Advertisement for orthosearch.org.uk
Results 1 - 20 of 405
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 39 - 39
19 Aug 2024
Zuke WA Hannon CP Kromka J Granger C Clohisy JC Barrack RL
Full Access

We previously reported the five to ten-year results of the Birmingham Hip Resurfacing (BHR) implant. The purpose of this study was to evaluate the survivorship, radiographic results, and clinical outcomes of the BHR at long-term follow-up.

We retrospectively reviewed 250 patients from the original cohort of 324 BHRs performed from 2006 to 2013 who met contemporary BHR indications. Of these, 4 patients died and 4 withdrew. From the 242 patients, 224 patients (93%) were available for analysis. Modified Harris hip score (mHHS) and University of California, Los Angeles (UCLA) scores were collected and compared to a matched total hip arthroplasty (THA) cohort. Mean follow-up was 14 years.

Survivorship free of aseptic revision was 97.4% and survivorship free of any revision was 96.0% at 15 years. Revisions included 3 periprosthetic joint infections, 2 for elevated metal ions and symptomatic pseudotumor, 2 for aseptic femoral loosening, and 1 for unexplained pain. The mean mHHS was 93 in BHR patients at final follow-up, similar to the THA cohort (p=0.44). The UCLA score was significantly higher for BHR patients (p=0.02), however there were equal proportions of patients who remained highly active (UCLA 9 or 10) in both groups, 60.5% and 52.2% (p=0.45) for BHR and THA respectively. Metal ion levels at long term follow-up were low (mean serum cobalt 1.8±1.5 ppb and mean serum chromium 2.2±2.0 ppb).

BHR demonstrated excellent survivorship in males less than 60 years of age at time of surgery. Clinical outcomes and activity levels were similar to THA patients. Failures related to the metal-on-metal bearing were rare and metal levels were low at long-term follow-up.

Level of evidence: III

Keywords: survivorship; hip arthroplasty; activity; metal-on-metal

Surface Replacement Arthroplasty demonstrates low revision rates and similar activity level compared to total hip arthroplasty at long-term follow-up.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 81 - 81
19 Aug 2024
Angelomenos V Shareghi B Itayem R Mohaddes M
Full Access

Early micromotion of hip implants measured with radiostereometric analysis (RSA) is a predictor for late aseptic loosening. Computed Tomography Radiostereometric Analysis (CT-RSA) can be used to determine implant micro-movements using low-dose CT scans. CT-RSA enables a non-invasive measurement of implants. We evaluated the precision of CT-RSA in measuring early stem migration. Standard marker-based RSA was used as reference. We hypothesised that CT-RSA can be used as an alternative to RSA in assessing implant micromotions. We included 31 patients undergoing Total Hip Arthroplasty (THA). Distal femoral stem migration at 1 year was measured with both RSA and CT-RSA. Comparison of the two methods was performed with paired-analysis and Bland-Altman plots. Furthermore, the inter- and intraobserver reliability of the CT-RSA method was evaluated. No statistical difference was found between RSA and CTMA measurements. The Bland-Altman plots showed good agreement between marker-based RSA and CT-RSA. The intra- and interobserver reliability of the CT-RSA method was found to be excellent (≥0.992). CT-RSA is comparable to marker-based RSA in measuring distal femoral stem migration. CTMA can be used as an alternative method to detect early implant migration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 76 - 76
19 Aug 2024
Cook SD Patron LP Salkeld SL Nolan LP Lavernia CJ
Full Access

