Advertisement for orthosearch.org.uk
Results 1 - 20 of 2179
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 12 - 12
22 Nov 2024
Wang L Trampuz A Zhang X
Full Access

Aim. Treatment of prosthetic joint infection (PJI) by systemic administration of high doses of long-term antibiotics often proves ineffective, causing severe side effects. Thus, we presented the phage Sb-1, which coding extracellular polymeric substances (EPS) degradation depolymerases, conjugated with rifampicin-loaded liposomes (Lip-RIF@Phage) by bio-orthogonal functionalization strategy to target biofilm (Figure1). Method. Methicillin-resistant Staphylococcus aureus (MRSA) biofilm was grown on porous glass beads for 24 h in vitro. After the biofilm formation, beads were exposed to 0.9% saline, then sonication. Quantitative and qualitative biofilm analyses were performed by colony counting, scanning electron microscopy and isothermal microcalorimetry. A rat model of total knee arthroplasty infected with the bioluminescent MRSA strain was developed as the PJI model to evaluate the efficacy of Lip-RIF@Phage anti-biofilm therapy in vivo, then the creatinine, alanine transaminase, and aspartate transaminase values were evaluated throughout the entire treatment process. Results. After treatment with Lip-RIF@Phage, no bacterial colonies were observed, consistent with findings from scanning electron microscopy. Similarly, isothermal microcalorimetry revealed no detectable heat following Lip-RIF@Phage treatment, aligning with these observations. In vivo experiments demonstrated a significant reduction in biofilm cell load compared to all other tested conditions, with no evidence of systemic toxicity on renal and liver functions attributed to Lip-RIF@Phage. Conclusions. The innovative depolymerase-phagobot nanosystem (Lip-RIF@Phage) exhibits remarkable efficacy in completely eliminating biofilm cells in vitro. It serves as an excellent carrier for antibiotic delivery, enhancing antibiotic penetration through biofilms and improving biofilm eradication efficacy. Furthermore, it enables personalized treatment strategies against biofilm-associated multidrug-resistant (MDR) infections by maximizing the effectiveness of any remaining sensitive antibiotics. For any tables or figures, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 11 - 11
22 Nov 2024
Taltavull RO Goma-Camps MV Calderer LC Amat C Corona P
Full Access

Aim. This study aims to evaluate the effectiveness of a pre-formulated irrigation solution. 1. (containing ethanol, acetic acid, sodium acetate, benzalkonium chloride, and sterile water) compared to saline solution in managing acute periprosthetic joint infections (A-PJI) during Debridement, Antibiotic, and Implant Retention (DAIR) surgeries. The primary objective is to assess the healing rate using this solution. 1. versus saline in A-PJI patients, with “cure” defined by a set of criteria including no recurrence, wound issues, or need for ongoing suppressive antibiotics after 1 year. Principio del formularioFinal del formulario. Method. This single-center, randomized controlled trial will involve patients with acute periprosthetic infections undergoing standard DAIR surgery, divided into two groups: one receiving saline solution and the other receiving pre-formulated solution. 1. The study is single-blinded, with patients unaware of their group assignment. The study is registered at ISRCTN: https://doi.org/10.1186/ISRCTN10873696. Inclusion criteria include patients over 18 with hip or knee prostheses suffering from acute or hematogenous periprosthetic infections, while exclusion criteria include a history of prior debridement or multiple infected implants, among others. Principio del formularioFinal del formulario A total of 50 subjects are needed for statistical significance, with a 5% dropout rate anticipated. An interim safety analysis will assess early effectiveness and adverse effects, and the results are presented in this study. Data will be managed in online databases and analyzed using SPSS software, with a significance level of p<0.05. Results. Twenty-four patients were eligible for analysis, twelve in each group. The overall average age was 75 years, and the gender distribution was predominantly female (9 F and 3 M in each group). No significant differences were found at the baseline characteristics level between the two groups (p>0.05). The minimum follow-up of 1 year was achieved in all cases except three due to deaths not related to periprosthetic infection. Regarding efficacy, a non-statistically significant difference was observed (p>0.05), with 58% in the serum group and 42% in the pre-formulated irrigation solution. 1. group (X. 2. = 0.17, p=0.683). The average hospital stay was 38.42 days (SD 26.32) in the pre-formulated irrigation solution group. 1. and 24.42 days (SD 18.72) in the serum group, with this difference being not significant (t=1.5, p=0.148). Conclusions. While the current analysis indicates no significant differences between both groups in terms of efficacy, the study's ongoing progress and the inclusion of a larger sample size could potentially yield more definitive results


