Advertisement for orthosearch.org.uk
Results 1 - 20 of 85
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 7 | Pages 713 - 719
1 Jul 2024
Patel MS Shah S Elkazaz MK Shafafy M Grevitt MP

Aims

Historically, patients undergoing surgery for adolescent idiopathic scoliosis (AIS) have been nursed postoperatively in a critical care (CC) setting because of the challenges posed by prone positioning, extensive exposures, prolonged operating times, significant blood loss, major intraoperative fluid shifts, cardiopulmonary complications, and difficulty in postoperative pain management. The primary aim of this paper was to determine whether a scoring system, which uses Cobb angle, forced vital capacity (FVC), forced expiratory volume in one second (FEV1), and number of levels to be fused, is a valid method of predicting the need for postoperative critical care in AIS patients who are to undergo scoliosis correction with posterior spinal fusion (PSF).

Methods

We retrospectively reviewed all AIS patients who had undergone PSF between January 2018 and January 2020 in a specialist tertiary spinal referral centre. All patients were assessed preoperatively in an anaesthetic clinic. Postoperative care was defined as ward-based (WB) or critical care (CC), based on the preoperative FEV1, FVC, major curve Cobb angle, and the planned number of instrumented levels.


Bone & Joint 360
Vol. 12, Issue 6 | Pages 34 - 35
1 Dec 2023

The December 2023 Spine Roundup360 looks at: Does size matter in adolescent pedicle screws?; Effect of lumbar fusion and pelvic fixation rigidity on hip joint stress: a finite element analysis; Utility of ultrasonography in the diagnosis of lumbar spondylolysis in adolescent patients; Rett syndrome-associated scoliosis a national picture.


Bone & Joint 360
Vol. 12, Issue 3 | Pages 30 - 32
1 Jun 2023

The June 2023 Spine Roundup. 360. looks at: Characteristics and comparative study of thoracolumbar spine injury and dislocation fracture due to tertiary trauma; Sublingual sufentanil for postoperative pain management after lumbar spinal fusion surgery; Minimally invasive bipolar technique for adult neuromuscular scoliosis; Predictive factors for degenerative lumbar spinal stenosis; Lumbosacral transitional vertebrae and lumbar fusion surgery at level L4/5; Does recall of preoperative scores contaminate trial outcomes? A randomized controlled trial; Vancomycin in fibrin glue for prevention of SSI; Perioperative nutritional supplementation decreases wound healing complications following elective lumbar spine surgery: a randomized controlled trial


Bone & Joint 360
Vol. 12, Issue 2 | Pages 39 - 42
1 Apr 2023

The April 2023 Children’s orthopaedics Roundup360 looks at: Can you treat type IIA supracondylar humerus fractures conservatively?; Bone bruising and anterior cruciate ligament injury in paediatrics; Participation and motor abilities after treatment with the Ponseti method; Does fellowship training help with paediatric supracondylar fractures?; Supracondylar elbow fracture management (Supra Man): a national trainee collaborative evaluation of practice; Magnetically controlled growing rods in early-onset scoliosis; Weightbearing restrictions and weight gain in children with Perthes’ disease?; Injuries and child abuse increase during the pandemic over 12,942 emergency admissions.


Bone & Joint 360
Vol. 12, Issue 1 | Pages 42 - 45
1 Feb 2023

The February 2023 Children’s orthopaedics Roundup360 looks at: Trends in management of paediatric distal radius buckle fractures; Pelvic osteotomy in patients with previous sacral-alar-iliac fixation; Sacral-alar-iliac fixation in patients with previous pelvic osteotomy; Idiopathic toe walking: an update on natural history, diagnosis, and treatment; A prediction model for treatment decisions in distal radial physeal injuries: a multicentre retrospective study; Angular deformities after percutaneous epiphysiodesis for leg length discrepancy; MRI assessment of anterior coverage is predictive of future radiological coverage; Predictive scoring for recurrent patellar instability after a first-time patellar dislocation.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 48 - 48
1 Dec 2022
Yee N Iorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine: if ultra-low dose CT without sedation was feasible given the movement disorders in this population; what the radiation exposure was compared to standard pre-operative imaging; whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α = 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 68 - 68
1 Dec 2022
Yee N Lorio C Shkumat N Rocos B Ertl-Wagner B Green A Lebel D Camp M
Full Access

