Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry.Aims
Methods
Introduction. Intervertebral disc degeneration has been associated with low back pain (LBP) which is a major cause of long-term disability worldwide. Observed mechanical and biological modifications have been related to decreased water content. Clinical traction protocols as part of LBP management have shown positive outcomes. However, the underlying mechanical and biological processes are still unknown. The study purpose was to evaluate the impact of unloading through traction on the mechanobiology of healthy bovine tail discs in culture. Method. We loaded bovine tail discs (n=3/group) 2h/day at 0.2Hz for 3 days, either in dynamic compression (-0.01MPa to -0.2MPa) or in dynamic traction (-0.01MPa to 0.024MPa). In between the dynamic loading sessions, we subjected the discs to static compression loading (-0.048MPa). We assessed biomechanical and biological parameters. Result. Over the 3 days of loading, disc height decreased upon dynamic compression loading but increased upon unloading. The neutral zone was restored for all samples at the end of the dynamic unloading. Upon dynamic compression, the stiffness increased over time while the hysteresis decreased. Upon dynamic unloading, sulfated glycosaminoglycan (sGAG) release in the medium was lower at the endpoint. In the outer annulus fibrosus (AFo), we saw a higher water/sGAG of at least 30%. In the nucleus pulposus, COL2
Introduction. Cartilage comprises chondrocytes and extracellular matrix. The matrix contains different collagens, proteoglycans, and growth factors produced by chondroprogenitor cells that differentiate from proliferating to hypertrophic chondrocytes. In vitro chondrocyte growth is challenging due to differences in behaviour between 2D and 3D cultures. Our aim is to establish a murine 3D spheroid culture method using chondrocytes to study the complex interaction of cells on the chondro-osseous border during enchondral ossification. Method. Primary chondrocytes were isolated from the knee of WT new-born mice and used to form 10,000 cell number spheroids. We used the ATDC5-chondrocyte cell line as an alternative cell type. Spheroids were observed for 7, 14, and 21 days before embedding in paraffin for slicing. Alcian blue staining was performed to identify proteoglycan positive areas to prove the formation of extracellular matrix in spheroids. Collagen type 2, and Collagen type X expression were analyzed via quantitative real-time PCR and immunohistochemistry. Result. Alcian blue staining showed increasing matrix formation from day 7 to day 14 and proliferative chondrocytes at early time points. Both cell types showed increasing
Introduction. Tendinopathies represent a significant health burden, causing inflammation, pain, and reducing quality of life. The pivotal role of macrophages (Mφ) characterized by their ability to differentiate into proinflammatory (M1) or anti-inflammatory (M2) phenotypes depending on the microenvironment, has gained significant interest in tissue inflammation research. Additionally, existing literature states that the interplay between tenocytes and immune cells during inflammation involves unidentified soluble factors (SF). This study aimed to investigate the effect of extracellular vesicles (EVs) and SF derived from polarized Mφ on tendon cells to provide deeper insights of their potential therapeutic applications in the context of inflammation. Method. Human monocytes were isolated from blood donor buffy coats and differentiated into M1, M2, and hybrid M1/M2 phenotypes. Subsequently, EVs were isolated from the conditioned media from polarized Mφ and comprehensively characterized. In parallel, the elution media containing SF was collected. Furthermore, the EVs and SF were released independently onto tenocytes from human donors, previously induced with IL-1β to simulate an inflammatory environment. Finally,
This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously. Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.Aims
Methods
This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels. A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.Aims
Methods
This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes.Aims
Methods
Aims. This study aimed to determine the expression and clinical significance of a cartilage protein, cartilage oligomeric matrix protein (COMP), in knee osteoarthritis (OA) patients. Methods. A total of 270 knee OA patients and 93 healthy controls were recruited. COMP messenger RNA (mRNA) and protein levels in serum, synovial fluid, synovial tissue, and fibroblast-like synoviocytes (FLSs) of knee OA patients were determined using enzyme-linked immunosorbent assay, real-time polymerase chain reaction, and immunohistochemistry. Results. COMP protein levels were significantly elevated in serum and synovial fluid of knee OA patients, especially those in the advanced stages of the disease. Serum COMP was significantly correlated with radiological severity as well as measures of body composition, physical performance, knee pain, and disability. Receiver operating characteristic curve analysis unveiled a diagnostic value of serum COMP as a biomarker of knee OA (41.64 ng/ml, area under the curve (AUC) = 1.00), with a sensitivity of 99.6% and a specificity of 100.0%. Further analysis uncovered that COMP
In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD. An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.Aims
Methods
Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.Aims
Methods
Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear. In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.Aims
Methods
Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies.Aims
Methods