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 16 - 16
14 Nov 2024
Mei J Pasoldt A Matalova E Graessel S
Full Access

Introduction. Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration, inflammation, and pain. Current treatments provide only symptomatic relief, necessitating novel molecular targets. The caspase family, known for its roles in apoptosis and inflammation regulation, may additionally influence crucial processes for cartilage homeostasis such as differentiation and proliferation. However, the specific roles of individual caspases in OA pathogenesis remain unclear. This study aims to investigate the involvement of the caspase family in OA and as potential targets for therapy, with a focus on caspase-1 and -8. Method. Chondrocytes from both healthy and OA donors were cultured in 2D and 3D culture models and stimulated with TNF-α or IL-1β. The expression and activation of caspase-1 and -8 was assessed using RT-PCR, ELISA. Transcriptome analysis of OA and healthy cartilage samples, along with Mendelian randomization (MR) analysis were conducted to explore the involvement of caspase family in OA and to assess its potential as therapeutic targets. Result. Higher expression levels of caspase-1, -8 were observed in OA cartilage compared to healthy cartilage. TNF-α stimulation increased their expression in both healthy and OA chondrocytes, while IL-1β had limited impact. Caspase-8 expression was causally associated with knee OA in MR analysis, suggesting a potential therapeutic target. The caspase-1 inhibitor VX-765 mildly reduced chondrocyte viability, with no significant effect in the presence of TNF-α. While the caspase-8 inhibitor Z-IETD-FMK exhibited slight enhancements in cell viability, these improvements were not statistically significant. Nevertheless, its effectiveness significantly increased in the presence of TNF-α. Conclusion. This study highlights the involvement of caspase-1 and caspase-8 in OA pathology, with caspase-8 emerging as a potential therapeutic target for knee OA treatment. Further investigation into the roles of caspase-1 and -8 in OA pathophysiology, including the efficacy and potential side effects of their corresponding inhibitors, is warranted. Acknowledgements. Funding Inter-Action/Inter-Excellence project (BTHA-JC-2022-36/LUABA22019)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 25 - 25
14 Nov 2024
Taylan O Louwagie T Bialy M Peersman G Scheys L
Full Access

Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee joint kinematics and strains in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) during squatting motions. Method. Six cadaver lower limbs underwent computed tomography scans to design patient-specific guides. Using these scans, bony landmarks and virtual single-line collateral ligaments were identified to provide intraoperative real-time feedback, aided in bone resection, implant alignment, tibiofemoral kinematics, and collateral ligament elongations, using the navigation platform. The specimens were subjected to squatting (35°-100°) motions on a physiological ex vivo knee simulator, maintaining a constant 110N vertical ankle load regulated by active quadriceps and bilateral hamstring actuators. Subsequently, each knee underwent a medially-stabilized TKA using the mechanical alignment technique, followed by a retest under the same conditions used preoperatively. Using a dedicated wand, MCL and LCL insertions—anterior, middle, and posterior bundles—were identified in relation to bone-pin markers. The knee kinematics and collateral ligament strains were analyzed from 3D marker trajectories captured by a six-camera optical system. Result. Both native and TKA conditions demonstrated similar patterns in tibial valgus orientation (Root Mean Square Error (RMSE=1.7°), patellar flexion (RMSE=1.2°), abduction (RMSE=0.5°), and rotation (RMSE=0.4°) during squatting (p>0.13). However, a significant difference was found in tibial internal rotation between 35° and 61° (p<0.045, RMSE=3.3°). MCL strains in anterior (RMSE=1.5%), middle (RMSE=0.8%), and posterior (RMSE=0.8%) bundles closely matched in both conditions, showing no statistical differences (p>0.05). Conversely, LCL strain across all bundles (RMSE<4.6%) exhibited significant differences from mid to deep flexion (p<0.048). Conclusion. The novel intraoperative navigation platform not only aims to achieve planned knee alignment but also assists in restoring native knee kinematics and collateral ligament behavior through real-time feedback. Acknowledgment. This study was funded by Medacta International (Castel San Pietro, Switzerland)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 36 - 36
14 Nov 2024
Zderic I Kraus M Rossenberg LV Gueorguiev B Richards G Pape HC Pastor T Pastor T
Full Access