Neuromuscular scoliosis patients face rates of major complications of up to 49%. Along with pre-operative risk reduction strategies (including nutritional and bone health optimization), intra-operative strategies to decrease blood loss and decrease surgical time may help mitigate these risks. A major contributor to blood loss and surgical time is the insertion of instrumentation which is challenging in neuromuscular patient given their abnormal vertebral and pelvic anatomy. Standard pre-operative radiographs provide minimal information regarding pedicle diameter, length, blocks to pedicle entry (e.g. iliac crest overhang), or iliac crest orientation. To minimize blood loss and surgical time, we developed an “ultra-low dose” CT protocol without sedation for neuromuscular patients. Our prospective quality improvement study aimed to determine:. if ultra-low dose CT without sedation was feasible given the movement disorders in this population;. what the radiation exposure was compared to standard pre-operative imaging;. whether the images allowed accurate assessment of the anatomy and intra-operative navigation given the ultra-low dose and potential movement during the scan. Fifteen non-ambulatory surgical patients with neuromuscular scoliosis received the standard spine XR and an ultra-low dose CT scan. Charts were reviewed for etiology of neuromuscular scoliosis and medical co-morbidities. The CT protocol was a high-speed, high-pitch, tube-current modulated acquisition at a fixed tube voltage. Adaptive statistical iterative reconstruction was applied to soft-tissue and bone kernels to mitigate noise. Radiation dose was quantified using reported dose indices (computed tomography dose index (CTDIvol) and dose-length product (DLP)) and effective dose (E), calculated through Monte-Carlo simulation. Statistical analysis was completed using a paired student's T-test (α= 0.05). CT image quality was assessed for its use in preoperative planning and intraoperative navigation using 7D Surgical System Spine Module (7D Surgical, Toronto, Canada). Eight males and seven females were included in the study. Their average age (14±2 years old), preoperative Cobb angle (95±21 degrees), and kyphosis (60±18 degrees) were recorded. One patient was unable to undergo the ultra-low dose CT protocol without sedation due to a co-diagnosis of severe autism. The average XR radiation dose was 0.5±0.3 mSv. Variability in radiographic dose was due to a wide range in patient size, positioning (supine, sitting), number of views, imaging technique and body habitus. Associated CT radiation metrics were CTDIvol = 0.46±0.14 mGy, DLP = 26.2±8.1 mGy.cm and E = 0.6±0.2 mSv. CT radiation variability was due to body habitus and arm orientation. The radiation dose differences between radiographic and CT imaging were not statistically significant. All CT scans had adequate quality for preoperative assessment of pedicle diameter and orientation, obstacles impeding pedicle entry, S2-Alar screw orientation, and intra-operative navigation. “Ultra-low dose” CT scans without sedation were feasible in paediatric patients with neuromuscular scoliosis. The effective dose was similar between the standard preoperative spinal XR and “ultra-low dose” CT scans. The “ultra-low dose” CT scan allowed accurate assessment of the anatomy, aided in pre-operative planning, and allowed intra-operative navigation despite the movement disorders in this patient population


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 6 - 6
1 Aug 2022
Bada E Dwarakanath L Sewell M Mehta J Jones M Spilsbury J McKay G Newton-Ede M Gardner A Marks D
Full Access