Dislocation after total hip replacement (THR) is a devastating complication. Risk factors include patient and surgical factors. Mitigation of this complication has proven partially effective. This study investigated a new innovating technique to decrease this problem using rare earth magnets. Computer simulations with design and magnetic finite element analysis software were used to analyze and quantitate the forces around hip implants with embedded magnets into the components during hip range of motion. N52 Neodymium-Iron-Boron rare earth magnets were sized to fit within the existing acetabular shells and the taper of a hip system. Additionally, magnets placed within the existing screw holes were studied. A 50mm titanium acetabular shell and a 36mm ceramic liner utilizing a taper sleeve adapter were modeled which allowed for the use of a 12mm × 5mm magnet placed in the center hole, an 18mm × 15mm magnet within the femoral head, and 10mm × 5mm magnets in the screw holes. Biomechanical testing was also performed using in-vitro bone and implant models to determine retention forces through a range of hip motion. The novel system incorporating magnets generated retentive forces between the acetabular cup and femoral head of between 10 to 20 N through a range of hip motion. Retentive forces were stronger at the extreme position hip range of motion when additional magnets were placed in the acetabular screw holes. Greater retentive forces can be obtained with specially designed femoral head bores and acetabular shells specifically designed to incorporate larger magnets. Mechanical testing validated the loads obtained and demonstrated the feasibility of the magnet system to provide joint stability and prevent dislocations. Rare earth magnets provide exceptional attractive strength and can be used to impart stability and prevent dislocation in THR without the complications and limitations of conventional methods


Bone & Joint 360
Vol. 13, Issue 4 | Pages 43 - 45
2 Aug 2024
Evans JT Evans JP Whitehouse MR


Bone & Joint Open
Vol. 5, Issue 6 | Pages 452 - 456
1 Jun 2024
Kennedy JW Rooney EJ Ryan PJ Siva S Kennedy MJ Wheelwright B Young D Meek RMD

Aims

Femoral periprosthetic fractures are rising in incidence. Their management is complex and carries a high associated mortality. Unlike native hip fractures, there are no guidelines advising on time to theatre in this group. We aim to determine whether delaying surgical intervention influences morbidity or mortality in femoral periprosthetic fractures.

Methods

We identified all periprosthetic fractures around a hip or knee arthroplasty from our prospectively collated database between 2012 and 2021. Patients were categorized into early or delayed intervention based on time from admission to surgery (early = ≤ 36 hours, delayed > 36 hours). Patient demographics, existing implants, Unified Classification System fracture subtype, acute medical issues on admission, preoperative haemoglobin, blood transfusion requirement, and length of hospital stay were identified for all patients. Complication and mortality rates were compared between groups.


The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 555 - 564
1 Jun 2024
Leal J Holland CT Cochrane NH Seyler TM Jiranek WA Wellman SS Bolognesi MP Ryan SP

Aims

This study aims to assess the relationship between history of pseudotumour formation secondary to metal-on-metal (MoM) implants and periprosthetic joint infection (PJI) rate, as well as establish ESR and CRP thresholds that are suggestive of infection in these patients. We hypothesized that patients with a pseudotumour were at increased risk of infection.

Methods

A total of 1,171 total hip arthroplasty (THA) patients with MoM articulations from August 2000 to March 2014 were retrospectively identified. Of those, 328 patients underwent metal artefact reduction sequence MRI and had minimum two years’ clinical follow-up, and met our inclusion criteria. Data collected included demographic details, surgical indication, laterality, implants used, history of pseudotumour, and their corresponding preoperative ESR (mm/hr) and CRP (mg/dl) levels. Multivariate logistic regression modelling was used to evaluate PJI and history of pseudotumour, and receiver operating characteristic curves were created to assess the diagnostic capabilities of ESR and CRP to determine the presence of infection in patients undergoing revision surgery.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 59 - 65
1 May 2024
Liu WKT Cheung A Fu H Chan PK Chiu KY

Aims

Isolated acetabular liner exchange with a highly crosslinked polyethylene (HXLPE) component is an option to address polyethylene wear and osteolysis following total hip arthroplasty (THA) in the presence of a well-fixed acetabular shell. The liner can be fixed either with the original locking mechanism or by being cemented within the acetabular component. Whether the method used for fixation of the HXLPE liner has any bearing on the long-term outcomes is still unclear.