Introduction. Tendon ruptures are a common injury and often require surgical intervention to heal. A refixation is commonly performed with high-strength suture material. However, slipping of the thread is unavoidable even at 7 knots potentially leading to reduced compression of the sutured tendon at its footprint. This study aimed to evaluate the biomechanical properties and effectiveness of a novel dynamic high-strength suture, featuring self-tightening properties. Method. Distal biceps tendon rupture tenotomies and subsequent repairs were performed in sixteen paired human forearms using either conventional or the novel dynamic high-strength sutures in a paired design. Each tendon repair utilized an intramedullary biceps button for radial fixation. Biomechanical testing aimed to simulate an aggressive postoperative rehabilitation protocol stressing the repaired constructs. For that purpose, each specimen underwent in nine sequential days a daily mobilization over 300 cycles under 0-50 N loading, followed by a final destructive test. Result. After the ninth day of cyclic loading, specimens treated with the dynamic suture exhibited significantly less tendon elongation at both proximal and distal measurement sites (-0.569±2.734 mm and 0.681±1.871 mm) compared to the conventional suture group (4.506±2.169 mm and 3.575±1.716 mm), p=0.003/p<0.002. Gap formation at the bone-tendon interface was significantly lower following suturing using dynamic suture (2.0±1.6 mm) compared to conventional suture (4.5±2.2 mm), p=0.04. The maximum load at failure was similar in both treatment groups (dynamic suture: 374± 159 N; conventional suture: 379± 154 N), p=0.925. The predominant failure mechanism was breakout of the button from the bone (dynamic suture: 5/8; conventional suture: 6/8), followed by suture rupturing, suture unraveling and tendon cut-through. Conclusion. From a biomechanical perspective, the novel dynamic high-strength suture demonstrated higher resistance against gap formation at the bone tendon interface compared to the conventional suture, which may contribute to better postoperative tendon integrity and potentially quicker functional recovery in the clinical setting


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 66 - 66
14 Nov 2024
Tirta M Hjorth MH Jepsen JF Kold S Rahbek O
Full Access

Introduction. Epiphysiodesis, defined as the process of closing the growth plate (physis), have been used for several years as a treatment option of cases where the predicted leg-length discrepancy (LLD) falls between 2 to 5 cm. The aim of this study was to systematically review the existing literature on the effectiveness of three different epiphysiodesis techniques with implant usage for the treatment of leg-length discrepancy in the pediatric population. The secondary aim was to address the reported complications of staples, tension-band plates (TBP) and percutaneous epiphysiodesis screws (PETS). Method. This systematic review was performed according to PRISMA guidelines. We searched MEDLINE (PubMed), Embase, Cochrane Library, Web of Science and Scopus for studies on skeletally immature patients with LLD treated with epiphysiodesis with an implant. The extracted outcome categories were effectiveness of epiphysiodesis (LLD measurements pre/post-operatively, successful/unsuccessful) and complications that were graded on severity. Result. Forty-four studies (2184 patients) were included, from whom 578 underwent TBP, 455 PETS and 1048 staples. From pooled analysis of the studies reporting success rate, 64% (150/234) successful TBP surgeries (10 studies), 78% (222/284) successful PETS (9 studies) and 52% (212/407) successful Blount staples (8 studies). Severe complications rate was 7% for PETS, 17% for TBP and 16% for Blount staples. TBP had 43 cases of angular deformity (10%), Blount staples 184 (17%) while PETS only 18 cases (4%). Conclusion. Our results highlighted that PETS seems to be the most successful type of epiphysiodesis surgery with an implant, with higher success rate and lower severe complications than TBP or Blount staples


