Aims. The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR. Methods. A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs. Results. Acetabular version was significantly lower and measurements of external rotation of the hemipelvis were significantly increased in the AR group compared to the control group. The AR group also had increased evidence of anterior projection of the iliac wing in the sagittal plane. The acetabular orientation angles were more retroverted in the supine compared to standing position, and the change in acetabular version correlated with the change in
Aims. The aim of this study was to evaluate the reliability and validity of a patient-specific algorithm which we developed for predicting changes in
Computer-assisted 3D preoperative planning software has the potential to improve postoperative stability in total hip arthroplasty (THA). Commonly, preoperative protocols simulate two functional positions (standing and relaxed sitting) but do not consider other common positions that may increase postoperative impingement and possible dislocation. This study investigates the feasibility of simulating commonly encountered positions, and positions with an increased risk of impingement, to lower postoperative impingement risk in a CT-based 3D model. A robotic arm-assisted arthroplasty planning platform was used to investigate 11 patient positions. Data from 43 primary THAs were used for simulation. Sacral slope was retrieved from patient preoperative imaging, while angles of hip flexion/extension, hip external/internal rotation, and hip abduction/adduction for tested positions were derived from literature or estimated with a biomechanical model. The hip was placed in the described positions, and if impingement was detected by the software, inspection of the impingement type was performed.Aims
Methods
In computer simulations, the shape of the range of motion (ROM) of a stem with a cylindrical neck design will be a perfect cone. However, many modern stems have rectangular/oval-shaped necks. We hypothesized that the rectangular/oval stem neck will affect the shape of the ROM and the prosthetic impingement. Total hip arthroplasty (THA) motion while standing and sitting was simulated using a MATLAB model (one stem with a cylindrical neck and one stem with a rectangular neck). The primary predictor was the geometry of the neck (cylindrical vs rectangular) and the main outcome was the shape of ROM based on the prosthetic impingement between the neck and the liner. The secondary outcome was the difference in the ROM provided by each neck geometry and the effect of the pelvic tilt on this ROM. Multiple regression was used to analyze the data.Aims
Methods
Introduction.
Appropriate acetabular component placement has been proposed for prevention of postoperative dislocation in total hip arthroplasty (THA). Manual placements often cause outliers in spite of attempts to insert the component within the intended safe zone; therefore, some surgeons routinely evaluate intraoperative pelvic radiographs to exclude excessive acetabular component malposition. However, their evaluation is often ambiguous in case of the tilted or rotated pelvic position. The purpose of this study was to develop the computational analysis to digitalize the acetabular component orientation regardless of the pelvic tilt or rotation. Intraoperative pelvic radiographs of 50 patients who underwent THA were collected retrospectively. The 3D pelvic bone model and the acetabular component were image-matched to the intraoperative pelvic radiograph. The radiological anteversion (RA) and radiological inclination (RI) of the acetabular component were calculated and those measurement errors from the postoperative CT data were compared relative to those of the 2D measurements. In addition, the intra- and interobserver differences of the image-matching analysis were evaluated.Aims
Methods
Introduction. One of the known mechanisms which could contribute to the failure of total hip replacements (THR) is edge contact. Failures associated with edge contact include rim damage and lysis due to altered loading and torques. Recent study on four THR patients showed that the inclusion of pelvic motions in a contact model increased the risk of edge contact in some patients. The aim of current study was to determine whether pelvic motions have the same effect on contact location for a larger patient cohort and determine the contribution of each of the pelvic rotations to this effect. Methods. Gait data was acquired from five male and five female unilateral THR patients using a ten camera Vicon system (Oxford Metrics, UK) interfaced with twin force plates (AMTI) and using a CAST marker set. All patients had good surgical outcomes, confirmed by patient-reported outcomes and were considered well-functioning, based on elective walking speed. Joint contact forces and pelvic motions were obtained from the AnyBody modelling system (AnyBody Technologies, DK). Only gait cycle regions with available force plate data were considered. A finite element model of a 32mm head on a featureless hemispherical polyethylene cup, 0.5mm radial clearance, was used to obtain the