The June 2024 Knee Roundup360 looks at: The estimated lifetime risk of revision after primary knee arthroplasty influenced by age, sex, and indication; Should high-risk patients seek out care from high-volume surgeons?; Stability and fracture rates in medial unicondylar knee arthroplasties; Rethinking antibiotic prophylaxis for dental procedures post-arthroplasty; Evaluating DAIR: a viable alternative for acute periprosthetic joint infection; The characteristics and predictors of mortality in periprosthetic fractures around the knee; Patient health-related quality of life deteriorates significantly while waiting six to 12 months for total hip or knee arthroplasty; The importance of looking for diversity in knee implants.
Introduction and Objective. The geometry of the proximal tibia and distal femur is intimately linked with the biomechanics of the knee and it is to be considered in total knee arthroplasty (TKA) component positioning. The aim of the present study was to evaluate the proximal tibial torsion in relation to the flexion-extension axis of the knee in healthy and pathological cohort affected by knee osteoarthritis (OA). Materials and Methods. We retrospectively analyzed computed tomography scans of OA knee of 59 patients prior to TKA and non-arthritic knee of 39 patients as control.
Introduction. Instability, loosening, and patellofemoral pain belong to the main causes for revision of total knee arthroplasty (TKA). Currently, the diagnostic pathway requires various diagnostic techniques such as x-rays, CT or SPECT-CT to reveal the original cause for the failed knee prosthesis, but increase radiation exposure and fail to show soft-tissue structures around TKA. There is a growing demand for a diagnostic tool that is able to simultaneously visualize soft tissue structures, bone, and TKA without radiation exposure. MRI is capable of visualising all the structures in the knee although it is still disturbed by susceptibility artefacts caused by the metal implant. Low-field MRI (0.25T) results in less metal artefacts and offers the ability to visualize the knee in weight-bearing condition. Therefore, the aim of this study is to investigate the possibilities of low field MRI to image, the patellofemoral joint and the prosthesis to evaluate the knee joint in patients with and without complaints after TKA. Method. Ten patients, eight satisfied and two unsatisfied with their primary TKA, (NexGen posterior stabilized, BiometZimmer) were included. The patients were scanned in sagittal, coronal, and transversal direction on a low field MRI scanner (G-scan Brio, 0.25T, Esaote SpA, Italy) in weight-bearing and non-weight-bearing conditions with T1, T2 and PD-weighted metal artefact reducing sequences (TE/TR 12–72/1160–7060, slice thickness 4.0mm, FOV 260×260×120m. 3. , matrix size 224×216). Scans were analysed by two observers for:. - Patellofemoral joint: Caton-Descamps index and Tibial Tuberosity-Trochlear Groove (TT-TG) distance. - Prosthesis malalignment: femoral component rotation using the
The results of kinematic total knee arthroplasty (KTKA) have been reported in terms of limb and component alignment parameters but not in terms of gap laxities and differentials. In kinematic alignment (KA), balance should reflect the asymmetrical balance of the normal knee, not the classic rectangular flexion and extension gaps sought with gap-balanced mechanical axis total knee arthroplasty (MATKA). This paper aims to address the following questions: 1) what factors determine coronal joint congruence as measured on standing radiographs?; 2) is flexion gap asymmetry produced with KA?; 3) does lateral flexion gap laxity affect outcomes?; 4) is lateral flexion gap laxity associated with lateral extension gap laxity?; and 5) can consistent ligament balance be produced without releases? A total of 192 KTKAs completed by a single surgeon using a computer-assisted technique were followed for a mean of 3.5 years (2 to 5). There were 116 male patients (60%) and 76 female patients (40%) with a mean age of 65 years (48 to 88). Outcome measures included intraoperative gap laxity measurements and component positions, as well as joint angles from postoperative three-foot standing radiographs. Patient-reported outcome measures (PROMs) were analyzed in terms of alignment and balance: EuroQol (EQ)-5D visual analogue scale (VAS), Knee Injury and Osteoarthritis Outcome Score (KOOS), KOOS Joint Replacement (JR), and Oxford Knee Score (OKS).Aims