Children undergoing posterior spinal fusion (PSF) for neuromuscular and syndromic scoliosis were admitted to the paediatric intensive care (PIC) until about 6 years ago, at which time we created a new unit, a hospital floor-based spinal high-dependency unit-plus (SHDU-plus), in response to frequent bed-shortage cancellations. This study compares postoperative management on PIC with HDU-plus for these non-hospital floor suitable children with syndromic and neuromuscular scoliosis undergoing PSF. Retrospective review of 100 consecutive children with syndromic and neuromuscular scoliosis undergoing PSF between June 2016 and January 2022. Inclusion criteria were: 1) diagnosis of syndromic or neuromuscular scoliosis, 2) underwent PSF, 3) not suitable for immediate postoperative hospital floor-based care. Exclusion criteria were children with significant cardio-respiratory co-morbidity requiring PIC postoperatively. 55 patients were managed postoperatively on PIC and 45 on SHDU-plus. No significant difference between groups was found with respect to age, weight, ASA grade, preoperative Cobb angles, operative duration, number of levels fused and estimated blood loss. 4 patients in the PIC group and 1 in the SHDU-plus group were readmitted back to PIC or HDU following step-down to the hospital floor. Average length of stay was 2 days on PIC and 1 day on SHDU-plus. Average total length of hospital stay was 16.5 days in the PIC group and 10.5 days in the HDU-plus group. 19 (35%) patients developed complications in the PIC group, compared to 18 (40%) in SHDU-plus. Mean specialist unit charge per day was less on SHDU-plus compared with PIC. There were no bed-shortage cancellations in the SHDU-plus group, compared to 11 in the PIC group. For children with neuromuscular or syndromic scoliosis undergoing PSF and deemed not suitable for post-operative care on the hospital floor, creation of a SHDU-plus was associated with fewer readmissions back to PIC or HDU, shorter hospital stays, an equivalent complication rate, significant cost-saving and fewer cancellations. Level of Evidence: Therapeutic Level III


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_8 | Pages 8 - 8
1 Aug 2022
Sharma A Grannum S de Koning R Thakar C Nnadi C
Full Access

Surgical site infections following spinal surgery profoundly influence continued treatment, significantly impacting psychological and economic dimensions and clinical outcomes. Its reported incidence varies up to 20%, with the highest incidence amongst neuromuscular scoliosis and metastatic cord compression patients. We describe the first reported biphasic osteoconductive scaffold (Cerament G) with a logarithmic elution profile as a cumulative strategic treatment modality for adjacent spinal surgery infections. All patients who developed surgical site infections following instrumented fusion (May 2021-December 2021) had their demographics (age, sex), type and number of procedures, isolated organism, antibiotics given, comorbidities, and WHO performance status analysed. The infected wound was debrided to healthy planes, samples taken, and Cerament g applied. Thirteen patients were treated for deep SSI following spinal instrumentation and fusion procedures with intraoperative Cerament G application. There were four males and nine females with an average age of 40 ranging between 12 and 87. Nine patients underwent initial surgery for spinal deformity, and four were treated for fractures as index procedure. 77% of infections were attributable to MSSA and Cutibacteriousm acnes; others included Klebsiella, Pseudomonas and Streptococcus and targeted with multimodal cumulative therapy. A WHO performance score improved in 11 patients. In addition, there was no wound leak, and infection was eradicated successfully in 12/13 with a single procedure. This series shows the successful eradication of the infection and improved functional outcomes with Cerament G. However, the low numbers of patients in our series are an essential consideration for the broader applicability of this device


Bone & Joint 360
Vol. 11, Issue 2 | Pages 34 - 37
1 Apr 2022


The Bone & Joint Journal
Vol. 104-B, Issue 2 | Pages 257 - 264
1 Feb 2022
Tahir M Mehta D Sandhu C Jones M Gardner A Mehta JS

Aims

The aim of this study was to compare the clinical and radiological outcomes of patients with early-onset scoliosis (EOS), who had undergone spinal fusion after distraction-based spinal growth modulation using either traditional growing rods (TGRs) or magnetically controlled growing rods (MCGRs).

Methods

We undertook a retrospective review of skeletally mature patients who had undergone fusion for an EOS, which had been previously treated using either TGRs or MCGRs. Measured outcomes included sequential coronal T1 to S1 height and major curve (Cobb) angle on plain radiographs and any complications requiring unplanned surgery before final fusion.


