Advertisement for orthosearch.org.uk
Results 1 - 20 of 300
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims

This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision.

Methods

A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


Bone & Joint 360
Vol. 13, Issue 4 | Pages 16 - 19
2 Aug 2024

The August 2024 Knee Roundup360 looks at: Calcification’s role in knee osteoarthritis: implications for surgical decision-making; Lower complication rates and shorter lengths of hospital stay with technology-assisted total knee arthroplasty; Revision surgery: the hidden burden on surgeons; Are preoperative weight loss interventions worthwhile?; Total knee arthroplasty with or without prior bariatric surgery: a systematic review and meta-analysis; Aspirin triumphs in knee arthroplasty: a decade of evidence; Efficacy of DAIR in unicompartmental knee arthroplasty: a glimpse from Oxford.



Bone & Joint Open
Vol. 5, Issue 5 | Pages 394 - 400
15 May 2024
Nishi M Atsumi T Yoshikawa Y Okano I Nakanishi R Watanabe M Usui Y Kudo Y

Aims

The localization of necrotic areas has been reported to impact the prognosis and treatment strategy for osteonecrosis of the femoral head (ONFH). Anteroposterior localization of the necrotic area after a femoral neck fracture (FNF) has not been properly investigated. We hypothesize that the change of the weight loading direction on the femoral head due to residual posterior tilt caused by malunited FNF may affect the location of ONFH. We investigate the relationship between the posterior tilt angle (PTA) and anteroposterior localization of osteonecrosis using lateral hip radiographs.

Methods

Patients aged younger than 55 years diagnosed with ONFH after FNF were retrospectively reviewed. Overall, 65 hips (38 males and 27 females; mean age 32.6 years (SD 12.2)) met the inclusion criteria. Patients with stage 1 or 4 ONFH, as per the Association Research Circulation Osseous classification, were excluded. The ratios of anterior and posterior viable areas and necrotic areas of the femoral head to the articular surface were calculated by setting the femoral head centre as the reference point. The PTA was measured using Palm’s method. The association between the PTA and viable or necrotic areas of the femoral head was assessed using Spearman’s rank correlation analysis (median PTA 6.0° (interquartile range 3 to 11.5)).


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims

To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time.

Methods

We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 51 - 51
2 Jan 2024
Grad S
Full Access

Mechanical loading is important to maintain the homeostasis of the intervertebral disc (IVD) under physiological conditions but can also accelerate cell death and tissue breakdown in a degenerative state. Bioreactor loaded whole organ cultures are instrumental for investigating the effects of the mechanical environment on the IVD integrity and for preclinical testing of new therapies under simulated physiological conditions. Thereby the loading parameters that determine the beneficial or detrimental reactions largely depend on the IVD model and its preparation. Within this symposium we are discussing the use of bovine caudal IVD culture models to reproduce tissue inflammation or matrix degradation with or without bioreactor controlled mechanical loading. Furthermore, the outcome parameters that define the degenerative state of the whole IVD model will be outlined. Besides the disc height, matrix integrity, cell viability and phenotype expression, the tissue secretome can provide indications about potential interactions of the IVD with other cell types such as neurons. Finally, a novel multiaxial bioreactor setup capable of mimicking the six degrees-of-freedom loading environment of IVDs will be introduced that further advances the relevance of preclinical ex-vivo testing


Bone & Joint Research
Vol. 13, Issue 1 | Pages 4 - 18
2 Jan 2024
Wang Y Wu Z Yan G Li S Zhang Y Li G Wu C

Aims

cAMP response element binding protein (CREB1) is involved in the progression of osteoarthritis (OA). However, available findings about the role of CREB1 in OA are inconsistent. 666-15 is a potent and selective CREB1 inhibitor, but its role in OA is unclear. This study aimed to investigate the precise role of CREB1 in OA, and whether 666-15 exerts an anti-OA effect.