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 80 - 80
14 Nov 2024
Møller S
Full Access

Introduction. Plantar heel pain, or plantar fasciopathy (PF), is a common musculoskeletal complaint, affecting 39% of lower-extremity tendinopathies in general practice. Conservative management is recommended as the first-line treatment, yet many patients continue to experience symptoms even after ten years. There is a significant lack of high-quality evidence for the effectiveness of various treatments, highlighting the need for more research. Minimally invasive surgical options, such as endoscopic plantar fascia release and radiofrequency microtenotomy, have shown promise in reducing pain and improving outcomes. This systematic review aims to evaluate the effectiveness of these minimally invasive surgical treatments compared to non-surgical options in managing PF. Method. The systematic review, registered on PROSPERO (CRD42024490498) and adhering to PRISMA guidelines, searched databases including PubMed, Embase, Cochrane, and others for studies from January 1991 to May 2024. Keywords included plantar fasciitis, plantar fasciopathy, and heel pain. Limited to human trials, the search strategy was refined with an information specialist and found no protocol duplicates. Result. The systematic review identified eight studies involving 495 patients (56.2% women, average age 46.5 years). The studies compared various treatments, including endoscopic plantar fascia release (EPF), mini-scalpel needle (MSN) treatment, ultrasound-guided pulsed radiofrequency (UG-PRF), and needle electrolysis (NE), to non-surgical interventions and corticosteroid injections (CSI). Primary outcomes focused on pain reduction, with some needle treatments showing superior results (between-group diffence). No severe adverse events were reported. Conclusion. In conclusion, plantar fasciopathy (PF) remains a prevalent and challenging condition, that can be resistant to conservative treatments. This systematic review highlights the potential of minimally invasive surgical options, such as endoscopic plantar fascia release and needle treatments, in reducing pain and improving functional outcomes. Despite some needle treatments showing superior results, the overall lack of high-quality evidence underscores the need for further research to establish the most effective management strategies for PF


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 127 - 127
14 Nov 2024
Strack D Rayudu NM Kirschke J Baum T Subburaj K
Full Access

Introduction. Patient-specific biomechanical modeling using Finite Element Analysis (FEA) is pivotal for understanding the structural health of bones, optimizing surgical procedures, assessing outcomes, and validating medical devices, aligning with guidance issued by standards and regulatory bodies. Accurate mapping of image-to-mesh-material is crucial given bone's heterogeneous composition. This study aims to rigorously assess mesh convergence and evaluate the sensitivity of material grouping strategies in quantifying bone strength. Method. Subject-specific geometry and nonlinear material properties were derived from computed tomography (CT) scan data of one cadaveric human vertebral body. Linear tetrahedral elements with varying edge lengths between 2mm and 0.9mm were then generated to study the mesh convergence. To compare the effectiveness of different grouping strategies, three approaches were used: Modulus Gaping (a user-defined absolute threshold of Young's modulus ranging from 500 MPa to 1 MPa), Percentual Thresholding (relative parameter thresholds ranging from 50% to 1%), and Adaptive clustering (unsupervised k-means-based clustering ranging from 10 to 200 clusters). Adaptive clustering enables a constant number of unique material properties in cross-specimen studies, improving the validity of results. Result. Mesh convergence was evaluated via fracture load and reached at a 1mm mesh size across grouping strategies. All strategies exhibit minimal deviation (within 5%) from individually assigned material parameters, except Modulus Gaping, with a 500 MPa threshold (32% difference). Computational efficiency, measured by runtime, significantly improved with grouping strategies, reducing computational cost by 82 to 94% and unique material count by up to 99%. Conclusion. Different grouping strategies offer comparable mesh convergence, highlighting their potential to reduce computational complexity while maintaining accuracy in the biomechanical modeling of bones and suggesting a more efficient approach than individual element materials. The higher efficiency of FEA may increase its applicability in clinical settings with limited computational resources. Further studies are needed to refine grouping parameters and assess their suitability across different subjects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 3 - 3
14 Nov 2024
Chalak A Singh S Kale S
Full Access