contact area from the contact force. A bespoke computational tool was used to analyse patients' gait profiles with and without pelvic motions. The risk of edge contact was measured as a “centre proximity angle” between the cup pole and centre of the contact area, and “edge proximity angle” between the cup pole and the furthest contact area point away from the pole. Pelvic tilt, drop and internal-external rotation were considered one at a time and in combinations. Results. In eight out of 10 patients, the addition of pelvic motions decreased the risk of edge contact during toe-off. There was up to 6° reduction in the proximity angles when pelvic motions were introduced to the gait cycle. In six out of 10 patients, the addition of pelvic motions resulted in an increase in the risk of edge contact during heel-strike with up to 6° increase in the proximity angles. For all patients where these effects were seen,
It is important to consider sagittal pelvic rotation when introducing
the acetabular component at total hip arthroplasty (THA). The purpose
of this study was to identify patients who are at risk of unfavourable
pelvic mobility, which could result in poor outcomes after THA. A consecutive series of 4042 patients undergoing THA had lateral
functional radiographs and a low-dose CT scan to measure supine
pelvic tilt, pelvic incidence, standing pelvic tilt, flexed-seated
pelvic tilt, standing lumbar lordotic angle, flexed-seated lumbar
lordotic angle, and lumbar flexion. Changes in pelvic tilt from
supine-to-standing positions and supine-to-flexed-seated positions
were determined. A change in pelvic tilt of 13° between positions was
deemed unfavourable as it alters functional anteversion by 10° and
effectively places the acetabular component outside the safe zone
of orientation.Aims
Patients and Methods
The pelvis rotates in the sagittal plane during daily activities.
These rotations have a direct effect on the functional orientation
of the acetabulum. The aim of this study was to quantify changes
in pelvic tilt between different functional positions. Pre-operatively, pelvic tilt was measured in 1517 patients undergoing
total hip arthroplasty (THA) in three functional positions – supine,
standing and flexed seated (the moment when patients initiate rising
from a seated position). Supine pelvic tilt was measured from CT
scans, standing and flexed seated pelvic tilts were measured from standardised
lateral radiographs. Anterior pelvic tilt was assigned a positive
value.Aims
Patients and Methods
The spinopelvic relationship (including pelvic incidence) has been shown to influence pelvic orientation, but its potential association with femoroacetabular impingement has not been thoroughly explored. The purpose of this study was to prove the hypothesis that decreasing pelvic incidence is associated with increased risk of cam morphology. Two matching cohorts were created from a collection of cadaveric specimens with known pelvic incidences: 50 subjects with the highest pelvic incidence (all subjects > 60°) and 50 subjects with the lowest pelvic incidence (all subjects < 35°). Femoral version, acetabular version, and alpha angles were directly measured from each specimen bilaterally. Cam morphology was defined as alpha angle > 55°. Differences between the two cohorts were analysed with a Student’s Objectives
Methods
Introduction. Accurate and reproducible cup positioning is one the most important technical factors that affects outcomes of total hip arthroplasty (THA). Although Lewinnek's safe zone is the most accepted range for anteversion and abduction angles socket orientation, the effect of fixed lumbosacral spine on pelvic tilt and obliquity is not yet established. Questions:. What is the change in anteversion and abduction angle from standing to sitting in a consecutive cohort of patients undergoing THA?. What is the effect of fixed and flexible spinal deformities on acetabular cup orientation after THA?. Material and Methods. Between July 2011 and October 2011, 68 consecutive unilateral THAs were implanted in 68 patients with a mean age of 71 ± 6 years old. Radiographic evaluation included standing anteroposterior (AP) and lateral pelvic radiographs, and sitting lateral pelvic radiograph, measuring lumbosacral angle (LSA), sacral angle (SA), and
Introduction. The posterior condylar axis of the distal femur is the common reference used to describe femoral anteversion. In the context of Total Hip Arthroplasty (THA), this reference can be used to define the native femoral anteversion, as well as the anteversion of the stem. However, these measurements are fixed to a femoral reference. The authors propose that the functional position of the proximal femur must be considered, as well as the functional relationship between stem and cup (combined anteversion) when considering the clinical implications of stem anteversion. This study investigates the post-operative differences between anatomically-referenced and functionally-referenced stem and combined anteversion in the supine and standing positions. Method. 