Methods

CREB1 activity and expression of a disintegrin and metalloproteinase with thrombospondin motifs 4 (ADAMTS4) in cells and tissues were measured by immunoblotting and immunohistochemical (IHC) staining. The effect of 666-15 on chondrocyte viability and apoptosis was examined by cell counting kit-8 (CCK-8) assay, JC-10, and terminal deoxynucleotidyl transferase-mediated dUTP nick end-labelling (TUNEL) staining. The effect of 666-15 on the microstructure of subchondral bone, and the synthesis and catabolism of cartilage, in anterior cruciate ligament transection mice were detected by micro-CT, safranin O and fast green (S/F), immunohistochemical staining, and enzyme-linked immunosorbent assay (ELISA).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 42 - 42
2 Jan 2024
Stoddart M
Full Access

Articulating cartilage experiences a multitude of biophysical cues. Due to its primary function in distributing load with near frictionless articulation, it is clear that a major stimulus for cartilage homeostasis and regeneration is the mechanical load it experiences on a daily basis. While these effects are considered when performing in vivo studies, in vitro studies are still largely performed under static conditions. Therefore, an increasing complexity of in vitro culture models is required, with the ultimate aim to recreate the articulating joint as accurately as possible. We have for many years utilized a complex multiaxial load bioreactor capable of applying tightly regulated compression and shear loading protocols. Using this bioreactor, we have been able to demonstrate the mechanical induction of human bone marrow stromal cell (BMSC) chondrogenesis in the absence of exogenous growth factors. Building on previous bioreactor studies that demonstrated the mechanical activation of endogenous TGFβ, and subsequent chondrogenesis of human bone marrow derived MSCs, we have been further increasing the complexity of in vitro models. For example, the addition of high molecular weight hyaluronic acid, a component of synovial fluid, culture medium leads to reduced hypertrophy and increased glycosaminoglycan deposition. The ultimate aim of all of these endeavors is to identify promising materials and therapies during in vitro/ ex vivo studies, therefore reducing the numbers or candidates that are finally tested using in vivo studies. This 3R approach can improve the opportunities for success while leading to more ethically acceptable product development pathways


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 123 - 123
2 Jan 2024
Hofmann S
Full Access

Metabolic bone diseases, such as osteoporosis and osteopetrosis, result from an imbalanced bone remodeling process. In vitro bone models are often used to investigate either bone formation or resorption independently, while in vivo, these processes are coupled. Combining these processes in a co-culture is challenging as it requires finding the right medium components to stimulate each cell type involved without interfering with the other cell type's differentiation. Furthermore, differentiation stimulating factors often comprise growth factors in supraphysiological concentrations, which can overshadow the cell-mediated crosstalk and coupling. To address these challenges, we aimed to recreate the physiological bone remodeling process, which follows a specific sequence of events starting with cell activation and bone resorption by osteoclasts, reversal, followed by bone formation by osteoblasts. We used a mineralized silk fibroin scaffold as a bone-mimetic template, inspired by bone's extracellular matrix composition and organization. Our model supported osteoclastic resorption and osteoblastic mineralization in the specific sequence that represents physiological bone remodeling. We also demonstrated how culture variables, such as different cell ratios, base media, and the use of osteogenic/osteoclast supplements, and the application of mechanical load, can be adjusted to represent either a high bone turnover system or a self-regulating system. The latter system did not require the addition of osteoclastic and osteogenic differentiation factors for remodeling, therefore avoiding growth factor use. Our in vitro model for bone remodeling has the potential to reduce animal experiments and advance in vitro drug development for bone remodeling pathologies like osteoporosis. By recreating the physiological bone remodeling cycle, we can investigate cell-cell and cell-matrix interactions, which are essential for understanding bone physiology and pathology. Furthermore, by tuning the culture variables, we can investigate bone remodeling under various conditions, potentially providing insights into the mechanisms underlying different bone disorders


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 86 - 86
2 Jan 2024
Feng M Dai S Ni J Mao G Dang X Shi Z
Full Access

