Advertisement for orthosearch.org.uk
Results 1 - 20 of 1050
Results per page:
Bone & Joint Research
Vol. 13, Issue 12 | Pages 779 - 789
16 Dec 2024
Zou H Hu F Wu X Xu B Shang G An D Qin D Zhang X Yang A

Aims

The involvement of long non-coding RNA (lncRNA) in bone marrow mesenchymal stem cell (MSC) osteogenic differentiation during osteoporosis (OP) development has attracted much attention. In this study, we aimed to disclose how LINC01089 functions in human mesenchymal stem cell (hMSC) osteogenic differentiation, and to study the mechanism by which LINC01089 regulates MSC osteogenesis.

Methods

Quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blotting were performed to analyze LINC01089, miR-1287-5p, and heat shock protein family A (HSP70) member 4 (HSPA4) expression. The osteogenic differentiation of MSCs was assessed through alkaline phosphatase (ALP) activity, alizarin red S (ARS) staining, and by measuring the levels of osteogenic gene marker expressions using commercial kits and RT-qPCR analysis. Cell proliferative capacity was evaluated via the Cell Counting Kit-8 (CCK-8) assay. The binding of miR-1287-5p with LINC01089 and HSPA4 was verified by performing dual-luciferase reporter and RNA immunoprecipitation (RIP) experiments.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_20 | Pages 12 - 12
12 Dec 2024
Langton D Bhalekar R Wells S Nargol M Natu S Nargol A Waller S Pabbruwe M Sidaginamale R
Full Access

Objectives. Several studies have reported elevated blood cobalt (Co) and chromium (Cr) concentrations in patients with total knee replacements (TKRs). Up to 44% of tissue samples taken from patients with failed TKRs exhibit histological evidence of metal sensitivity/ALVAL. In simulated conditions, metal particles contribute approximately 12% of total wear debris in TKR. We carried out this investigation to determine the source and quantity of metal release in TKRs. Design and Methods. We analysed 225 explanted fixed-bearing TKRs (Attune, Genesis II, NexGen, PFC, and Vanguard) revised for any indication. These were analysed using peer-reviewed [coordinate measuring machine (CMM)] methodology to measure the volumetric wear of the polyethylene (PE) bearing surfaces and trays. The trays were analysed using 2D profilometry (surface roughness-Ra) and light microscopy. Histological and blood metal ion concentration analyses were performed in a sub-sample of patients. Results. The median (IQR) PE wear rate was 14 (6 to 20) mm. 3. /year. Microscopic examination of the superior surface of trays exhibited pitting on 132 (59%) of trays. There was a statistically significant (p<0.05) increase in Rvk on the pitted area of trays for each design, indicating material removal from the pits compared to the unpitted area. The inferior surface of 116(51%) of trays displayed polishing, indicative of abrasive wear. The median(range) Co and Cr concentrations were 2.5µg/l (0.2–69.4) and 1.7µg/l (0.5-12.5) respectively in 40 patients. Of the tissue samples examined in 30 patients, 6 had at least “mild”-ALVAL infiltrate. All corresponding “ALVAL” explants were found to be pitted and/or show evidence of loosening of the tray. Conclusion. This study provides further evidence that CoCr release in TKR appears to be an under-appreciated cause of adverse clinical outcomes. The generation of metal particles was predominantly from the metal tray, which may explain elevated metal ions after TKRs, despite no direct metal-on-metal contact


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_20 | Pages 13 - 13
12 Dec 2024
Langton D Bhalekar R Wells S Nargol M Natu S Nargol A Waller S Pabbruwe M Sidaginamale R
Full Access

Objectives. We identified an unusual pattern of backside deformation on polyethylene (PE) inserts of contemporary total knee replacements (TKRs). The PE backside's margins were inferiorly deformed in TKRs with NexGen central-locking trays. This backside deformation was significantly associated with tray debonding. Furthermore, recent studies have shown high rate of tray debonding in PS NexGen TKRs. Subsequently, a field safety notice was issued regarding the performance of this particular device combination and the Option tray has been withdrawn from use. Therefore, we hypothesised that the backside deformation of PS inserts may be greater than that of CR inserts. Design and Methods. At our national implant retrieval centre, we used peer-reviewed techniques to analyse changes in the bearing wear rate and backside surface deformation of NexGen PE inserts using coordinate measuring machines [N=84 (CR-43 and PS-41) TKRs with non-augmented-trays]. Multiple regression was used to determine which variable had the greatest influence on backside deformation. The amount of cement cover on trays was quantified as a %of the total surface using Image-J software. Results. The median (IQR) bearing wear rate of the PS PEs [14(8-22) mm. 3. /year] was not significantly different(p=0.154) to that of the CR PEs [18(8-27)mm. 3. /year]. The median (IQR) backside deformation of the PS inserts [294(239-361) µm] was significantly greater (p<0.001) than that of the CR inserts [212(158-258)µm]. Multiple regression modelling showed that duration in-vivo (p=0.037), central-clearance between insert and tray (p<0.001) and constraint (p=0.003) were significantly associated with PE backside-deformation. 38(93%) PS and 31(72%) of CR trays exhibited ≤10% of cement cover. Non-contacting profilometry and microscopy revealed marked pitting and abrasive changes to the superior surface of the tray. Conclusion. This explant study showed the PE backside deformation was significantly higher in PS than in CR inserts and this may be one explanation for the unsatisfactory clinical performance reported with this device combination