18 patients undergoing pre-operative analysis with the Trinity OPS® planning (Optimized Ortho, Sydney Australia, a division of Corin, UK) were recruited for post-operative assessment. Anatomic and functional stem anteversion in both the supine and standing positions were determined. The anatomic anteversion was measured from CT and referenced to the posterior condyles. The supine functional anteversion was measured from CT and referenced to the coronal plane. The standing functional anteversion was measured to the coronal plane when standing by performing a 3D/2D registration of the implants to a weight-bearing AP X-ray. Further, functional acetabular anteversion was captured to determine combined functional anteversion in the supine and standing positions. Results. The average anatomical stem anteversion was 9.9° (6.7° to 13.0°). In all cases, the anatomical stem anteversion was different than the measured functional stem anteversion in both the supine and standing positions. The functional femoral anteversion decreased from supine to stand by an average of 7.1° (4.9°−9.2°), suggesting more internal rotation of the femurs when weight-bearing. In all patients, the pelvis rotated posteriorly in the sagittal plane from supine to standing, increasing the functional acetabular anteversion by a mean of 5.1°. Conclusions. Anatomic stem anteversion differs significantly from functional stem anteversion in both the supine and standing positions, as a consequence of the patient specific differences in internal/external rotation of the femur in the functional postures. In the same way that the Anterior Pelvic Plane is now widely recognized as an inappropriate reference for cup orientation due to variation in
Component placement and the individual's functional posture play key roles in mechanical complications and hip dysfunction after total hip arthroplasty (THA). The challenge is how to measure these. X-rays lack accuracy and CT scans increase radiation dose. A newer imaging modality, EOSTM, acquires low-dose, simultaneous, perpendicular anteroposterior and lateral views while providing a global view of the patient in a functional standing or sitting position, leading to a 3D reconstruction for parameter calculation. The purpose of the present study was to develop an approach using the EOS system to compare patients with good versus poor results after THA and to report our preliminary experiences using this technique. A total of 35 patients were studied: 17 with good results after THA (G-THA), 18 with poor results (P-THA). The patients were operated on or referred for follow-up to a single expert surgeon, between 2001 and 2011, with a minimum follow-up of at least two years. Acetabular cup orientation differed significantly between groups. Acetabular version relative to the coronal plane was lower in P-THA (32°±12°) compared to G-THA (40°±9°) (p=0.02). There was a strong trend towards acetabular cup inclination relative to the APP being higher in P-THA (45°±9°, compared to 39°±7°; p=0.07). Proportions of P-THA vs. G-THA patients with cup orientation values higher or lower than 1 SD from the overall mean differed significantly and substantially between groups. All revision cases had a least four values outside 1 SD, including acetabular cup orientation,
To confirm whether developmental dysplasia of
the hip has a risk of hip impingement, we analysed maximum ranges
of movement to the point of bony impingement, and impingement location
using three-dimensional (3D) surface models of the pelvis and femur
in combination with 3D morphology of the hip joint using computer-assisted methods.
Results of computed tomography were examined for 52 hip joints with
DDH and 73 normal healthy hip joints. DDH shows larger maximum extension
(p = 0.001) and internal rotation at 90° flexion (p <
0.001).
Similar maximum flexion (p = 0.835) and external rotation (p = 0.713)
were observed between groups, while high rates of extra-articular
impingement were noticed in these directions in DDH (p <
0.001).
Smaller cranial acetabular anteversion (p = 0.048), centre-edge
angles (p <
0.001), a circumferentially shallower acetabulum,
larger femoral neck anteversion (p <
0.001), and larger alpha
angle were identified in DDH. Risk of anterior impingement in retroverted
DDH hips is similar to that in retroverted normal hips in excessive
adduction but minimal in less adduction. These findings might be
borne in mind when considering the possibility of extra-articular
posterior impingement in DDH being a source of pain, particularly
for patients with a highly anteverted femoral neck. Cite this article:
A review of the current literature shows that there is a lack of consensus regarding the treatment of spondylolysis and spondylolisthesis in children and adolescents. Most of the views and recommendations provided in various reports are weakly supported by evidence. There is a limited amount of information about the natural history of the condition, making it difficult to compare the effectiveness of various conservative and operative treatments. This systematic review summarises the current knowledge on spondylolysis and spondylolisthesis and attempts to present a rational approach to the evaluation and management of this condition in children and adolescents.