Methods

Data were retrieved for all patients who underwent isolated acetabular component liner exchange surgery with a HXLPE component in our institute between August 2000 and January 2015. Patients were classified according to the fixation method used (original locking mechanism (n = 36) or cemented (n = 50)). Survival and revision rates were compared. A total of 86 revisions were performed and the mean duration of follow-up was 13 years.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 51 - 58
1 Mar 2024
Jenkinson MRJ Meek DRM Tate R Brady A MacMillan S Grant H Currie S

Aims. Elevated blood cobalt levels secondary to metal-on-metal (MoM) hip arthroplasties are a suggested risk factor for developing cardiovascular complications including cardiomyopathy. Clinical studies assessing patients with MoM hips using left ventricular ejection fraction (LVEF) have found conflicting evidence of cobalt-induced cardiomyopathy. Global longitudinal strain (GLS) is an echocardiography measurement known to be more sensitive than LVEF when diagnosing early cardiomyopathies. The extent of cardiovascular injury, as measured by GLS, in patients with elevated blood cobalt levels has not previously been examined. Methods. A total of 16 patients with documented blood cobalt ion levels above 13 µg/l (13 ppb, 221 nmol/l) were identified from a regional arthroplasty database. They were matched with eight patients awaiting hip arthroplasty. All patients underwent echocardiography, including GLS, investigating potential signs of cardiomyopathy. Results. Patients with MoM hip arthroplasties had a mean blood cobalt level of 29 µg/l (495 nmol/l) compared to 0.01 µg/l (0.2 nmol/l) in the control group. GLS readings were available for seven of the MoM cohort, and were significantly lower when compared with controls (-15.5% vs -18% (MoM vs control); p = 0.025)). Pearson correlation demonstrated that GLS significantly correlated with blood cobalt level (r = 0.8521; p < 0.001). However, there were no differences or correlations for other echocardiography measurements, including LVEF (64.3% vs 63.7% (MoM vs control); p = 0.845). Conclusion. This study supports the hypothesis that patients with elevated blood cobalt levels above 13 µg/l in the presence of a MoM hip implant may have impaired cardiac function compared to a control group of patients awaiting hip arthroplasty. It is the first study to use the more sensitive parameter of GLS to assess for any cardiac contractile dysfunction in patients with a MoM hip implant and a normal LVEF. Larger studies should be performed to determine the potential of GLS as a predictor of cardiac complications in patients with MoM arthroplasties. Cite this article: Bone Joint J 2024;106-B(3 Supple A):51–58


Bone & Joint Open
Vol. 5, Issue 2 | Pages 101 - 108
6 Feb 2024
Jang SJ Kunze KN Casey JC Steele JR Mayman DJ Jerabek SA Sculco PK Vigdorchik JM

Aims

Distal femoral resection in conventional total knee arthroplasty (TKA) utilizes an intramedullary guide to determine coronal alignment, commonly planned for 5° of valgus. However, a standard 5° resection angle may contribute to malalignment in patients with variability in the femoral anatomical and mechanical axis angle. The purpose of the study was to leverage deep learning (DL) to measure the femoral mechanical-anatomical axis angle (FMAA) in a heterogeneous cohort.

Methods

Patients with full-limb radiographs from the Osteoarthritis Initiative were included. A DL workflow was created to measure the FMAA and validated against human measurements. To reflect potential intramedullary guide placement during manual TKA, two different FMAAs were calculated either using a line approximating the entire diaphyseal shaft, and a line connecting the apex of the femoral intercondylar sulcus to the centre of the diaphysis. The proportion of FMAAs outside a range of 5.0° (SD 2.0°) was calculated for both definitions, and FMAA was compared using univariate analyses across sex, BMI, knee alignment, and femur length.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 151 - 157
1 Feb 2024
Dreyer L Bader C Flörkemeier T Wagner M

Aims

The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the modular connection.

Methods

We performed an analysis of the Prevision modular hip stem using the manufacturer’s vigilance database and investigated different mechanical failure patterns of the hip stem from January 2004 to December 2022.