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 68 - 68
22 Nov 2024
Mannala G Labat B Ladam G Pascal T Walter N Szymski D Riool M Alt V Rupp M
Full Access

Aim. Orthopedic implants play a tremendous role in fixing bone damages due to aging as well as fractures. However, these implants tend to get colonized by bacteria on the surface, leading to infections and subsequently prevention of healing and osteointegration. Recently, Roupie et al. showed that a nisin layer-by-layer based coating applied on biomaterials has both osteogenic and antibacterial properties. The Galleria mellonella larva is a well-known insect infection model that has been used to test the virulence of bacterial and fungal strains as well as for the high throughput screening of antimicrobial compounds against infections. Recently, we have developed an insect infection model with G. mellonella larvae to study implant-associated biofilm infections using Kirschner (K)-wires as implant material. Here, we would like to test the antibacterial capacity of nisin layer-by-layer based coatings on K-wires against Staphylococcus aureus in the G. mellonella larva implant infection model. Method. Prior to the implantation procedure, G. mellonella larvae are maintained at room temperature on wheat germ in an incubator. The larvae received bare titanium K-wires (uncoated), or either control-coated or nisin-coated K-wires. After one hour, the larvae were injected with 5×10. 5. S. aureus bacteria per larva (i.e., hematogenous implant infection model). Next, the larvae were incubated at 37. o. C in an incubator and the survival of the larvae was monitored for five days. Moreover, the number of bacteria on the implant surface and in the surrounding tissue was determined after 24h of incubation. Further, scanning electron microscopy (SEM) analyses were performed to study the effect of nisin on biofilm formation. Results. The larvae receiving the nisin-coated K-wires showed significantly higher survival rates compared to uncoated titanium K-wires, although not when compared to control-coated K-wires. A more than 1-log reduction in number of bacteria on the implant surface and in the surrounding tissue was observed in larvae receiving the nisin-coated K-wires, when compared to uncoated titanium K-wires SEM analysis showed reduced colonization of the bacteria nisin-coated K-wires compared to the controls. Conclusions. In conclusion, the antimicrobial nisin layer-by-layer based coating applied on titanium surfaces is able to prevent implant-related S. aureus biofilm infection in G. mellonella and is a promising antimicrobial strategy to prevent implant-related infections


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 12 - 12
22 Nov 2024
Wang L Trampuz A Zhang X
Full Access

Aim. Treatment of prosthetic joint infection (PJI) by systemic administration of high doses of long-term antibiotics often proves ineffective, causing severe side effects. Thus, we presented the phage Sb-1, which coding extracellular polymeric substances (EPS) degradation depolymerases, conjugated with rifampicin-loaded liposomes (Lip-RIF@Phage) by bio-orthogonal functionalization strategy to target biofilm (Figure1). Method. Methicillin-resistant Staphylococcus aureus (MRSA) biofilm was grown on porous glass beads for 24 h in vitro. After the biofilm formation, beads were exposed to 0.9% saline, then sonication. Quantitative and qualitative biofilm analyses were performed by colony counting, scanning electron microscopy and isothermal microcalorimetry. A rat model of total knee arthroplasty infected with the bioluminescent MRSA strain was developed as the PJI model to evaluate the efficacy of Lip-RIF@Phage anti-biofilm therapy in vivo, then the creatinine, alanine transaminase, and aspartate transaminase values were evaluated throughout the entire treatment process. Results. After treatment with Lip-RIF@Phage, no bacterial colonies were observed, consistent with findings from scanning electron microscopy. Similarly, isothermal microcalorimetry revealed no detectable heat following Lip-RIF@Phage treatment, aligning with these observations. In vivo experiments demonstrated a significant reduction in biofilm cell load compared to all other tested conditions, with no evidence of systemic toxicity on renal and liver functions attributed to Lip-RIF@Phage. Conclusions. The innovative depolymerase-phagobot nanosystem (Lip-RIF@Phage) exhibits remarkable efficacy in completely eliminating biofilm cells in vitro. It serves as an excellent carrier for antibiotic delivery, enhancing antibiotic penetration through biofilms and improving biofilm eradication efficacy. Furthermore, it enables personalized treatment strategies against biofilm-associated multidrug-resistant (MDR) infections by maximizing the effectiveness of any remaining sensitive antibiotics. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 9 - 9
22 Nov 2024
Wali R Miller C Harrison C Stafford G Hatton P
Full Access