Introduction. The non-union of long bones poses a substantial challenge to clinicians and patients alike. The Ilizarov fixation system and Limb Reconstruction System (LRS), renowned for their versatility in managing complex non-unions. The purpose of this retrospective study was to assess the outcomes of acute docking with the bone peg-in-bone technique for the management of non-unions of long bones. The study seeks to evaluate its effectiveness in achieving complete bony union, preserving limb length and alignment, correcting existing deformities, and preventing the onset of new ones. Method. A retrospective analysis of 42 patients was done with infected and non-infected non-unions of long bones who received treatment at a tertiary care hospital between April 2016 to April 2022. We utilized the Association for the Study and Application of Methods of the Ilizarov (ASAMI) scoring system to assess both bone and functional outcomes and measured mechanical lateral distal femoral angle (mLDFA) for the femur and the medial proximal tibial angle (MPTA) for the tibia. Result. In our retrospective study involving 42 patients, a total of 30 patients had post debridement gap of >2 cm and average gap of 4.54 cm (range 1 – 13 cm) and therefore underwent corticotomy and lengthening. The average external fixation time was 6.52 (range 4 – 11 months) and average external fixation index of 2.08 (range 0.4 – 4.5 months/cm). The ASAMI scoring system showed bone result of 38 excellent, 3 good and 1 fair. Functional result of 40 excellent and 2 good outcomes. The post op mLDFA and MPTA were in normal range except in 3 patients which not statistically significant. Conclusion. In conclusion, the use of acute docking provides several advantages such as promoting early fracture healing, increasing stability, shortening treatment time, reducing the number of surgical procedures and reduced number of complications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 50 - 50
14 Nov 2024
Birkholtz F Eken M Swanevelder M Engelbrecht A
Full Access

Introduction. Inaccurate identification of implants on X-rays may lead to prolonged surgical duration as well as increased complexity and costs during implant removal. Deep learning models may help to address this problem, although they typically require large datasets to effectively train models in detecting and classifying objects, e.g. implants. This can limit applicability for instances when only smaller datasets are available. Transfer learning can be used to overcome this limitation by leveraging large, publicly available datasets to pre-train detection and classification models. The aim of this study was to assess the effectiveness of deep learning models in implant localisation and classification on a lower limb X-ray dataset. Method. Firstly, detection models were evaluated on their ability to localise four categories of implants, e.g. plates, screws, pins, and intramedullary nails. Detection models (Faster R-CNN, YOLOv5, EfficientDet) were pre-trained on the large, freely available COCO dataset (330000 images). Secondly, classification models (DenseNet121, Inception V3, ResNet18, ResNet101) were evaluated on their ability to classify five types of intramedullary nails. Localisation and classification accuracy were evaluated on a smaller image dataset (204 images). Result. The YOLOv5s model showed the best capacity to detect and distinguish between different types of implants (accuracy: plate=82.1%, screw=72.3%, intramedullary nail=86.9%, pin=79.9%). Screw implants were the most difficult implant to detect, likely due to overlapping screw implants visible in the image dataset. The DenseNet121 classification model showed the best performance in classifying different types of intramedullary nails (accuracy=73.7%). Therefore, a deep learning model pipeline with the YOLOv5s and DenseNet121 was proposed for the most optimal performance of automating implants localisation and classification for a relatively small dataset. Conclusion. These findings support the potential of deep learning techniques in enhancing implant detection accuracy. With further development, AI-based implant identification may benefit patients, surgeons and hospitals through improved surgical planning and efficient use of theatre time


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 106 - 106
14 Nov 2024
Bliddal H Beier J Hartkopp A Conaghan P Henriksen M
Full Access