In severe cases of total knee & hip arthroplasty, where off-the-shelf implants are not suitable (i.e., in cases with extended bone defects or periprosthetic fractures), 3D-printed custom-made knee & hip revision implants out of titanium or cobalt-chromium alloy represent one of the few remaining clinical treatment options. Design verification and validation of such custom-made implants is very challenging. Therefore, a methodology was developed to support surgeons and engineers in their decision on whether a developed design is suitable for the specific case. A novel method for the pre-clinical testing of 3D-printed custom-made knee implants has been established, which relies on the biomechanical test and finite element analysis (FEA) of a comparable clinically established reference implant. The method comprises different steps, such as identification of the main potential failure mechanism, reproduction of the biomechanical test of the reference implant via FEA, identification of the maximum value of the corresponding FEA quantity of interest at the required load level, definition of this value as the acceptance criterion for the FEA of the custom-made implant, reproduction of the biomechanical test with the custom-made implant via FEA, decision making for realization or re-design based on the acceptance criterion is fulfilled or not. Exemplary cases of custom-made knee & hip implants were evaluated with this new methodology. The FEA acceptance criterion derived from the reference implants was fulfilled in both custom-made implants and subsequent biomechanical tests verified the FEA results. The suggested method allows a quantitative evaluation of the biomechanical properties of custom-made knee & hip implant without performing physical bench testing. This represents an important contribution to achieve a sustainable patient treatment in complex revision total knee & hip arthroplasty with custom-made 3D printed implants in a safe and timely manner


The Bone & Joint Journal
Vol. 105-B, Issue 8 | Pages 864 - 871
1 Aug 2023
Tyas B Marsh M de Steiger R Lorimer M Petheram TG Inman DS Reed MR Jameson SS

Aims

Several different designs of hemiarthroplasty are used to treat intracapsular fractures of the proximal femur, with large variations in costs. No clinical benefit of modular over monoblock designs has been reported in the literature. Long-term data are lacking. The aim of this study was to report the ten-year implant survival of commonly used designs of hemiarthroplasty.

Methods

Patients recorded by the Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) between 1 September 1999 and 31 December 2020 who underwent hemiarthroplasty for the treatment of a hip fracture with the following implants were included: a cemented monoblock Exeter Trauma Stem (ETS), cemented Exeter V40 with a bipolar head, a monoblock Thompsons prosthesis (Cobalt/Chromium or Titanium), and an Exeter V40 with a Unitrax head. Overall and age-defined cumulative revision rates were compared over the ten years following surgery.


Total hip arthroplasty has been constantly evolving with technological improvements to achieve the best survival rates. Although the new implants are under closer surveillance through processes such as Beyond Compliance, orthopaedic surgeons generally tend to look out for the latest implants with good short-term results and hope for better long-term results for these. We questioned whether such an assumption or bias is valid. We analysed the data of Kaplan-Meier estimates of cumulative revisions of primary hip replacement by fixation, stem/cup brand and bearing combinations from the NJR 19th Annual Report published in September 2022. We performed a univariate linear regression analysis to predict the 10- and 15-year revision rates for these different hip implant combinations from the 3- and 5-year revision rates. Thirty-seven implant combinations had their 15-year revision rates reported and 67 had the 10-year revision rates. The correlation co-efficients were 0.43 and 0.58 for the 3-year and 5-year revision rates against 15-year revision rates. Only 17% of the variance in 15-year revision rates could be predicted by a linear regression model from the 3-year revision rate and 32% from the 5-year revision rate. Corresponding values for the 10-year revision rates were 46% and 67%. 95% prediction intervals for the 15-year revision rate were +/− 3.1% from the 3-year revision rate and +/− 2.8% from the 5-year revision rate. Corresponding values for the 10-year revision rates were +/− 1.3% and +/− 1%. 19 of 37 implant combinations showed 15-year revision rate of more than 4%. Average 3-year and 5-year revision rates for this cohort was 1.0% and 1.42% compared to 1.4% and 1.9% for the rest and the difference was statistically significant. Although average early revision rates showed small but significant difference between the groups with lower and higher 15-year revision rates, the prediction intervals for 15-year revision rates for individual hips based on their 3-year and 5-year revision rates are very wide. Three- and 5-year revision rates for primary total hip replacements are poor predictors of 15-year revision rates