Introduction. In specific conditions, infection may lead to bone loss and is difficult to treat. 1. Current clinical approaches rely on the introduction of antibiotics. While these may be effective, there are concerns regarding the rise of antimicrobial resistance. There is therefore interest in the development of antimicrobial bone graft substitutes for dental and trauma surgery. Aim & Objectives. The incorporation of zinc into biomaterials has been shown to confer broad spectrum antimicrobial activity, but this has not yet been applied to the development of a commercial bone graft substitute. The aim of this research was therefore to prepare and characterise a series of zinc-substituted nanoscale hydroxyapatite (nHA) materials, including evaluation of antimicrobial activity. Method. Zinc (Zn) substituted nHA materials were prepared (0, 5, 10, 15 & 20 mol.% Zn) using a wet chemical precipitation method with a rapid mixing. (2). The reaction was carried out using zinc hydroxide at pH 10. The suspension formed was washed and dried into both powder & paste forms. The resultant powders were characterized using transmission electron microscopy (TEM) and X-ray diffraction (XRD). The antimicrobial activity was evaluated against Staphylococcus aureus (S8650 strain - isolated from an osteomyelitis case), by two techniques. The Miles and Misra method was applied to determine the number of colony-forming units (CFUs) in bacterial suspensions incubated with pastes. Secondly, a biofilm initialization method was used to evaluate the capacity of the materials to prevent biofilm formation. One-way analysis of variance (ANOVA) was used for the statistical analysis and results with p-value < 0.05 were considered statistically significant. Results. XRD indicated the formation of pure hydroxyapatite with up to 10 mol.% Zn without any side products. However, when Zn was increased to 15 & 20 mol %, zinc oxide (ZnO) peaks were detected. The TEM showed nanoscale needle-like particles when Zn was increased compared to nHA particles. Regarding the antibacterial activity, ZnHA pastes at all concentrations caused a significant reduction in bacterial CFUs in a dose-dependent manner (50, 100 & 200 mg). Additionally, even the lowest zinc substitution (5 mol.%) significantly reduced biofilm formation. Conclusion. The results demonstrated a novel method to produce a Zn-substituted nHA that showed antimicrobial activity against a pathogen isolated from a bone infection


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 14 - 14
22 Nov 2024
Gómez MM Guembe M Díaz-Navarro M Peinado LP Matas-Díaz J Ruiz PS
Full Access

Aim. Chemical debridement is a fundamental step during Periprosthetic joint infection (PJI) surgery. Antiseptic solutions are commonly used, but evidence on the optimal antiseptic, concentration, and irrigation time is lacking. The aim of this study is to analyze and compare the anti-biofilm capacity of povidone iodine, H. 2. 0. 2. , acetic acid and Bactisure™ after different exposure times, as well as their combinations. Method. Surgical steel discs inoculated with methicillin susceptible (MSSA) and resistant S. aureus (MRSA), P. aeruginosa, and S. epidermidis were exposed to the following antiseptic solutions: 0.3% (PI0.3) and 10% povidone iodine (PI10), H. 2. 0. 2. , 3% Acetic acid (AA3) and Bactisure™. Combinations included AA3, H. 2. 0. 2. , and PI10 in various orders. Exposure time for the antiseptics solutions was 1, 3 and 5 minutes, while combinations had a 9-minute total exposure, 3 minutes per antiseptic sequentially. All experiments were performed in triplicate and with a sterile saline control. nThe reduction in colony-forming units (CFU) was measured after sonication, and biofilm structure was analyzed via scanning electron microscopy. Results. PI showed the highest antibiofilm activity. PI0.3 eradicated bacteria on the discs after 3 and 5 minutes of exposure, but only achieved a 77.1% reduction after 1 minute. After PI10 treatment, we did not recover any bacteria regardless of exposure time. H. 2. 0. 2. , AA3, and Bactisure™ reached a significantly lower bacterial decrease at all exposure times compared to PI0.3 and PI10. AA3 was less effective against MSSA and S. epidermidis. H. 2. 0. 2. showed less activity against MRSA than PI0.3, PI10, and Bactisure™. Combinations of antiseptics starting with AA3 showed the best results in terms of CFU reduction and cell viability. Conclusions. We propose a sequential combination of AA3 + H. 2. 0. 2. + PI10 with an exposure time of 9 minutes for the chemical debridement in PJI surgery. First, AA3 performs debridement and disruption of the biofilm. Then, H. 2. 0. 2. has a bactericidal effect and increases the porosity of the cell wall, and PI10 has a final bactericidal effect. If combinations are unavailable, PI is a cost-effective alternative


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 72 - 72
14 Nov 2024
Uvebrant K Andersen C Lim HC Vonk L Åkerlund EL
Full Access