Varus malalignment increases the susceptibility of cartilage to mechanical overloading, which stimulates catabolic metabolism to break down the extracellular matrix and lead to osteoarthritis (OA). The altered mechanical axis from the hip, knee to ankle leads to knee joint pain and ensuing cartilage wear and deterioration, which impact millions of the aged population. Stabilization of the remaining damaged cartilage, and prevention of further deterioration, could provide immense clinical utility and prolong joint function. Our previous work showed that high tibial osteotomy (HTO) could shift the mechanical stress from an imbalanced status to a neutral alignment. However, the underlying mechanisms of endogenous cartilage stabilization after HTO remain unclear. We hypothesize that cartilage-resident mesenchymal stem cells (MSCs) dampen damaged cartilage injury and promote endogenous repair in a varus malaligned knee. The goal of this study is to further examine whether HTO-mediated off-loading would affect human cartilage-resident MSCs' anabolic and catabolic metabolism. This study was approved by IACUC at Xi'an Jiaotong University. Patients with medial compartment OA (52.75±6.85 yrs, left knee 18, right knee 20) underwent open-wedge HTO by the same surgeons at one single academic sports medicine center. Clinical data was documented by the Epic HIS between the dates of April 2019 and April 2022 and radiographic images were collected with a minimum of 12 months of follow-up. Medial compartment OA with/without medial meniscus injury patients with unilateral Kellgren /Lawrence grade 3–4 was confirmed by X-ray. All incisions of the lower extremity healed well after the HTO operation without incision infection. Joint space width (JSW) was measured by uploading to ImageJ software. The Knee injury and Osteoarthritis Outcome Score (KOOS) toolkit was applied to assess the pain level. Outerbridge scores were obtained from a second-look arthroscopic examination. RNA was extracted to quantify catabolic targets and pro-inflammatory genes (QiaGen). Student's t test for two group comparisons and ANOVA analysis for differences between more than 2 groups were utilized. To understand the role of mechanical loading-induced cartilage repair, we measured the serial changes of joint space width (JSW) after HTO for assessing the state of the cartilage stabilization. Our data showed that HTO increased the JSW, decreased the VAS score and improved the KOOS score significantly. We further scored cartilage lesion severity using the Outerbridge classification under a second-look arthroscopic examination while removing the HTO plate. It showed the cartilage lesion area decreased significantly, the full thickness of cartilage increased and mechanical strength was better compared to the pre-HTO baseline. HTO dampened medial tibiofemoral cartilage degeneration and accelerate cartilage repair from Outerbridge grade 2 to 3 to Outerbridge 0 to 1 compared to untreated varus OA. It suggested that physical loading was involved in HTO-induced cartilage regeneration. Given that HTO surgery increases joint space width and creates a physical loading environment, we hypothesize that HTO could increase cartilage composition and collagen accumulation. Consistent with our observation, a group of cartilage-resident MSCs was identified. Our data further showed decreased expression of RUNX2, COL10 and increased SOX9 in MSCs at the RNA level, indicating that catabolic activities were halted during mechanical off-loading. To understand the role of cartilage-resident MSCs in cartilage repair in a biophysical environment, we investigated the differentiation potential of MSCs under 3-dimensional mechanical loading conditions. The physical loading inhibited catabolic markers (IL-1 and IL-6) and increased anabolic markers (SOX9, COL2). Knee-preserved HTO intervention alleviates varus malalignment-related knee joint pain, improves daily and recreation function, and repairs degenerated cartilage of medial compartment OA. The off-loading effect of HTO may allow the mechanoregulation of cartilage repair through the differentiation of endogenous cartilage-derived MSCs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 74 - 74
2 Jan 2024
Lehner C Benedetti B Tempfer H Traweger A
Full Access

Tendinopathy is a disease associated with pain and tendon degeneration, leading to a decreased range of motion and an increased risk of tendon rupture. The etiology of this frequent disease is still unknown. In other musculoskeletal tissues like cartilage and intervertebral discs, transient receptor potential channels (TRP- channels) were shown to play a major role in the progression of degeneration. Due to their responsiveness to a wide range of stimuli like temperature, pH, osmolarity and mechanical load, they are potentially relevant factors in tendon degeneration as well. We therefore hypothesize that TRP- channels are expressed in tendon cells and respond to degeneration inducing stimuli. By immunohistochemistry, qRT-PCR and western blot analyses, we found three TRP channel members, belonging to the vanilloid (TRPV), and ankyrin (TRPA) subfamily, respectively, to be expressed in healthy human tendon tissue as well as in rodent tendon, with expression being located to cells within the dense tendon proper, as well as to endotenon resident cells. In vitro-inflammatory and ex vivo-mechanical stimulation led to a significant upregulation of TRPA1 expression in tendon cells, which correlates well with the fact that TRPA1 is considered as mechanosensitive channel being sensitized by inflammatory mediators. This is the first description of TRP- channels in human and rodent tendon. As these channels are pharmacologically targetable by both agonists and antagonists, they may represent a promising target for novel treatments of tendinopathy


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 108 - 108
2 Jan 2024
Pierantoni M Dejea H Geomini L Abrahamsson M Gstöhl S Schlepütz C Englund M Isaksson H
Full Access