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 504 - 510
1 May 2023
Evans JT Salar O Whitehouse SL Sayers A Whitehouse MR Wilton T Hubble MJW

Aims

The Exeter V40 femoral stem is the most implanted stem in the National Joint Registry (NJR) for primary total hip arthroplasty (THA). In 2004, the 44/00/125 stem was released for use in ‘cement-in-cement’ revision cases. It has, however, been used ‘off-label’ as a primary stem when patient anatomy requires a smaller stem with a 44 mm offset. We aimed to investigate survival of this implant in comparison to others in the range when used in primary THAs recorded in the NJR.

Methods

We analyzed 328,737 primary THAs using the Exeter V40 stem, comprising 34.3% of the 958,869 from the start of the NJR to December 2018. Our exposure was the stem, and the outcome was all-cause construct revision. We stratified analyses into four groups: constructs using the 44/00/125 stem, those using the 44/0/150 stem, those including a 35.5/125 stem, and constructs using any other Exeter V40 stem.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_8 | Pages 16 - 16
11 Apr 2023
Buchholz A Łapaj Ł Herbster M Gehring J Bertrand J Lohmann C Döring J
Full Access

In 2020 almost 90% of femoral heads for total hip implants in Germany were made of ceramic. Nevertheless, the cellular interactions and abrasion mechanisms in vivo have not been fully understood until now. Metal transfer from the head-neck taper connection, occurring as smear or large-area deposit, negatively influences the surface quality of the articulating bearing. In order to prevent metal transfer, damage patterns of 40 Biolox delta ceramic retrievals with CoC and CoPE bearings were analysed. A classification of damage type and severity for each component (n=40) was done according to an established scoring system. To investigate the physical properties, the surface quality was measured using confocal microscopy, quantitative analysis of phase composition were performed by Raman spectroscopy and qualitative analysis of metal traces was done by scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDX). The periprosthetic tissue was analysed for abrasion particles with SEM and EDX. Both bearing types show different damage patterns. Dotted/ drizzled metal smears were identified in 82 % of CoC (n=16) and 96 % of CoPE (n=24) bearings. Most traces on the ceramic heads were identified in the proximal area while they were observed predominantly in the distal area for the ceramic inlays. The identified marks are similar to those of metallic bearings. Metallic smears lead to an increase of up to 30 % in the monoclinic crystalline phase of the ceramic. The roughness increases by up to six times to Ra=48 nm. Ceramic and metallic wear particles from the articulating surfaces or head neck taper junctions were found in the periprosthetic tissue. Damage patterns on CoC hip implants seem to be similar to those of metallic implants. More detailed analysis of CoC implants are needed to understand the described damage patterns and provide advice for prevention


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 110 - 110
4 Apr 2023
Ding Y Li S Li C Chen Z Wu C
Full Access

Total joint replacement (TJR) was one of the most revolutionary breakthroughs in joint surgery. The majority studies had shown that most implants could last about 25 years, anyway, there is still variation in the longevity of implants. In US, for all the hip revisions from 2012 to 2017 in the United States, 12.0% of the patients were diagnosed as aseptic loosening. Variable studies have showed that any factor that could cause a systemic or partial bone loss, might be the risk of periprosthetic osteolysis and aseptic loosening. Breast cancer is the most frequent malignancy in women, more than 2.1 million women were newly diagnosed with breast cancer, 626,679 women with breast cancer died in 2018. It's been reported that the mean incidence of THA was 0.29% for medicare population with breast cancer in USA, of which the incidence was 3.46% in Norwegian. However, the effects of breast cancer chemotherapy and hormonotherapy, such as aromatase inhibitors (AI), significantly increased the risk of osteoporosis, and had been proved to become a great threat to hip implants survival. In this case, a 46-year-old female undertook chemotherapy and hormonotherapy of breast cancer 3 years after her primary THA, was diagnosed with aseptic loosening of the hip prosthesis. Her treatment was summarized and analyzed. Breast cancer chemotherapy and hormonotherapy might be a threat to the stability of THA prosthesis. More attention should be paid when a THA paitent occurred with breast cancer. More studies about the effect of breast cancer treatments on skeleton are required