Introduction. Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits. Method. The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic iron oxide nanoparticles conjugated with Rhodamine B-labeled human integrin a10-MSCs in rabbits with experimental osteochondral defects. MSC distribution in the joint was followed by MRI and fluorescence microscopy. Result. The production of the immunomodulatory factors indoleamine 2,3-dioxygenase and prostaglandin E2 was increased after inflammatory licensing integrin a10-MSCs. Co-cultures with integrin a10-MSCs suppressed T-cell proliferation and increased the frequency of M2 macrophages. In vivo injected integrin a10-MSCs homed to osteochondral defects and were detected in the repair tissue of the defects up to 10 days after injection, colocalized with aggrecan and type II collagen. Conclusion. This study showed that human integrin a10-MSCs have immunomodulatory capacities and in vivo can home to the site of osteochondral damage and directly participate in cartilage regeneration. This suggests that human integrin α10β1-selected MSCs may be a promising therapy for osteoarthritis with dual mechanisms of action consisting of immunomodulation and homing to damage followed by early engraftment and differentiation into chondrocyte-like cells that deposit hyaline cartilage matrix molecules


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 108 - 108
14 Nov 2024
Marchiori G Zaffagnini S Cavazza L Fabbro GD Grassi A Lopomo NF Giavaresi G Maglio M
Full Access

Introduction. Histology is still considered the gold standard method for the evaluation of soft tissues in the musculoskeletal field, thanks to the possibility of studying structures using different staining and high magnification microscopy. To overcome the intrinsic limits of this method, contrast enhanced microtomographic (CE- microCT) protocols are constantly evolving to allow 3D study of soft tissues. However, no standardized approaches are available, and many concerns exist about the alterations induced to the samples. Method. microCT/histology protocols were explored on human tendons and menisci. To enhance contrast tissues for microCT scanning 1) examethyldisilazane drying 2) 2% phosphotungstic acid (PTA) in alcoholic solution exposition and 3) 2% PTA in aqueous solution exposition were performed; to observe PTA contrast progression, three exposition and scanning times were selected. microCT images were compared to histological slices obtained from the same samples, after rehydration protocols, or from adjacent tissues portion, stained with Picrosirius red to highlight the peculiar collagenic structures. Result. Exposition times influence PTA diffusion and tissue contrast; its specificity for collagenic structure allow a clearer contrast of the tissues. Histological processing on the same samples is possible: PTA removal requires careful washing in basic solution to reduce the hardening of the sample, while drying can be reverted applying inverse protocol. Comparison with microCT images is really accurate if histology is performed on the same sample, although all protocols induce tissue shrinkage with relative packing of collagen fibers. Conclusion. The contrast approaches tested proved effective in highlighting the structures of both tendons and menisci, but the structural effects induced by tissue shrinkage do not allow a completely real microCT visualization of native tissue. Histology can be the reference method to monitor the efficacy of the contrast methods and the alterations induced to define the possibility of improvement of the technique. Acknowledgement. PR23-PAS-P4 “ADJOINT 2”- INAIL


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 21 - 21
14 Nov 2024
Nieuwstraten J Guilak F Danalache M
Full Access

Introduction. Within articular cartilage, chondrocytes reside within the pericellular matrix (PCM), collectively constituting the microanatomical entity known as a chondron. The PCM functions as a pivotal protective shield and mediator of biomechanical and biochemical cues. In the context of Osteoarthritis (OA), enzymatic degradation of the PCM is facilitated by matrix metalloproteinases (MMPs). This study delves into the functional implications of PCM structural integrity decline on the biomechanical properties of chondrons and impact on Ca. 2+. signaling dynamics. Method. Chondrons isolated from human cartilage explants were incubated with activated MMP-2, -3, or -7. Structural degradation of the pericellular matrix (PCM) was assessed by immunolabelling (collagen type VI and perlecan, n=5). Biomechanical properties of chondrons (i.e. elastic modulus (EM)) were analyzed using atomic force microscopy (AFM). A fluorescent calcium indicator (Fluo-4-AM) was used to record and quantify the intracellular Ca. 2+. influx of chondrons subjected to single cell mechanical loading (500nN) with AFM (n=7). Result. Each of the three MMPs disrupted the structural integrity of the PCM, leading to attenuated fluorescence intensity for both perlecan and collagen VI. A significant decrease of EM was observed for all MMP groups (p<0.005) with the most notable decrease observed for MMP-2 and MMP-7 (p<0.001). In alignment with the AFM results, there was a significant alteration in Ca. 2+. influx observed for all MMP groups (p<0.05), in particular for MMP-2 and MMP-7 (p<0.001). Conclusion. Proteolysis of the PCM by MMP-2, -3, and -7 not only significantly alters the biomechanical properties of articular chondrons but also affects their mechanotransduction profile and response to mechanical loading, indicating a close interconnection between these processes. These findings underscore the influence of an intact pericellular matrix (PCM) in protecting cells from high stress profiles and carry implications for the transmission of mechanical signaling during OA onset and progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 101 - 101
14 Nov 2024
Oliveira SD Miklosic G Guicheux J Visage CL D'este M Helary C
Full Access