Patients and Methods
The morphometry of the distal femur was largely studied to improve
bone-implant fit in total knee arthroplasty (TKA), but little is
known about the asymmetry of the posterior condyles. This study
aimed to investigate the dimensions of the posterior condyles and
the influence of externally rotating the femoral component on potential prosthetic
overhang or under-coverage. We analysed the shape of 110 arthritic knees at the time of primary
TKA using pre-operative CT scans. The height and width of each condyle
were measured at the posterior femoral cut in neutral position,
and in 3º and 5º of external rotation, using both central and medial
referencing systems. We compared the morphological characteristics
with those of 14 TKA models.Aims
Patients and Methods
Introduction. A femoral rotational alignment is one of the essential factors, affecting the postoperative knee balance and patellofemoral tracking in total knee arthroplasty (TKA). To obtain an adequate alignment, the femoral component must be implanted parallel to the surgical epicondylar axis (SEA). We have developed “a superimposable Computed Tomography (CT) scan-based template”, in which the SEA is drawn on a distal femoral cross section of the CT image at the assumed bone resection level, to determine the precise SEA. Therefore, the objective of this study was to evaluate the accuracy of the rotational alignment of the femoral component positioned with the superimposed template in TKA. Patients and methods. Twenty-six consecutive TKA patients, including 4 females with bilateral TKAs were enrolled. To prepare a template, all knees received CT scans with a 2.5 mm slice thickness preoperatively. Serial three slices of the CT images, in which the medial epicondyle and/or lateral epicondyle were visible, were selected. Then, these images were merged into a single image onto which the SEA was drawn. Thereafter, another serial two CT images, which were taken at approximately 9 mm proximal from the femoral condyles, were also selected, and the earlier drawn SEA was traced onto each of these pictures. These pictures with the SEA were then printed out onto transparent sheets to be used as potential “templates” (Fig. 1-a). In the TKA, the distal femur was resected with the modified measured resection technique. Then, one template, whichever of the two potential templates, was closer to the actual shape, was selected and its SEA was duplicated onto the distal femoral surface (Fig. 1-b). Following that, the distal femur was resected parallel to this SEA. The rotational alignment of the femoral component was evaluated with CT scan postoperatively. For convention, an external rotation of the femoral component from the SEA was given a positive numerical value, and an internal rotation was given a negative numerical value. Results. The subjects were 4 knees in 4 males and 26 knees in 22 females. A mean age (for 30 knees) at the operation was 76.7 ± 6.1 years (range from 66.4 to 88.3). The
Aim. The aim of this study is to evaluate the effect of three-dimensional (3D) simulation with 3D planning software ZedKnee® (ZK) in total knee arthroplasty (TKA). Materials and methods. The participants in this study were all TKA patients whose operations were simulated by using ZK. The alignment of all components was evaluated with the ZK valuation software in postoperative computer tomography. Thirty patients (43 knees) met the inclusion criteria. 6 patients were male and 24 patients were female. The mean age of the 30 patients was 72 years old. Diagnoses for surgery were: osteoarthritis- 40 knees, rheumatoid arthritis- 2 knees and osteonecrosis- 1 knee. TKA was performed using the measured resection technique. The distal femur axis where the intramedullary rod would be inserted was drawn manually on the 3D image. Then, the angle between the distal femoral axis and the mechanical axis was measured. The rotational angles of the femoral components were determined from the automatically calculated angle between the posterior condylar axis and the surgical epicondylar axis (SEA) by using ZK. The ZK data used during the operation was the