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_3 | Pages 115 - 115
23 Feb 2023
Chai Y Boudali A Farey J Walter W
Full Access

Pelvic tilt (PT) is always described as the pelvic orientation along the transverse axis, yet four PT definitions were established based on different radiographic landmarks: anterior pelvic plane (PT. a. ), the centres of femoral heads and sacral plate (PT. m. ), pelvic outlet (PT. h. ), and sacral slope (SS). These landmarks quantify a similar concept, yet understanding of their relationships is lacking. Some studies referred to the words “pelvic tilt” for horizontal comparisons, but their PT definitions might differ. There is a demand for understanding their correlations and differences for education and research purposes. This study recruited 105 sagittal pelvic radiographs (68 males and 37 females) from a single clinic awaiting their hip surgeries. Hip hardware and spine pathologies were examined for sub-group analysis. Two observers annotated four PTs in a gender-dependent manner and repeated it after six months. The linear regression model and intraclass correlation coefficient (ICC) were applied with a 95% significance interval. The SS showed significant gender differences and the lowest correlations to the other parameters in the male group (-0.3< r <0.2). The correlations of SS in scoliosis (n = 7) and hip implant (female, n = 18) groups were statistically different, yet the sample sizes were too small. PT. m. demonstrated very strong correlation to PT. h. (r > 0.9) under the linear model PT. m. = 0.951 × PT. h. - 68.284. The PT. m. and PT. h. are interchangeable under a simple linear regression model, which enables study comparisons between them. In the male group, SS is more of a personalised spinal landmark independent of the pelvic anatomy. Female patients with hip implant may have more static spinopelvic relationships following a certain pattern, yet a deeper study using a larger dataset is required. The understanding of different PTs improves anatomical education


Instability and aseptic loosening are the two main complications after revision total hip arthroplasty (rTHA). Dual-mobility (DM) cups were shown to counteract implant instability during rTHA. To our knowledge, no study evaluated the 10-year outcomes of rTHA using DM cups, cemented into a metal reinforcement ring, in cases of severe acetabular bone loss. We hypothesized that using a DM cup cemented into a metal ring is a reliable technique for rTHA at 10 years, with few revisions for acetabular loosening and/or instability. This is a retrospective study of 77 rTHA cases with severe acetabular bone loss (Paprosky ≥ 2C) treated exclusively with a DM cup (NOVAE STICK; SERF, DÉCINES-CHARPIEU, FRANCE) cemented into a cage (Kerboull cross, Burch-Schneider, or ARM rings). Clinical scores and radiological assessments were performed preoperatively and at the last follow-up. The main endpoints were revision surgery for aseptic loosening or recurring dislocation. With a mean follow-up of 10.7 years [2.1-16.2], 3 patients were reoperated because of aseptic acetabular loosening (3.9%) at 9.6 years [7-12]. Seven patients (9.45%) dislocated their hip implant, only 1 suffered from chronic instability (1.3%). Cup survivorship was 96.1% at 10 years. No sign of progressive radiolucent lines were found and bone graft integration was satisfactory for 91% of the patients. The use of a DM cup cemented into a metal ring during rTHA with complex acetabular bone loss was associated with low revision rates for either acetabular loosening or chronic instability at 10 years. That's why we also recommend DM cup for all high risk of dislocation situations


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_2 | Pages 106 - 106
10 Feb 2023
Lin D Xu J Weinrauch P Yates P Young D Walter W
Full Access

Hip resurfacing arthroplasty (HRA) is a bone conserving alternative to total hip arthroplasty. We present the early 1 and 2-year clinical and radiographical follow-up of a novel ceramic-on-ceramic (CoC) HRA in a multi-centric Australian cohort.