INTRODUCTION. Intervertebral disc (IVD) degeneration is not completely understood because of the lack of relevant models. In vivo models are inappropriate because animals are quadrupeds. IVD is composed of the Nucleus Pulposus (NP) and the Annulus Fibrosus (AF), an elastic tissue that surrounds NP. AF consists of concentric lamellae made of collagen I and glycosaminoglycans with fibroblast-like cells located between layers. In this study, we aimed to develop a novel 3D in vitro model of Annulus Fibrosus to study its degeneration. For this purpose, we reproduced the microenvironment of AF cells using 3D printing. METHOD. An ink consisting of dense collagen (30 mg.mL. -1. ) and tyramine-functionalized hyaluronic acid (THA) at 7.5 mg.mL. -1. was first designed by modulating pH and [NaCl] in order to inhibit the formation of polyionic complexes between collagen and THA. Then, composite inks were printed in different gelling baths to form collagen hydrogels. Last, THA photocrosslinking using eosin and green light was performed to strengthen hydrogels. Selected 3D printed constructs were then cellularized with fibroblasts. RESULTS. The physicochemical study revealed that collagen/THA solutions (4:1 ratio) used at pH 5 with 200 mM NaCl were homogenous. In addition, collagen fibrils were observed in these solutions. The dense composite collagen/THA inks printed in a 2X PBS bath rapidly gelled and the photo-crosslinking increased the mechanical properties by 2 to reach 25 kPa (Young's modulus). Then, 3D printing parameters were optimized (85 kPa, extrusion, 4.5 mm/s speed and 80% fill-in percentage) to generate flat and anisotropic lamellae observed by polarized light microscopy. For the in vitro study, several anisotropic layers were printed and fibroblasts seeded between them. Cells adhered to layers, spread, proliferate and aligned along the axis of printed layers. CONCLUSION. Taken together, these results show it is possible to reproduce in vitro the main AF's biochemical and physical properties


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 23 - 23
14 Nov 2024
Ambrosio L Schol J Fernández CR Papalia R Vadalà G Denaro V Sakai D
Full Access

Introduction. Intervertebral disc degeneration (IDD) is a progressive process affecting all disc tissues, namely the nucleus pulposus (NP), annulus fibrosus (AF), and cartilaginous endplates (CEPs). Several cell-based therapies have been proposed to replenish the disc cell population and promote tissue regeneration. However, cell-free therapeutics have been increasingly explored due to potentially higher advantages and cost-effectiveness compared to cell transplantation. Recently, extracellular vesicles (EVs) isolated from healthy Tie2. +. -NP cells (NPCs) have shown promising regenerative outcomes on degenerative NPCs (dNPCs). The aim of this study was to assess the effect of such EVs on all disc cell types, including AF cells (AFCs) and CEP cells (CEPCs), compared to EVs isolated from bone-marrow derived mesenchymal stromal cells (BM-MSCs). Method. NPCs harvested from young donors underwent an optimized culture protocol to maximize Tie2 expression (NPCs. Tie2+. ). BM-MSCs were retrieved from a commercial cell line or harvested during spine surgery procedures. EV characterization was performed via particle size analysis (qNano), expression of EV markers (Western blot), and transmission electron microscopy. dNPCs, AFCs, and CEPCs were isolated from surgical specimens of patients affected by IDD, culture-expanded, and treated with NPCs. Tie2+. -EVs or BM-MSC-EVs ± 10 ng/mL IL-1b. EV uptake was assessed with PKH26 staining of EVs under confocal microscopy. Cell proliferation and viability were assessed with the CCK-8 assay. Result. Upon characterization, isolated EVs exhibited the typical exosomal characteristics. NPCs. Tie2+. -EVs and BM-MSC-EVs uptake was successfully observed in all dNPCs, AFCs, and CEPCs. Both EV products significantly increased dNPC, AFC, and CEPC viability, especially in samples treated with NPCs. Tie2+. -EVs. Conclusion. NPCs. Tie2+. -EVs demonstrated to significantly stimulate the proliferation and viability of degenerative cells isolated from all disc tissues. Rather than the sole NP, EVs isolated by committed progenitors physiologically residing within the disc may exert their regenerative effects on the whole organ, thus possibly constituting the basis for a new therapy for IDD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 85 - 85
14 Nov 2024
Florit MG Graça AL Domingues RMA Gomes MME
Full Access