To characterize the microstructural organization of collagen fibers in human medial menisci and the response to mechanical loading in relation to age. We combine high resolution imaging with mechanical compression to visualize the altered response of the tissue at the microscale. Menisci distribute the load in the knee and are predominantly composed of water and specifically hierarchically arranged collagen fibers. Structural and compositional changes are known to occur in the meniscus during aging and development of osteoarthritis. However, how microstructural changes due to degeneration affect mechanical performance is still largely unknown [1]. Fresh frozen 4 mm Ø plugs of human medial menisci (n=15, men, 20-85 years) with no macroscopic damage nor known diseases from the MENIX biobank at Skåne University Hospital were imaged by phase contrast synchrotron tomography at the TOMCAT beamline (Paul Scherrer Institute, CH). A rheometer was implemented into the beamline to perform in-situ stress relaxation (2 steps 15% and 30% strain) during imaging (21 keV, 2.75μm pixel size). 40s scans were acquired before and after loading, while 14 fast tomographs (5s acquisitions) were taken during relaxation. The fiber 3D orientations and structural changes during loading were determined using a structure tensor approach (adapting a script from [1]). The 3D collagen fiber orientation in menisci revealed alternating layers of fibers. Two main areas are shown: surfaces and bulk. The surface layers are a mesh of randomly oriented fibers. Within the bulk 2-3 layers of fibers are visible that alternate about 30° to each other. Structural degeneration with age is visible and is currently being quantified. During stress-relaxation all menisci show a similar behavior, with samples from older donors being characterized by larger standard deviation Furthermore, the behavior of the different layers of fibers is tracked during relaxation showing how fibers with different orientation respond to the applied loading. Acknowledgments: We thank PSI for the beamtime at the TOMCAT beamline X02DA, and funding from Swedish Research Council (2019-00953), under the frame of ERA PerMed, and the Novo Nordisk Foundation through MathKOA (NNF21OC0065373)


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 52 - 52
17 Nov 2023
Jones R Bowd J Gilbert S Wilson C Whatling G Jonkers I Holt C Mason D
Full Access

Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion. 4. Sema3A is also differentially expressed in human OA bone. 5. HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. METHODS. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific musculoskeletal model. 6. of gait estimating joint contact location, pressure, forces, and medial-lateral condyle load distribution in a published data set included in analyses. Data analysis was performed using Pearson's correlation matrices and principal component analyses. Principal Components (PCs) with eigenvalues greater than 1 were analysed. RESULTS. PC1 (32.94% of variation) and PC2 (25.79% of variation) from PCA analysis and correlation matrices separated patients according to correlated clusters of established inflammatory markers of OA pain and progression (IL6/IL8, r=0.754, p<0.001) and anti-inflammatory mediators (IL4/IL10, r=0.469, p=0.005). Bone turnover marker ALP was positively associated with KL grade (r=0.815, p=0.002) and negatively associated with IL10 (r=−0.402, p=0.018) and first peak knee loading pressures (r=−0.688, p=0.019). RANKL was positively associated with IL4 (r=0.489, p=0.003). Synovial fluid Sema3A concentrations showed separate clustering from all OA progression markers and was inversely correlated with TNF-α (r=−0.423, p=0.022) in HTO patients. Sema3A was significantly inversely correlated with total predicted force in the medial joint compartment (r=−0.621, p=0.041), mean (r=−0.63, p=0.038) and maximum (r=−0.613, p=0.045) calculated medial compartment joint pressures during the first phase and mean (r=−0.618, p=0.043) and maximum (r=−0.641, p=0.034) medial compartment joint pressures during midstance outputs of patient-specific musculoskeletal model. CONCLUSIONS. This study shows joint inflammatory status and mechanical overloading influence subchondral bone-remodelling. Synovial Sema3A concentrations are inversely correlated to patient-specific musculoskeletal model estimations of pathological medial overloading. This study reveals Sema3A as a biological mediator with capacity to induce OA pain and disease progression that is directly regulated by gait mechanical loading. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 6 - 6
17 Nov 2023
Luo J Lee R
Full Access