Introduction. Polyacrylamide hydrogel (iPAAG. 1. ), is CE marked for treating symptomatic knee osteoarthritis (OA), meeting the need for an effective, long-lasting, and safe non-surgical option. This study evaluates the efficacy and safety of a single 6 ml intra-articular injection of iPAAG in participants with moderate to severe knee OA over a 5-year post-treatment period, presenting data from the 4-year follow up. Method. This prospective multicentre study (3 sites in Denmark) involved 49 participants (31 females) with an average age of 70 (range 44 – 86 years). They received a single 6 mL iPAAG injection. All participants provided informed consent and re-consented to continue after 1 year. The study followed GCP principles and was approved by Danish health authorities and local Health Research Ethics committees. Twenty-seven participants completed the 4-year follow-up. The study evaluated WOMAC pain, stiffness, function, and Patient Global Assessment (PGA) of disease impact. Changes from baseline were analysed using a mixed model for repeated measurement (MMRM). Sensitivity analyses were applied on the extension data, where the MMRM analysis was repeated only including patients in the extension phase and an ANCOVA model was used, replacing missing values at 4-years with baseline values (BOCF). Results. The planned MMRM analysis (n=49) revealed a statistically significant decrease in WOMAC pain subscale scores (-22.0; 95%CI: -29.5; -14.4) from baseline to 4-years. Analysis of the extension phase (n=27) showed similar results (-21.8; 95%CI: -29.0; -14.6) compared to the initial analysis. Furthermore, BOCF analysis indicated a statistically significant reduction in WOMAC pain subscale scores from baseline (-13.0 units). Four new adverse events were reported between the 3-year and 4-year visits; none were related to treatment. Conclusions. This study shows that single injections of 6 ml intra-articular iPAAG were well tolerated and continued to provide clinically important effectiveness at 4-years after treatment. Acknowledgements. The study was sponsored by Contura International A/S


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 27 - 27
14 Nov 2024
Bulut H Giray Batibay S Kanay E Özkan K
Full Access

Introduction

Despite the implementation of numerous preventive measures in recent years, the persistent challenge of periprosthetic infections remains. Among the various strategies, metallic modification of implants, particularly with silver, has emerged as a promising avenue. Silver's antimicrobial properties, coupled with its low human toxicity, render it an appealing option. However, ongoing debate surrounds its comparative efficacy in infection prevention when contrasted with titanium-coated prostheses.

Methods

The PubMed database was systematically searched up to March 2024. Studies in English that met predetermined inclusion/exclusion criteria and utilized “Megaprosthesis AND infection” and “ silver-coated AND infection “ as key terms were included. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA) statement guided the article selection process.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 125 - 125
14 Nov 2024
Mungalpara N Kim S Baker H Lee C Shakya A Chen K Athiviraham A Koh J Elhassan B Maassen NH Amirouche F
Full Access

Introduction. Treatment strategies for irreparable Massive Rotator Cuff Tears (MRCTs) are debatable, especially for younger, active patients. Superior Capsular Reconstruction (SCR) acts as a static stabilizer, while Lower Trapezius Transfer (LTT) serves as a dynamic stabilizer. This study compares the biomechanical effectiveness of SCR and LTT, hypothesizing that their combination will enhance shoulder kinematics. Methods. Eight human shoulders from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement. Results. From intact to MRCT, deltoid force was reduced by 28% (p = 0.023). LTT increased deltoid force by 27.25 (p = 0.166). SCR decreased deltoid force by 34% (p = 0.208). Combining LTT with SCR increased deltoid force by 32.57% compared to SCR (p = 0.023) and decreased it by 13.6% compared to LTT alone (p = 0.017). Combined LTT and SCR reduced deltoid force by 20.9% from the control (p = 0.001). Subacromial contact pressure rose by 15% in MRCT over intact, but LTT decreased it by 7.6%, achieving nearly 50% correction. SCR increased subacromial space volume, raising pressure by 6.5%. The humeral head translation (HHT) increases with MRCT, reaching 3.33 mm (SD = 0.95) at 0 degrees, compared to 2.24 mm (SD = 0.78) in the intact. LTT and the combined LTT + SCR significantly reduce HHT, with combined LTT + SCR achieving HHT of 2.24 mm (SD = 0.63) at 0 degrees, comparable to the control. Conclusion. Notable changes in deltoid force were observed. LTT outperformed the combined SCR and LTT in reducing deltoid force and subacromial peak pressure. Both SCR and LTT corrected HTT, with LTT being more effective. However, combining SCR and LTT optimally corrected HHT