Bone & Joint Open
Vol. 3, Issue 1 | Pages 85 - 92
27 Jan 2022
Loughenbury PR Tsirikos AI

The development of spinal deformity in children with underlying neurodisability can affect their ability to function and impact on their quality of life, as well as compromise provision of nursing care. Patients with neuromuscular spinal deformity are among the most challenging due to the number and complexity of medical comorbidities that increase the risk for severe intraoperative or postoperative complications. A multidisciplinary approach is mandatory at every stage to ensure that all nonoperative measures have been applied, and that the treatment goals have been clearly defined and agreed with the family. This will involve input from multiple specialities, including allied healthcare professionals, such as physiotherapists and wheelchair services. Surgery should be considered when there is significant impact on the patients’ quality of life, which is usually due to poor sitting balance, back or costo-pelvic pain, respiratory complications, or problems with self-care and feeding. Meticulous preoperative assessment is required, along with careful consideration of the nature of the deformity and the problems that it is causing. Surgery can achieve good curve correction and results in high levels of satisfaction from the patients and their caregivers. Modern modular posterior instrumentation systems allow an effective deformity correction. However, the risks of surgery remain high, and involvement of the family at all stages of decision-making is required in order to balance the risks and anticipated gains of the procedure, and to select those patients who can mostly benefit from spinal correction.


The Bone & Joint Journal
Vol. 104-B, Issue 1 | Pages 103 - 111
1 Jan 2022
Li J Hu Z Qian Z Tang Z Qiu Y Zhu Z Liu Z

Aims

The outcome following the development of neurological complications after corrective surgery for scoliosis varies from full recovery to a permanent deficit. This study aimed to assess the prognosis and recovery of major neurological deficits in these patients, and to determine the risk factors for non-recovery, at a minimum follow-up of two years.

Methods

A major neurological deficit was identified in 65 of 8,870 patients who underwent corrective surgery for scoliosis, including eight with complete paraplegia and 57 with incomplete paraplegia. There were 23 male and 42 female patients. Their mean age was 25.0 years (SD 16.3). The aetiology of the scoliosis was idiopathic (n = 6), congenital (n = 23), neuromuscular (n = 11), neurofibromatosis type 1 (n = 6), and others (n = 19). Neurological function was determined by the American Spinal Injury Association (ASIA) impairment scale at a mean follow-up of 45.4 months (SD 17.2). the patients were divided into those with recovery and those with no recovery according to the ASIA scale during follow-up.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 26 - 26
1 Sep 2021
Palliyil N Estefan M Gessara A Shafafy M
Full Access

