult
Secondary bone healing is impacted by the extent of interfragmentary motion at the fracture site. It provides mechanical stimulus that is required for the formation of fracture callus. In clinical settings, interfragmentary motion is induced by physiological loading of the broken bone – for example, by weight-bearing. However, there is no consensus about when mechanical stimuli should be applied to achieve fast and robust healing response. Therefore, this study aims to identify the effect of the immediate and delayed application of mechanical stimuli on secondary bone healing. A partial tibial osteotomy was created in twelve Swiss White Alpine
Biphasic calcium phosphate (BCP) with a characteristic needle-shaped submicron surface topography (MagnetOs) has attracted much attention due to its unique bone-forming ability which is essential for repairing critical-size bone defects such as those found in the posterolateral spine. Previous in vitro and ex-vivo data performed by van Dijk LA and Yuan H demonstrated that these specific surface characteristics drive a favorable response from the innate immune system. This study aimed to evaluate and compare the in vivo performance of three commercially-available synthetic bone grafts, (1) i-FACTOR Putty. ®. , (2) OssDsign. ®. Catalyst Putty and (3) FIBERGRAFT. ®. BG Matrix, with that of a novel synthetic bone graft in a clinically-relevant instrumented
Tryfonidou leads the Horizon 2020 consortium (iPSpine; 2019–2023) bringing a transdisciplinary team of 21 partners together to address the challenges and bottlenecks of iPS-based advanced therapies towards their transition to the clinic. Here, chronic back pain due to intervertebral disc degeneration is employed as a show case. The project develops the iPS-technology and designed smart biomaterials to carry, protect and instruct the iPS cells within the degenerate disc environment. This work will be presented including ongoing activities focus on translating the developed methodology and tools towards clinically relevant animal models. The consortium optimized the protocol for the differentiated iPS-notochordal-like cells (iPS-NLCs) and shortlisted two biomaterials shortlisted based on their physicochemical, cytotoxicity, biomechanical and biocompatibility testing. Both were shown to be safe and have been tested with the progenitors of iPS-NLCs. An advanced platform (e.g., the dynamic loading bioreactor for disc tissue) was used to evaluate their performance: the biomaterials supported the iPS-NLC progenitors after injection into the degenerate disc and seem to also support their maturation towards NLCs. Furthermore, we confirmed the capacity of these cells to survive inside degenerated discs at 30 days upon injection in
Aim. Debridement, Antibiotics, Irrigation, and implant Retention (DAIR) is a surgical treatment protocol suitable for some patients with fracture related infection (FRI). Clinically relevant pre-clinical models of DAIR are scarce and none have been developed in large animals. Therefore, this project aimed to develop a large animal model for FRI including a DAIR approach and compare outcomes after 2 or 5 weeks of infection. Method. Swiss Alpine
Abstract. Objectives. A promising therapy for early osteoarthritis (OA) is the transplantation of human umbilical cord-derived mesenchymal stromal cells (hUC-MSCs). The synovial fluid (SF) from a pre-clinical ovine model treated with hUC-MSCs has been profiled using proteomics and bioinformatics to elucidate potential mechanisms of therapeutic effect. Methods. Four weeks after a medial meniscus transection surgery,
Abstract. Objectives. Young patients receiving metallic bone implants after surgical resection of bone cancer require implants that last into adulthood, and ideally life-long. Porous implants with similar stiffness to bone can promote bone ingrowth and thus beneficial clinical outcomes. A mechanical remodelling stimulus, strain energy density (SED), is thought to be the primary control variable of the process of bone growth into porous implants. The sequential process of bone growth needs to be taken into account to develop an accurate and validated bone remodelling algorithm, which can be employed to improve porous implant design and achieve better clinical outcomes. Methods. A bone remodelling algorithm was developed, incorporating the concept of bone connectivity (sequential growth of bone from existing bone) to make the algorithm more physiologically relevant. The algorithm includes adaptive elastic modulus based on apparent bone density, using a node-based model to simulate local remodelling variations while alleviating numerical checkerboard problems. Strain energy density (SED) incorporating stress and strain effects in all directions was used as the primary stimulus for bone remodelling. The simulations were developed to run in MATLAB interfacing with the commercial FEA software ABAQUS and Python. The algorithm was applied to predict bone ingrowth into a porous implant for comparison against data from a