Purpose. External rotation of the femoral component is one factor that favors a satisfactory clinical result. New technologies have been developed to precisely implant the components of a total knee arthroplasty, including computer-assisted surgery (CAS) and patient-specific instruments (PSIs). The aim of this study was to compare the precision of CAS and PSIs when determining the orientation of the femoral component. Methods. A total of 65 patients operated on in 2008 with CAS had pre- and post-operative computed tomography (CT) in which the
Background. The use of Computed Tomography (CT) as a medical imaging tool has widespread applications in the field of knee surgery. Surgeons use a CT scan in a conventional way during the pre-operative stage, to plan the position of the femoral component in the horizontal plane. In the post-operative stage, the use of a CT scan is a routine tool in the evaluation of failed TKA as rotational malalignment of the femoral component has been determined as a cause of poor clinical outcome after TKA. Aim. How accurately can we measure the different angles with importance for alignment on a 3D-image in comparison to a standard CT, 2D, image. Material and methods. This study includes patients above 55 years of age who were scheduled for a TKA at our centre and who had a pre- and postoperative full-leg length computed tomography (CT). These images were analysed using Mimics V 16.0 ® and 3-matic V 8.0 ® (Materialise, Haasrode, Belgium) to create the surface reconstruction and perform the 3D-measurements. Different angles were measured pre- and post-operatively on these images both in 2D as in 3D: condylar twist
Purpose. To validate accuracy of transepicondylar axis as a reference for femoral component rotation in primary total knee arthroplasty. Methods. A prospective study done from dec 2010 to dec 2011 at tertiary centre. 80 knees were included (43 females and 21 males). All surgeries were carried out by one senior arthroplasty surgeon. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view. Postoperative TEA was assessed by taking CT scan, measuring condylar twist
Background. Finding the anatomical landmarks used for correct femoral rotational alignment can be difficult. The Posterior Condylar Line (PCL) is probably the easiest to find during surgery. The aim of this study was to analyze if a predetermined fixed angle referencing of the PCL could help obtain good femoral alignment in TKA patients. Methods. 2637 CT scans used for preoperative planning and creation of patient-specific instrumentation (PSI) were used to analyze the
Purpose:. To compare accuracy of transepicondylar axis as a reference for femoral component rotation in primary navigated versus non navigated total knee arthroplasty in severely deformed knees. Methods:. A prospective study done from dec 2009 to dec 2011 at tertiary centre. 180 knees were included (124 females and 56 males). All cases were randomly allocated into 2 groups: navigated and non navigated. All surgeries were carried out by two senior arthroplasty surgeons. All patients undergoing primary total knee replacement were included and all revision cases were excluded. Intraoperative assessment of TEA was done by palpating most prominent point on lateral epicondyle and sulcus on medial epicondyle and passing a k wire through it. Confirmation is done under image intensifier C arm with epicondylar view in Non navigated knees. Postoperative TEA was assessed by taking CT scan, measuring condylar twist
Radiological assessment of total and unicompartmental
knee replacement remains an essential part of routine care and follow-up.
Appreciation of the various measurements that can be identified
radiologically is important. It is likely that routine plain radiographs
will continue to be used, although there has been a trend towards
using newer technologies such as CT, especially in a failing knee,
where it provides more detailed information, albeit with a higher
radiation exposure. The purpose of this paper is to outline the radiological parameters
used to evaluate knee replacements, describe how these are measured
or classified, and review the current literature to determine their
efficacy where possible.