SUMMARY. A retrospective cohort study of 19 patients of EOS who underwent MCGR rod instrumentation with subsequent serial distractions, measured using ultrasonography. The degree of distraction achieved during each session were analyzed and subgroup analysis done. HYPOTHESIS. The degree of distraction/ distractibility of the MCGR rod is closely linked to the etiology of EOS. The degree of distraction achieved at each session progressively diminishes with successive distractions. STUDY DESIGN. Retrospective cohort study. INTRODUCTION. MCGR rods have gained popularity as an alternative to traditional growing rods for the treatment of Early-onset scoliosis (EOS), serially distracting with an aim to mimic the normal spinal growth, which can be achieved in an outpatient setting using external remote controller. The use of ultrasound as a tool to measure the degree of distraction achieved has been validated previously. However the association between the etiological diagnosis of EOS and the degree of distraction achieved has not been studied previously. METHODS. We performed a retrospective cohort study of 19 patients with EOS of varying etiologies who underwent MCGR rod instrumentation at our institution since 2016. Their hospital records were analyzed to assess the demographics, distraction interval and the degree of distraction achieved at each session. RESULTS. 19 patients (12 females and 7 males) were included in the study. The average age of the study population was 7 years (4–13 years). The average follow up was 2.1 years (1–4). The following were the etiological diagnoses: Idiopathic EOS(8), Neuromuscular scoliosis(5), Syndromic(5), Congenital(1). The average interval between each distraction was 109.8days (88.2–140.6). The overall mean distraction was 1.66mm (0.6–3.427). The mean distraction achieved for the concave rod was 1.69mm (0.6–3.03) as against 1.59mm (0.2–3.427) for the convex rod. The degree of distraction achieved per session was the greatest in patients with neuromuscular scoliosis 2.79mm (0.94–4.62), while it was the least in Congenital scoliosis 0.99mm (0.8–2.93). The degree of distraction in Syndromic and Idiopathic scoliosis groups were 2.19mm (0.1–4.2) and 1.50mm (0.2–4.45) respectively. The mean distraction achieved during the first session after MCGR instrumentation was 2.82mm (0.4–9.8) as against 1.98mm (0.1–4.2) and 1.18mm (0.2–2.3), achieved during the 5. th. and 10. th. distractions respectively. CONCLUSIONS. The average distraction of the MCGR rod achieved per session depends upon the etiological diagnosis of EOS. Neuromuscular curves are the most amenable to MCGR distractions, while the congenital curves are the least. The degree of distraction achieved progressively diminishes with each successive distractions. The distraction achieved slumps to 70% of the initial distraction by the 5. th. session and further declines to 41% of the initial distraction by the 10. th. session. TAKE HOME MESSAGE. The distractibility of the MCGR rod is closely linked to the etiology of EOS. MCGR rods are most effective in cases of neuromuscular scoliosis, while least effective in congenital scoliosis. The law of diminishing returns holds true even with MCGR rods


Bone & Joint 360
Vol. 10, Issue 3 | Pages 32 - 35
1 Jun 2021


Bone & Joint 360
Vol. 10, Issue 2 | Pages 50 - 53
1 Apr 2021


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 547 - 552
1 Mar 2021
Magampa RS Dunn R

Aims

Spinal deformity surgery carries the risk of neurological injury. Neurophysiological monitoring allows early identification of intraoperative cord injury which enables early intervention resulting in a better prognosis. Although multimodal monitoring is the ideal, resource constraints make surgeon-directed intraoperative transcranial motor evoked potential (TcMEP) monitoring a useful compromise. Our experience using surgeon-directed TcMEP is presented in terms of viability, safety, and efficacy.

Methods

We carried out a retrospective review of a single surgeon’s prospectively maintained database of cases in which TcMEP monitoring had been used between 2010 and 2017. The upper limbs were used as the control. A true alert was recorded when there was a 50% or more loss of amplitude from the lower limbs with maintained upper limb signals. Patients with true alerts were identified and their case history analyzed.


The Bone & Joint Journal
Vol. 102-B, Issue 11 | Pages 1560 - 1566
2 Nov 2020
Mehdian H Haddad S Pasku D Nasto LA

Aims. To report the mid-term results of a modified self-growing rod (SGR) technique for the treatment of idiopathic and neuromuscular early-onset scoliosis (EOS). Methods. We carried out a retrospective analysis of 16 consecutive patients with EOS treated with an SGR construct at a single hospital between September 2008 and December 2014. General demographics and deformity variables (i.e. major Cobb angle, T1 to T12 length, T1 to S1 length, pelvic obliquity, shoulder obliquity, and C7 plumb line) were recorded preoperatively, and postoperatively at yearly follow-up. Complications and revision procedures were also recorded. Only patients with a minimum follow-up of five years after surgery were included. Results. A total of 16 patients were included. Six patients had an idiopathic EOS while ten patients had a neuromuscular or syndromic EOS (seven spinal muscular atrophy (SMA) and three with cerebral palsy or a syndrome). Their mean ages at surgery were 7.1 years (SD 2.2) and 13.3 years (SD 2.6) respectively at final follow-up. The mean preoperative Cobb angle of the major curve was 66.1° (SD 8.5°) and had improved to 25.5° (SD 9.9°) at final follow-up. The T1 to S1 length increased from 289.7 mm (SD 24.9) before surgery to 330.6 mm (SD 30.4) immediately after surgery. The mean T1 to S1 and T1 to T12 growth after surgery were 64.1 mm (SD 19.9) and 47.4 mm (SD 18.8), respectively, thus accounting for a mean T1 to S1 and T1 to T12 spinal growth after surgery of 10.5 mm/year (SD 3.7) and 7.8 mm/year (SD 3.3), respectively. A total of six patients (five idiopathic EOS, one cerebral palsy EOS) had broken rods during their growth spurt but were uneventfully revised with a fusion procedure. No other complications were noted. Conclusion. Our data show that SGR is a safe and effective technique for the treatment of EOS in nonambulatory hypotonic patients with a neuromuscular condition. Significant spinal growth can be expected after surgery and is comparable to other published techniques for EOS. While satisfactory correction of the deformity can be achieved and maintained with this technique, a high rate of rod breakage was seen in patients with an idiopathic or cerebral palsy EOS. Cite this article: Bone Joint J 2020;102-B(11):1560–1566