Abstract. Objectives. The aim of this study was to investigate whether mechanical loading induced by physical activity can reduce risk of sarcopenia in middle-aged adults. Methods. This was a longitudinal study based on a subset of UK Biobank data consisting of 1,918 participants (902 men and 1,016 women, mean age 56 years) who had no sarcopenia at baseline (assessed between 2006 and 2010). The participants were assessed again after 6 years at follow-up, and were categorized into no sarcopenia, probable sarcopenia, or sarcopenia according to the definition and algorithm developed in 2018 by European Working Group on Sarcopenia in Older People (EWGSOP). Physical activity was assessed at a time between baseline and follow-up using 7-day acceleration data obtained from wrist worn accelerometers. Raw acceleration data were then analysed to study the mechanical loading of physical activity at different intensities (i.e. very light, light, moderate-to-vigorous). Multinominal logistic regression was employed to examine the association between the incidence of sarcopenia and physical activity loading, between baseline and follow up, controlled for other factors at baseline including age, gender, BMI, smoking status, intake of alcohol, vitamin D and calcium, history of rheumatoid arthritis, osteoarthritis, secondary osteoporosis, and type 2 diabetes. Results. Among the 1918 participants with no sarcopenia at baseline, 230 (69 men and 161 women) developed probable sarcopenia and 37 (14 men and 23 women) developed sarcopenia at follow-up. Physical activity loading at moderate-to-vigorous intensity was higher in men (p<0.05), while women had higher physical activity loading at very light intensity (p<0.05). No significant difference was found in physical activity loading at light intensity between men and women (p>0.05). Logistic regression models showed that increase in physical activity loading at moderate-to-vigorous intensity significantly reduced the risk of sarcopenia (odds ratio = 0.368, p<0.05), but not probable sarcopenia (odds ratio = 0.974, p>0.05), while loading at light or very light activity intensity were not associated with the risk of sarcopenia or probable sarcopenia (p>0.05). Conclusion. Loading of physical activity at moderate-to-vigorous intensity could reduce risk of sarcopenia in middle-aged adults. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 49 - 49
17 Nov 2023
Jones R Gilbert S Mason D
Full Access

Abstract. OBJECTIVE. Changes in subchondral bone are one of few disease characteristics to correlate with pain in OA. 1. Profound neuroplasticity and nociceptor sprouting is displayed within osteoarthritic (OA) subchondral bone and is associated with pain and pathology. 2. The cause of these neural changes remains unestablished. Correct innervation patterns are indispensable for bone growth, homeostasis, and repair. Axon guidance signalling factor, Sema3A is essential for the correct innervation patterning of bony tissues. 3. , expressed in osteocytes. 4. and known to be downregulated in bone OA mechanical loading. 5. Bioinformatic analysis has also shown Sema3a as a differentially expressed pathway by bone in human OA patients. 6. HYPOTHESIS: Pathological mechanical load and inflammation of bone causes dysregulation of Sema3A signalling leading to perturbed sensory nerve plasticity and pain. METHODS. Human KOLF2-C1 iPSC derived nociceptors were generated by TALEN-mediated insertion of transcription factors NGN2+Brn3A and modified chambers differentiation protocol to produce nociceptor-like cells. Nociceptor phenotype was confirmed by immunocytochemistry. Human Y201-MSC cells were embedded in 3D type-I collagen gels (0.05 × 106 cell/gel), in 48-well plates and silicone plates, were differentiated to osteocytes for 7 days before stimulation with IL-6 (5ng/ml) and soluble IL-6 receptor (sIL-6r (40ng/ml), IL6/sIL6r and mechanical load mimetic Yoda1 (5μM) or unstimulated (n=5/group) (48-well plates) or were mechanically loaded in silicone plates (5000μstrain, 10Hz, 3000 cycles) or not loaded (n=5/group). Conditioned media transfer was performed from osteocyte to nociceptor cultures assessed by continuous 24-hour phase contrast confocal microscopy. 24-hours after stimulation RNA was quantified by RT-qPCR (IL6) or RNAseq whole transcriptome analysis/DEseq2 analysis (Load). Protein release was quantified by ELISA. Normally distributed data with homogenous variances was analysed by two-tailed t test. RESULTS. IPSC-derived nociceptor-like cells display elongated (>5mm) dendritic projections and nociceptive molecular markers such as TUJ1, PrPH and Neun and TrkA. Sema3A signalling ligands were expressed in 100% of osteocyte cultures. Mechanical loading regulated the Sema3 pathway; Sema3A (0.4-fold, p<0.001), Sema3B (13-fold, p<0.001), Sema3C (0.4-fold, p<0.001). Under inflammatory stimulation by IL6/IL6sR, SEMA3A (7-fold, p=0.01) and receptor Plexin1 (3-fold, p=0.03) show significant regulation. Sema3A protein release showed a significant downregulation of Sema3A release by IL6/sIL6r+Yoda1 (2-fold, p=0.02). Continuous 24-hour phase contrast confocal microscopy measuring the number of extending/retreating dendritic projections revealed that sensory nerve cultures exposed to media from osteocytes stimulated with IL-6/sIL-6R+Yoda1 displayed significantly more invading dendritic projections (p=0.0175, 12-fold±SEM 3.5) across 3 random fields of view within a single stimulated neural culture and significantly fewer retracting dendritic projections (p=0.0075, 2-fold±SEM 0.33) compared to controls. CONCLUSIONS. Here we show osteocytic regulation of Sema3A under pathological mechanical loading and the ability of media pathologically loaded osteocyte cultures to induce the branching and invasion of cultured nociceptor-like cells as displayed in OA subchondral bone. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Bone & Joint Research
Vol. 12, Issue 9 | Pages 536 - 545
8 Sep 2023
Luo P Yuan Q Yang M Wan X Xu P