The present study investigated receptor activator of nuclear factor kappa-Β ligand (RANKL), osteoprotegerin (OPG), and Runt-related transcription factor 2 (RUNX2) gene expressions in giant cell tumour of bone (GCTB) patients in relationship with tumour recurrence. We also aimed to investigate the influence of CpG methylation on the transcriptional levels of RANKL and OPG. A total of 32 GCTB tissue samples were analyzed, and the expression of RANKL, OPG, and RUNX2 was evaluated by quantitative polymerase chain reaction (qPCR). The methylation status of RANKL and OPG was also evaluated by quantitative methylation-specific polymerase chain reaction (qMSP).Aims
Methods
This study aimed to explore the biological and clinical importance of dysregulated key genes in osteoarthritis (OA) patients at the cartilage level to find potential biomarkers and targets for diagnosing and treating OA. Six sets of gene expression profiles were obtained from the Gene Expression Omnibus database. Differential expression analysis, weighted gene coexpression network analysis (WGCNA), and multiple machine-learning algorithms were used to screen crucial genes in osteoarthritic cartilage, and genome enrichment and functional annotation analyses were used to decipher the related categories of gene function. Single-sample gene set enrichment analysis was performed to analyze immune cell infiltration. Correlation analysis was used to explore the relationship among the hub genes and immune cells, as well as markers related to articular cartilage degradation and bone mineralization.Aims
Methods
Tendons are characterised by an inferior healing capacity when compared to other tissues, ultimately resulting in the formation of a pathologically altered extracellular matrix structure. Although our understanding of the underlying causes for the development and progression of tendinopathies remains incomplete, mounting evidence indicates a coordinated interplay between tendon-resident cells and the ECM is critical. Our recent results demonstrate that the matricellular protein SPARC (Secreted protein acidic and rich in cysteine) is essential for regulating tendon tissue homeostasis and maturation by modulating the tissue mechanical properties and aiding in collagen fibrillogenesis [1,2]. Consequently, we speculate that SPARC may also be relevant for tendon healing. In a rat patellar tendon window defect model, we investigated whether the administration of recombinant SPARC protein can modulate tendon healing. Besides the increased
Bone regeneration is pivotal for the healing of fractures. In case this process is disturbed a non-union can occur. This can be induced by environmental factors such as smoking, overloading etc. Co-morbidities such as diabetes, osteoporosis etc. may be more intrinsic factors besides other disturbances in the process. Those pathways negatively influence the bone regeneration process. Several intrinsic signal transduction pathways (WNT, BMP etc.) can be affected. Furthermore, on the transcriptional level, important
Bone morphogenetic proteins (BMPs) have been widely investigated for treating non-healing fractures. They participate in bone reconstruction by inducing osteoblast differentiation, and osteoid matrix production. 1. The human recombinant protein of BMP-7 was among the first growth factors approved for clinical use. Despite achieving comparable results to autologous bone grafting, severe side effects have been associated with its use. 2. Furthermore, BMP-7 was removed from the market. 3. These complications are related to the high doses used (1.5-40 miligrams per surgery). 2. compared to the physiological concentration of BMP in fracture healing (in the nanogram to picogram per milliliter range). 4. In this study, we use transcript therapy to deliver chemically modified
Intervertebral disc (IVD) degeneration is responsible for severe clinical symptoms including chronic back pain. Galectins are a family of carbohydrate-binding proteins, some of which can induce functional disease markers in IVD cells and other musculoskeletal diseases. Galectins −4 and −8 were shown to trigger disease-promoting activity in chondrocytes but their effects on IVD cells have not been investigated yet. This study elucidates the role of galectin-4 and −8 in IVD degeneration. Immunohistochemical evidence for the presence of galectin-4 and −8 in the IVD was comparatively provided in specimens of 36 patients with spondylochondrosis, spondylolisthesis, or spinal deformity. Confocal microscopy revealed co-localization of galectin-4 and −8 in chondrocyte clusters of degenerated cartilage. The immunohistochemical presence of galectin-4 correlated with histopathological and clinical degeneration scores of patients, whereas galectin-8 did not show significant correlations. The specimens were separated into annulus fibrosus (AF), nucleus pulposus (NP) and endplate, which was confirmed histologically. Separate cell cultures of AF and NP (n=20) were established and characterized using cell type-specific markers. Potential binding sites for galectins including sialylated N-glycans and LacdiNAc structures were determined in AF and NP cells using LC/ESI-MS-MS. To assess galectin functions, cell cultures were treated with recombinant galectin-4 or −8, in comparison to IL-1β, and analyzed using RT-qPCR and In-cell Western blot. In vitro, both galectins triggered the induction of functional disease markers (CXCL8 and MMP3) on
Messenger RNA (mRNA) is a new class of drug that can be used to express a therapeutic protein and, in contrast to DNA, is safer and inexpensive. Among its advantages,
Bone tissue is known to possess an intrinsic regeneration potential. However, in cases of major injury, trauma, and disease, bone loss is present, and the regeneration potential of the tissue is often impaired. The process of bone regeneration relies on a complex interaction of molecules. MicroRNAs (miRNA) are small, non-coding RNAs that inhibit messenger RNAs (mRNA). One miRNA can inhibit several mRNAs and one