Introduction. Healthy tendons are mainly composed of aligned collagen hierarchically organized from collagen fibrils to fiber bundles with a scarce cellular population mainly composed of tenocytes and tendon stem/progenitor cells. However, injured tendon acquires a fibrotic state characterized by a loss of ECM alignment and increased cellularization. The lack of reliable 3D models that recreate the organization and microenvironment of healthy and diseased tendons is one of the main obstacles faced by the scientific community. Method. To recreate the architecture of healthy and diseased tendons, electrospun nanofiber scaffolds with anisotropic and isotropic nanotopography were developed. These scaffolds were coated with a shell consisting of cell-laden hydrogels encapsulating human adipose-derived stem cells (hASCs) to include the living component. To show the versatility of the system, extracellular vesicles (EVs) were encapsulated in the hydrogel as biological cues. The living fibers were characterized by microscopy and morphological analysis. The morphology and phenotype of cells was evaluated using microscopy, gene expression analysis and immunostainings for tendon markers. Results. Scaffolds mimicked the native hierarchical structure of tendons and size of tendon fascicles. hASCs showed high elongation and cytoskeleton anisotropic organization, typical of tenocytes. Moreover, the bioengineered living fibers supported the tenogenic differentiation of stem cells over time, as indicated by the sustained expression of tenogenic and extracellular matrix markers. Finally, the hydrogel layer acted not only as a hydrated biomimetic environment adequate for cell encapsulation but also as a carrier and delivery system of EVs to cells, which improved their tenogenic commitment. Conclusion. We bioengineered composite living fibers made of hierarchically organized electrospun fibers, coated with hydrogel encapsulating hASCs and biofunctional EVs. These provide an in vitro system to recreate tendon, allowing for the study of the effects of biophysical cues in tendon microenvironments and the influence of biologics on cells behavior. Acknowledgments. CP21/00136, PI22/01686, CA22170, 10.54499/2020.03410.CEECIND/CP1600/CT0013, 10.54499/2022.05526.PTDC


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 100 - 100
14 Nov 2024
Castorena JG Riester R Ornelas MG Guilak F Danalache M
Full Access

Introduction. Piezo1 is a mechanosensitive Ca. 2+. ion channel that has been shown to transduce hyper-physiologic mechanical loads in chondrocytes. In osteoarthritic cartilage, Piezo1 expression was shown to be upregulated by interleukin-1 alpha (IL-1α) and resulted in altered calcium dynamics and actin cytoskeleton rarefication. Together these studies highlight the importance of Piezo1 channels during joint injury. However, the mechanism by which Piezo1 regulates chondrocyte physiology and mechanotransduction during homeostasis is still largely unknown. In this study, we investigate the impact of Piezo1 activation on nuclear mechanics and chromatin methylation state. Methods. Porcine chondrocytes (n=3-5 pigs) were treated with Yoda1, a Piezo1-specific agonist, for either 2, 5, 15 or 180 minutes. To characterize chromatin state, we monitored the abundance of a chromatin methylation marker (H3K9Me3) using immunofluorescence (IF). Atomic force microscopy (AFM, 25 nm cantilever) was employed to quantify the nuclear elastic modulus (NEM) of individual cell nuclei. To explore the interplay between cytoskeletal dynamics and nuclear mechanics, chondrocytes were treated with Latrunculin A (LatA), an actin polymerization inhibitor. Result. IF experiments showed chromatin methylation was the lowest 2 minutes post Yoda1 activation of Piezo1 (p=0.027). Additionally, we found that 2 or 5 minutes post-Piezo1 activation resulted in a significantly lower NEM when compared to the control (p<0.00001). The observed decrease in NEM at 2 and 5 minutes post-Piezo1 activation was not observed after knocking down Piezo1 (p>0.99). In LatA treated cells, the elevated NEM persisted even after Piezo1 activation with Yoda1 (p>0.75). Conclusion. These findings illuminate the mechanism by which Piezo1 activation and actin remodeling regulate transient mechanotransduction during homeostasis. Further research into the transient decrease in nuclear stiffness and chromatin methylation observed during the initial 5 minutes of Piezo1-induced Ca2+ signaling, may contribute to a better understanding of the role of Piezo1 channels in joint injury and development of therapeutic interventions for osteoarthritis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 96 - 96
14 Nov 2024
Mahadeshwara MR Pandit H Hall RM Jawad MA Bryant M Gendy RE
Full Access