Background. Recent anthropometric studies have suggested that current design of total knee arthroplasty (TKA) does not cater to racial anthropometric differences. The purpose of this study was to investigate the exact sizing and rotational landmarks of the distal femur collected from a large group of healthy Southern Chinese using three dimensional computer tomographic measurements, and then compare these measurements to the known dimensions from Caucasian populations. Methods. This study evaluated distal femoral geometry in 125 healthy Southern Chinese, included 58 women (106 knees) and 67 men (134 knees) with a mean age of 35.2±8.11 years, a mean height of 165.5±7.94 cm, and a mean weight of 61.7±9.56 kg. The width of the articular surface as projected onto the transepicondylar line(ML), anteroposterior dimension (AP), the dimensions from medial/lateral epicondyle to posterior condylar (MEP/LEP)were measured. A characterization of the aspect ratio (ML/AP) was made for distal femur[Fig. 1]. The angles between the tangent line of the posterior condylar surfaces, the Whiteside line, the transepicondylar line, and the trochlear line were measured. The sulcus angle and hip center-femoral shaft angle were also measured. Known dimensions from Caucasian populations were compared with the morphologic data collected in this study[Fig. 2]. In analyzing the data, best-fit lines were calculated with use of least-squares regression. The dimensions are summarized as the mean and standard deviation. The differences of rotational landmarks and sizing between the Southern Chinese and Caucasians were assessed with use of the Student t test. A p value of <0.05 indicated a significant effect. Results. Within the Southern Chineses population, males had larger ML and AP values than females (ML: 70.38±3.09 vs. 62.09±2.52mm, P<0.001; AP: 63.68±2.82 vs. 57.83±2.91mm, P<0.001). The results also showed that Southern Chinese knees were generally smaller than Caucasian (ML: 67.27±4.95 vs. 76.8±7.2mm, P<0.001). The femoral aspect ratio of Southern Chinese was significantly smaller than Caucasian (1.09±0.04 vs. 1.28±0.06, P<0.001). In addition, we found a gradual decrease in the aspect ratio corresponding to an increase in anteroposterior dimension in the distal femur of Southern Chinese, as seen in most other studies. The transepicondylar axis was found to be a reliable landmark to properly rotate the femoral component, so we used the femoral condylar MEP and LEP evaluate posterior condylar offset, the values were respectively 28.62±2.18mm and 22.50±2.19mm. From this study, most of the angles were different from Caucasian. Anteroposterior line minus epicondylar line angle was 90.14±1.30° (Caucasian 90.33±2.44°, P>0.05), anteroposterior line minus
Introduction. Malrotation following total knee replacement is directly related to poor outcome. The knowledge of proximal and distal rotational axes and angles of the femur is therefore of high importance. The aim of the study was to determine whether the most used proximal and distal femoral angles; femoral anteversion angle (FAA) and
Obtaining a balanced flexion gap with correct
femoral component rotation is one of the prerequisites for a successful
outcome after total knee replacement (TKR). Different techniques
for achieving this have been described. In this study we prospectively
compared gap-balancing Both groups systematically reproduced a similar external rotation
of the femoral component relative to the surgical transepicondylar
axis: 2.4°
Introduction: Using navigation the AP alignment of a total knee arthroplasty (TKA) improves. However, much less is known on the influence of navigation on the rotation of the femoral component. The rotation of the femoral component is of high importance considering the balancing of the knee and the patellofemoral joint. The aim of our study was to evaluate the accuracy of the femoral component rotation when using navigation. Materials and Methods: We evaluated twenty navigated TKA’s. The Vector Vision system of Brainlab was used during surgery. The preoperative data considering the rotation were stored. On postoperative CT scans the rotation of the femoral component was measured twice at different times by two observers. The
Introduction: Rotational alignment of the femoral component is widely believed to be crucial for the ultimate success of total knee arthroplasty (TKA). However there is a paucity of normative data on femoral component rotation in ‘perfect’ TKA. Methods: Femoral component rotation in well-functioning TKA was assessed by means of axial radiography as described by Kanekasu et al. Well-functioning TKA were defined by three criteria at 5-year follow-up:. Knee Society objective and functional score of 190 or above. full knee extension and a maximum flexion of 125° or above. excellent subjective patient rating. Thirty TKA of 29 patients (9 male, 20 female) with a median age of 70 years (range, 31–87) at time of surgery fulfilled the study criteria. All TKA were implanted at a single high-volume joint replacement center in 2002. In all cases both the condylar twist angle (CTA) using the clinical epicondylar axis (CEA) and the