Bone & Joint Open
Vol. 1, Issue 3 | Pages 19 - 28
3 Mar 2020
Tsirikos AI Roberts SB Bhatti E

Aims

Severe spinal deformity in growing patients often requires surgical management. We describe the incidence of spinal deformity surgery in a National Health Service.

Methods

Descriptive study of prospectively collected data. Clinical data of all patients undergoing surgery for spinal deformity between 2005 and 2018 was collected, compared to the demographics of the national population, and analyzed by underlying aetiology.


The Bone & Joint Journal
Vol. 102-B, Issue 2 | Pages 261 - 267
1 Feb 2020
Tøndevold N Lastikka M Andersen T Gehrchen M Helenius I

Aims. It is uncertain whether instrumented spinal fixation in nonambulatory children with neuromuscular scoliosis should finish at L5 or be extended to the pelvis. Pelvic fixation has been shown to be associated with up to 30% complication rates, but is regarded by some as the standard for correction of deformity in these conditions. The incidence of failure when comparing the most caudal level of instrumentation, either L5 or the pelvis, using all-pedicle screw instrumentation has not previously been reported. In this retrospective study, we compared nonambulatory patients undergoing surgery at two centres: one that routinely instrumented to L5 and the other to the pelvis. Methods. In all, 91 nonambulatory patients with neuromuscular scoliosis were included. All underwent surgery using bilateral, segmental, pedicle screw instrumentation. A total of 40 patients underwent fusion to L5 and 51 had their fixation extended to the pelvis. The two groups were assessed for differences in terms of clinical and radiological findings, as well as complications. Results. The main curve (MC) was a mean of 90° (40° to 141°) preoperatively and 46° (15° to 82°) at two-year follow-up in the L5 group, and 82° (33° to 116°) and 19° (1° to 60°) in the pelvic group (p < 0.001 at follow-up). Correction of MC and pelvic obliquity (POB) were statistically greater in the pelvic group (p < 0.001). There was no statistically significant difference in the operating time, blood loss, or complications. Loss of MC correction (> 10°) was more common in patients fixated to the pelvis (23% vs 3%; p = 0.032), while loss of pelvic obliquity correction was more frequent in the L5 group (25% vs 0%; p = 0.007). Risk factors for loss of correction (either POB or MC) included preoperative coronal imbalance (> 50 mm, odds ratio (OR) 11.5, 95%confidence interval (CI) 2.0 to 65; p = 0.006) and postoperative sagittal imbalance (> 25 mm, OR 11.0, 95% CI1.9 to 65; p = 0.008). Conclusion. We found that patients undergoing pelvic fixation had a greater correction of MC and POB. The rate of complications was not different. Preoperative coronal and postoperative sagittal imbalance were associated with increased risks of loss of correction, regardless of extent of fixation. Therefore, we recommend pelvic fixation in all nonambulatory children with neuromuscular scoliosis where coronal or sagittal imbalance are present preoperatively. Cite this article: Bone Joint J 2020;102-B(2):261–267