Introduction. Osteoarthritis (OA) occurs due to a multi-scale degradation of articular cartilage (AC) surface which aggravates the disease condition. Investigating the micro-scale structural alterations and mechano-tribological properties facilitates comprehension of disease-mechanisms to improve future injectable-therapies. This study aims to analyze these properties using various experimental and analytical methods to establish correlations between their morpho-physiological features. Method. In this study, Raman-spectroscopy was used to investigate microscale changes in AC constituents and categorize OA damage regions in knee-joint samples from joint replacement patients (Samples = 5 and Regions = 40). Following, microscale indentation and sliding tests were performed on these regions to evaluate variations in aggregate-modulus (AM) and elastic-modulus (EM), with coefficient of friction (COF). Finally, scanning electron microscopy (SEM) was employed to analyze these morphological variations. Result. Raman spectroscopy revealed degree of collagen-damage (Amide-3 α-helix to random-coil ratio I-1250/I-1280), proteoglycan-damage (Sulphated bonds SO. 3-. to CH. 2. twist ratio I-1065/I-1206), amount of bone exposure (Phosphated-hydroxyapatite PO. 4. 3-. to Amide-1 ratio I-959/I-1669) and increased crystallinity (Carbonated hydroxyapatite CO. 3. 2-. to Amide-1 ratio I-1075/I-959) in ECM. Subsequently, these regions were categorized into different groups (G) based on these damages; G1 (Proteoglycan); G2 (Collagen + Proteoglycan); G3 (Collagen + Proteoglycan + Carbonated crystallinity) G4 (Collagen or Proteoglycan + bone exposure); and G5 (Collagen + Proteoglycan + Bone exposure). Further experimentation revealed the differences in mechano-tribological properties (AM, EM, and COF) between the different groups. G5 displayed the highest values of AM (1.5 ± 0.2MPa), EM (0.3 ± 0.01MPa) and COF (0.39 ± 0.08), compared to other groups. These altered properties were confirmed via SEM that revealed micro-asperity junctions, superficial fronding, fibrillations and bone exposure at these damaged regions. Conclusion. This study demonstrated micro-scale changes in AC among OA patients commensurate to the degree of tissue damage, which correlates with disease progression altering joint structure and function particularly in regions with high COF


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 98 - 98
14 Nov 2024
Höflsauer SG Bonnaire F Danalache M Feierabend M Hofmann U
Full Access

Introduction. Analogous to articular cartilage, changes in spatial chondrocyte organisation have been proposed to be a strong indicator for local tissue degeneration and destruction in the intervertebral disc (IVD). While a progressive structural and functional degradation of the extracellular (ECM) and pericellular (PCM) matrix occurs in osteoarthritic cartilage, these processes have not yet been biomechanically elucidated in the IVD. We aimed to evaluate the local stiffness of the ECM and PCM in the anulus fibrosus of the IVD on the basis of local cellular spatial organisation. Method. Using atomic force microscopy, we measured the elastic modulus of the local ECM and PCM in human disc samples using the spatial chondrocyte patterns as an image-based biomarker. Result. By measuring tissue from 30 patients, we found a significant difference in the elastic moduli of the PCM in clusters when compared to the healthy patterns single cells (p=0.029), pairs (p=0.016), and string formations (p=0.010) whereas the values of the elastic moduli of the ECM only reached statistical significance when clusters were compared with string formations. The ECM/PCM ratio ranged from 0.62 to 0.89. Overall, the reduced elastic moduli in clusters demonstrates that cluster formation is not only a morphological phenomenon describing disc degeneration, but it marks a compromised biomechanical functioning. Conclusion. This study is the first to describe and quantify the differences in the elastic moduli of the ECM in relation to the PCM in the anulus fibrosus of the IVD by means of atomic force microscopy on the basis of spatial chondrocyte organisation. Advanced disc degeneration is accompanied by a biomechanically compromised tissue functioning


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 99 - 99
14 Nov 2024
Umrath F Liang C Jud S Alexander D Danalache M
Full Access

Introduction. Osteoarthritis (OA) often results from joint misloading, which affects chondrocyte calcium signaling through mechano-sensitive receptors such as Piezo1, -2, and TRPV4. Activation of Piezo1, especially under inflammatory conditions, can trigger premature chondrocyte apoptosis. Intra-articular glucocorticoid therapy, while beneficial against inflammation and pain in osteoarthritis, may induce oxidative stress and chondrotoxicity at higher doses. This study aims to assess the effects of glucocorticoids, particularly triamcinolone, on chondrocyte elasticity and mechanosignaling. Method. Chondrocytes isolated from articular condyles obtained from patients undergoing knee replacement surgery (n= 5) were cultured for 7 days in triamcinolone acetonide (TA) at different concentrations (0.2µM – 2mM). Cytoskeletal changes were assessed by F-actin labeling. Cell elasticity was measured using atomic force microscopy (AFM). Labeling cells (n=6 patients) with the calcium-sensitive dye (Fluo-4) enabled monitoring changes in intracellular calcium fluorescence intensity during guided single-cell mechanical indentation (500 nN) by AFM. Result. Cell exposure to 2 mM TA led to cell death and crystallization of TA in the cell culture media. However, the concentration of TA for intra-articular application is 46 times higher at 92.1 mM (40 mg/ml). The maximal pharmacological effect on viable cells was observed at 0.2 mM. AFM results showed a significant decrease of elasticity (p<0.001), alongside significantly higher calcium intensities both prior to and during mechanical stimulation in the TA-treated samples (p<0.05). Conclusion. Administration of TA significantly impacts the mechanical properties of chondrocytes, reducing cellular elasticity while simultaneously enhancing calcium-dependent mechanosensitivity. This data suggests a correlation between glucocorticoid-induced changes in cell elasticity and cell mechanosensitivity. Finding ways to minimize the effect of glucocorticoids on cell mechanosensitivity could help to make future therapies safer and reduce side effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 122 - 122
14 Nov 2024
Tilotta V Vadalà G Giacomo GD Colaiacomo C Cicione C Ambrosio L Russo F Denaro V Papalia R
Full Access