Osteoarthritis (OA) is mainly caused by ageing, strain, trauma, and congenital joint abnormalities, resulting in articular cartilage degeneration. During the pathogenesis of OA, the changes in subchondral bone (SB) are not only secondary manifestations of OA, but also an active part of the disease, and are closely associated with the severity of OA. In different stages of OA, there were microstructural changes in SB. Osteocytes, osteoblasts, and osteoclasts in SB are important in the pathogenesis of OA. The signal transduction mechanism in SB is necessary to maintain the balance of a stable phenotype, extracellular matrix (ECM) synthesis, and bone remodelling between articular cartilage and SB. An imbalance in signal transduction can lead to reduced cartilage quality and SB thickening, which leads to the progression of OA. By understanding changes in SB in OA, researchers are exploring drugs that can regulate these changes, which will help to provide new ideas for the treatment of OA.

Cite this article: Bone Joint Res 2023;12(9):536–545.


Bone & Joint Research
Vol. 12, Issue 9 | Pages 522 - 535
4 Sep 2023
Zhang G Li L Luo Z Zhang C Wang Y Kang X

Aims

This study aimed, through bioinformatics analysis and in vitro experiment validation, to identify the key extracellular proteins of intervertebral disc degeneration (IDD).

Methods

The gene expression profile of GSE23130 was downloaded from the Gene Expression Omnibus (GEO) database. Extracellular protein-differentially expressed genes (EP-DEGs) were screened by protein annotation databases, and we used Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) to analyze the functions and pathways of EP-DEGs. STRING and Cytoscape were used to construct protein-protein interaction (PPI) networks and identify hub EP-DEGs. NetworkAnalyst was used to analyze transcription factors (TFs) and microRNAs (miRNAs) that regulate hub EP-DEGs. A search of the Drug Signatures Database (DSigDB) for hub EP-DEGs revealed multiple drug molecules and drug-target interactions.


Bone & Joint Open
Vol. 4, Issue 8 | Pages 628 - 635
22 Aug 2023
Hedlundh U Karlsson J Sernert N Haag L Movin T Papadogiannakis N Kartus J

Aims

A revision for periprosthetic joint infection (PJI) in total hip arthroplasty (THA) has a major effect on the patient’s quality of life, including walking capacity. The objective of this case control study was to investigate the histological and ultrastructural changes to the gluteus medius tendon (GMED) in patients revised due to a PJI, and to compare it with revision THAs without infection performed using the same lateral approach.

Methods

A group of eight patients revised due to a PJI with a previous lateral approach was compared with a group of 21 revised THAs without infection, performed using the same approach. The primary variables of the study were the fibril diameter, as seen in transmission electron microscopy (TEM), and the total degeneration score (TDS), as seen under the light microscope. An analysis of bacteriology, classification of infection, and antibiotic treatment was also performed.


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 880 - 887
1 Aug 2023
Onodera T Momma D Matsuoka M Kondo E Suzuki K Inoue M Higano M Iwasaki N

Aims

Implantation of ultra-purified alginate (UPAL) gel is safe and effective in animal osteochondral defect models. This study aimed to examine the applicability of UPAL gel implantation to acellular therapy in humans with cartilage injury.

Methods

A total of 12 patients (12 knees) with symptomatic, post-traumatic, full-thickness cartilage lesions (1.0 to 4.0 cm2) were included in this study. UPAL gel was implanted into chondral defects after performing bone marrow stimulation technique, and assessed for up to three years postoperatively. The primary outcomes were the feasibility and safety of the procedure. The secondary outcomes were self-assessed clinical scores, arthroscopic scores, tissue biopsies, and MRI-based estimations.