Introduction: Rotational alignment of femoral component in TKA affect the clinical results of long-term follow up (Stiehl). Improper alignment may lead to unstable femoro-tibial joint, to wear or loosening of tibial component, and is associated with the subluxation or dislocation of the patella by patella-femoral mal-tracking (Pascal 1996). The precise setting of femoral component is important for the smooth patella tracking and good ligament balancing in TKA. Previously orientation of rotation of the femoral component has been set by equal resection of the posterior condyle (Hungerford 1985, Laskin 1989). The anteroposterior axis of the distal femur that was defined by a line through the deepest part of the patellar groove anteriorly and the center of the intercondylar notch posteriorly, was an easy and reliable landmark of the rotational alignment of the femoral component (Whiteside, Arima). The posterior condylar line (PC line) that connects the posterior condyle of the femur is widely used as a landmark for the cutting of the posterior condyle. Also, 3°external rotation off the posterior femoral condyle has been commonly used as a intraoperative landmark (Laskin1995). The anatomical and functional axis of the femur has been studied so far (Poilvache.Yoshioka1987). Transepicondylar axis (TEA) as the origin of collateral ligament is valuable axis for the parallel cut of the posterior condyle (Berger, Miller). TEA was found to be a reliable landmark to proper rotation of the femoral component, measuring the angle between the axis and the posterior condylar line to orient the femoral component is very important. However, intra-operative manual palpation of the TEA was not reproducible because most prominent point was covered with soft tissue (Jenny). It is sometimes difficult to identify the sulcus of the medial epicondyle accurately with palpation even during surgery (). Therefore, it is crucial to measure and evaluate the TEA as the preoperative planning. The posterior condylar line (PC line) that connects the posterior condyle of the femur is also used for the landmark of the cutting of the posterior condyle. The methods of examining the angle between TEA and PC line are computed tomography (CT) and kneeling view that was simple radiographic technique by Takai et al. Posterior condyle of deformed side makes inaccurate decision of the angle for TEA and PC line because thickness of cartilage and bone are different between medial and lateral condyle. PCA is not applicable in MIS-TKA because it is very difficult to visualize the posterior condyle in the lateral side by the medial approach. Alternative landmark of the angle between TEA and anterior trochlear line of lateral and medial femoral condyles for the determination of rotational positioning of the femoral component may be considered. We have improved the simple radiographic view of evaluating the TEA and PC line but also anterior trochlear line for the assessment of rotational alignment of the distal femur in TKA. The purpose of this study was to measure these angles and to evaluate the reliabilities in compared with 3D-CT. Subjects and methods Our new radiograph we describe is the antero-posterior view of looked-up distal femur. The patient lies on the supine position and flexes the knee about 130 degrees as much as possible. X-ray is applied to the knee at the right angle to the front of the skin from 20 degrees bottom (Figure 1). We pointed out the location of the anterior surface of the condyles, medial epicondyle and lateral epicondyle. We marked the medial and lateral epicondyle of anterior surface of condyles, and posterior condyles as the indivisual reference points in these views. We defined the anterior intercondylar line (trochlear line) as the most axial projections of the medial and lateral femoral condyles. We defined PC line as a line connecting the surfaces of the subarticular cortex of the medial and lateral posterior femoral condyles likewise. We used to obtain clinical TEA that was defined by drawing the most prominent points of the medial and lateral epicondyles. We measured the external rotational angle between PC line and clinical TEA (condylar twist angle), and the internal rotational angle between clinical TEA and trochlear line (Figure 2). Reproducibility of our radiographic technique We examined the reproducibility of our new radiographical technique by 20 healthy volunteers. They included ? males and ? females and the average age of the patients was # years (# ~ # years). No knees in volunteers showed remarkable deformities. We photographed