Patient undergoing HRA between September 2018 and April 2021 were prospectively included. Patient-reported outcome measures (PROMS) in the form of the Forgotten Joint Score (FJS), HOOS Jr, WOMAC, Oxford Hip Score (OHS) and UCLA Activity Score were collected preoperatively and at 1- and 2-years post-operation. Serial radiographs were assessed for migration, component alignment, evidence of osteolysis/loosening and heterotopic ossification formation.

209 patients were identified of which 106 reached 2-year follow-up. Of these, 187 completed PROMS at 1 year and 90 at 2 years. There was significant improvement in HOOS (p< 0.001) and OHS (p< 0.001) between the pre-operative, 1-year and 2-years outcomes. Patients also reported improved pain (p<0.001), function (p<0.001) and reduced stiffness (p<0.001) as measured by the WOMAC score. Patients had improved activity scores on the UCLA Active Score (p<0.001) with 53% reporting return to impact activity at 2 years. FJS at 1 and 2-years were not significantly different (p=0.38). There was no migration, osteolysis or loosening of any of the implants. The mean acetabular cup inclination angle was 41.3° and the femoral component shaft angle was 137°. No fractures were reported over the 2-year follow-up with only 1 patient reporting a sciatic nerve palsy.

There was early return to impact activities in more than half our patients at 2 years with no early clinical or radiological complications related to the implant. Longer term follow-up with increased patient numbers are required to restore surgeon confidence in HRA and expand the use of this novel product.

In conclusion, CoC resurfacing at 2-years post-operation demonstrate promising results with satisfactory outcomes in all recorded PROMS.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 16 - 16
1 Dec 2022
Ibrahim M Abdelbary H Mah T
Full Access

Gram-negative prosthetic joint infections (GN-PJI) present unique challenges in management due to their distinct pathogenesis of biofilm formation on implant surfaces. To date, there are no animal models that can fully recapitulate how a biofilm is challenged in vivo in the setting of GN-PJI. The purpose of this study is to establish a clinically representative GN-PJI in vivo model that can reliably depict biofilm formation on titanium implant surface. We hypothesized that the biofilm formation on the implant surface would affect the ability of the implant to be osseointegrated. The model was developed using a 3D-printed, medical-grade titanium (Ti-6Al-4V), monoblock, cementless hemiarthroplasty hip implant. This implant was used to replace the femoral head of a Sprague-Dawley rat using a posterior surgical approach. To induce PJI, two bioluminescent Pseudomonas aeruginosa (PA) strains were utilized: a reference strain (PA14-lux) and a mutant strain that is defective in biofilm formation (DflgK-lux). PJI development and biofilm formation was quantitatively assessed in vivo using the in vivo imaging system (IVIS), and in vitro using the viable colony count of the bacterial load on implant surface. Magnetic Resonance Imaging (MRI) was acquired to assess the involvement of periprosthetic tissue in vivo, and the field emission scanning electron microscopy (FE-SEM) of the explanted implants was used to visualize the biofilm formation at the bone-implant interface. The implant stability, as an outcome, was directly assessed by quantifying the osseointegration using microCT scans of the extracted femurs with retained implants in vitro, and indirectly assessed by identifying the gait pattern changes using DigiGaitTM system in vivo. A localized prosthetic infection was reliably established within the hip joint and was followed by IVIS in real-time. There was a quantitative and qualitative difference in the bacterial load and biofilm formation between PA14 and DflgK. This difference in the ability to persist in the model between the two strains was reflected on the gait pattern and implant osseointegration. We developed a novel uncemented hip hemiarthroplasty GN-PJI rat model. This model is clinically representative since animals can bear weight on the implant. PJI was detected by various modalities. In addition, biofilm formation correlated with implant function and stability. In conclusion, the proposed in vivo GN-PJI model will allow for more reliable testing of novel biofilm-targeting therapetics