Introduction. Osteoarthritis (OA) is a predominant chronic degenerative disease exerting a deep impact on quality of life and healthcare systems. Recent evidences suggest that pyroptosis, a programmed cell death characterized by inflammatory cytokine release, may play a significant role in modulating OA pain. The aim of the study is to investigate the potential role of extracellular vesicles derived from umbilical cord Wharton's jelly (WJ-MSC EVs) in the attenuation of the pyroptotic process on human chondrocytes (hOAC) pre-treated with synovial fluid in a 3D in vitro model. Method. EVs isolated by tangential filtration of the conditioned medium of WJ-MSCs were characterized for: morphology by TEM, surface markers by WB and size by NTA. Confocal microscopy was used to identify PKH26-labelled EVs and monitor their incorporation into hOACs. The hOACs from surgical waste material of patients undergoing knee replacement, expanded, encapsulated in alginate beads were pre-treated with synovial fluid for 24 h (SF) and subsequently co-incubated with WJ-MSC EVs. We examined viability (CCK-8), metabolic activity (MTT), nitrite production (Griess) activation of the pyroptotis (IF), DNA quantification (PicoGreen) and gene expression levels of extracellular matrix (ECM) components (qPCR). One-way ANOVA analysis was used to compare the groups under exam and data were expressed as mean ± S.D. Result. WJ-MSC EVs increased hOACs viability and metabolic activity. The production of nitrites is significantly decreased compared sample group treated with SF. WJ-MSC EVs inhibited inflammasomes NLRP3 (nucleotide-binding domain, leucine-rich repeat pyrin domain containing 3) activation. The ECM catabolic genes decreased compared to the inflamed SF group for ADAMTS-5 and MMP-1. Conclusion. Our results supported the potential use of WJ-MSC EVs as a cell-free strategy for OA, overcoming the side effects of cell-therapy. Moreover, WJ-MSC EVs are able to mitigate SF-treated hOACs pyroptotic death, attenuate ECM degradation and oxidative stress counteracting the inflamed status in OA development and progression


Aims. The efficacy of saline irrigation for treatment of implant-associated infections is limited in the presence of porous metallic implants. This study evaluated the therapeutic efficacy of antibiotic doped bioceramic (vancomycin/tobramycin-doped polyvinyl alcohol composite (PVA-VAN/TOB-P)) after saline wash in a mouse infection model implanted with titanium cylinders. Methods. Air pouches created in female BalBc mice by subcutaneous injection of air. In the first of two independent studies, pouches were implanted with titanium cylinders (400, 700, and 100 µm pore sizes) and inoculated with Staphylococcus aureus (1 × 10. 3. or 1 × 10. 6. colony-forming units (CFU)/pouch) to establish infection and biofilm formation. Mice were killed after one week for microbiological analysis. In the second study, pouches were implanted with 400 µm titanium cylinders and inoculated with S. aureus (1 × 10. 3. or 1 × 10. 6. CFU/pouch). Four groups were tested: 1) no bacteria; 2) bacteria without saline wash; 3) saline wash only; and 4) saline wash plus PVA-VAN/TOB-P. After seven days, the pouches were opened and washed with saline alone, or had an additional injection of PVA-VAN/TOB-P. Mice were killed 14 days after pouch wash. Results. The first part of the study showed that low-grade infection was more significant in 400 µm cylinders than cylinders with larger pore sizes (p < 0.05). The second part of the study showed that saline wash alone was ineffective in eradicating both low- and high-grade infections. Saline plus PVA-VAN/TOB-P eradicated the titanium cylinder-associated infections, as manifested by negative cultures of the washouts and supported by scanning electron microscopy and histology. Conclusion. Porous titanium cylinders were vulnerable to bacterial infection and biofilm formation that could not be treated by saline irrigation alone. Application of PVA-VAN/TOB-P directly into the surgical site alone or after saline wash represents a feasible approach for prevention and/or treatment of porous implant-related infections. Cite this article: Bone Joint Res 2024;13(11):622–631


Bone & Joint Research
Vol. 13, Issue 10 | Pages 596 - 610
21 Oct 2024
Toegel S Martelanz L Alphonsus J Hirtler L Gruebl-Barabas R Cezanne M Rothbauer M Heuberer P Windhager R Pauzenberger L

Aims

This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated.

Methods

Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).