at the flexion angle from 110 to 140 degrees every 10 degrees, at the incident angle of 20 and 30 degrees. The anterior trochlear line, PC line and clinical TEA were drawn on the images and measured condylar twist angle and the internal rotation angle between clinical TEA and trochlear line. The differences of their measurements were quantified using paired t-test. Comparison with our view and reconstruction images of 3-dimensional helical CT system The CT images of 35 knee joints in 28 patients had been taken at full extension of the knee using 512 × 512 pixel matrix, in addition of plain X-ray. From the data of CT images, two different images were acquired such as the composition images and the reconstruction images of 3D. The composition images were obtained by putting a photograph with slices of every 2 mm on top of one another. The CT slices (Shimazu Co Ltd, Kyoto, Japan) obtained from the proximal edge of the patella to the joint line of the knee. We added anterior surface of condyles, medial epicondyle, lateral epicondyle and posterior condyles on tracing paper every slice in the same place. Then we drawn trochlear line, PC line and clinical TEA, and measured the external rotation angle between PC line and clinical TEA (condylar twist angle) and the internal rotation angle between clinical TEA and trochlear line. The reconstruction images were obtained by the distal femoral view looked-up from distal aspect and reconstructed with 3-dimensional helical CT system. We have drawn trochlear line, PC line, clinical TEA, and measured the external rotation angle between PC line and clinical TEA (condylar twist angle), and the internal rotation angle between clinical TEA and trochlear line from three methods mentioned above and had compared them. The differences of their measurements were compared with three groups. This study involved 122 knees in 82 patients including 22 males and 80 females with osteoarthritis of the knee. The average age of the patients was 67.3 years from 37 to 89 years. We classified by Kellgren and Lawrence classification (K-L grade). They consisted of grade 1; 12 knees, grade 2; 37 knees, grade 3; 34 knees, and grade 4; 39 knees. Tibiofemoral angle (TFA) on long-leg radiography at the standing position were ranged from 164°to 197°; mean, 180.2°±6.7°. We examined the correlation between condylar twist angle and gender, TFA, height and weight. Informed consent. Statistics: Statistical analysis was performed on a personal computer using a statistical software of Statview (SAS institute, Chicago, IL). P values of less than.05 was considered as statistically significant. We used the t-test, which does not need the raw data, to compare our results with those published. We were able to obtain information on the number of subjects (to calculate the degree of freedom) and the mean from the publications. Results: The external rotation angle between PC line and clinical TEA (PC-TEA), that is condylar twist angle (CTA) was 5.6°±2.8°(mean±s.d). The internal rotational angle between clinical TEA and anterior trochlear line (trochlear-TEA) was 5.7°±3.2°. K-L grade was negatively correlated with these rotational angles using Kruskal Wallis test (Table 1). These angles of female was larger than those of male (Table 2). The varus angle was negatively correlated with the CTA (R=−0.30) and positively correlated with the internal rotation angle of trochlear-TEA (R=0.376) (Figure 3). The external rotation angle between PC line and clinical TEA was 5.3°±2.4° at our view, and 5.5°±2.3° at reconstruction images from 3-dimensional helical CT system. The difference of condylar twist angle between plain X-ray and 3D-CT was shown in Figure 4. The internal rotation angle between clinical TEA and anterior trochlear line was 5.3°±2.4° at our view, °and 5.7°±2.3° at reconstruction images from 3-dimentional helical CT system. The difference of the internal rotation angle between clinical TEA and anterior trochlear line between plain X-ray and 3D-CT was shown in Figure 5. Regarding the reproducibility about the flexion angle of the knee and the incident angle, correlation coefficients were ? for the flexion angle of the knee, ? for the incident angle. All cases were within 5° variations of the external rotation angle between PC line and clinical TEA, and 4° variations of the internal rotation angle between clinical TEA and trochlear line, respectively. The case of at 110° flexion and 30° incident angle, however, tends to be more variable than the other cases due to unclear PC line (SD 3.3°; range 3–16°). Discussion: Two kinds of TEAs are used for the reference of femoral rotation on the surgical TEA and the clinical TEA. Surgical TEA is a line connecting the sulcus of the medial epicondyle and the lateral epicondylar prominence (Berger 1993). The
The pourpose of this study was to investigate the variability of the