Bone & Joint Research
Vol. 13, Issue 11 | Pages 647 - 658
12 Nov 2024
Li K Zhang Q

Aims. The incidence of limb fractures in patients living with HIV (PLWH) is increasing. However, due to their immunodeficiency status, the operation and rehabilitation of these patients present unique challenges. Currently, it is urgent to establish a standardized perioperative rehabilitation plan based on the concept of enhanced recovery after surgery (ERAS). This study aimed to validate the effectiveness of ERAS in the perioperative period of PLWH with limb fractures. Methods. A total of 120 PLWH with limb fractures, between January 2015 and December 2023, were included in this study. We established a multidisciplinary team to design and implement a standardized ERAS protocol. The demographic, surgical, clinical, and follow-up information of the patients were collected and analyzed retrospectively. Results. Compared with the control group, the ERAS group had a shorter operating time, hospital stay, preoperative waiting time, postoperative discharge time, less intraoperative blood loss, and higher albumin and haemoglobin on the first postoperative day. The time to removal of the urinary catheter/drainage tube was shortened, and the drainage volume was also significantly reduced in the ERAS group. There was no significant difference in the visual analogue scale (VAS) scores on postoperative return to the ward, but the ERAS group had lower scores on the first, second, and third postoperative days. There were no significant differences in the incidence of complications, other than 10% more nausea and vomiting in the control group. The limb function scores at one-year follow-up were similar between the two groups, but time to radiological fracture union and time to return to physical work and sports were significantly reduced in the ERAS group. Conclusion. The implementation of a series of perioperative nursing measures based on the concept of ERAS in PLWH with limb fracture can significantly reduce the operating time and intraoperative blood loss, reduce the occurrence of postoperative pain and complications, and accelerate the improvement of the functional status of the affected limb in the early stage, which is worthy of applying in more medical institutions. Cite this article: Bone Joint Res 2024;13(11):647–658


Bone & Joint Open
Vol. 5, Issue 11 | Pages 962 - 970
4 Nov 2024
Suter C Mattila H Ibounig T Sumrein BO Launonen A Järvinen TLN Lähdeoja T Rämö L

Aims

Though most humeral shaft fractures heal nonoperatively, up to one-third may lead to nonunion with inferior outcomes. The Radiographic Union Score for HUmeral Fractures (RUSHU) was created to identify high-risk patients for nonunion. Our study evaluated the RUSHU’s prognostic performance at six and 12 weeks in discriminating nonunion within a significantly larger cohort than before.

Methods

Our study included 226 nonoperatively treated humeral shaft fractures. We evaluated the interobserver reliability and intraobserver reproducibility of RUSHU scoring using intraclass correlation coefficients (ICCs). Additionally, we determined the optimal cut-off thresholds for predicting nonunion using the receiver operating characteristic (ROC) method.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1249 - 1256
1 Nov 2024
Mangwani J Houchen-Wolloff L Malhotra K Booth S Smith A Teece L Mason LW

Aims

Venous thromboembolism (VTE) is a potential complication of foot and ankle surgery. There is a lack of agreement on contributing risk factors and chemical prophylaxis requirements. The primary outcome of this study was to analyze the 90-day incidence of symptomatic VTE and VTE-related mortality in patients undergoing foot and ankle surgery and Achilles tendon (TA) rupture. Secondary aims were to assess the variation in the provision of chemical prophylaxis and risk factors for VTE.

Methods

This was a multicentre, prospective national collaborative audit with data collection over nine months for all patients undergoing foot and ankle surgery in an operating theatre or TA rupture treatment, within participating UK hospitals. The association between VTE and thromboprophylaxis was assessed with a univariable logistic regression model. A multivariable logistic regression model was used to identify key predictors for the risk of VTE.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1306 - 1311
1 Nov 2024
Watts AC McDaid C Hewitt C

Aims. A review of the literature on elbow replacement found no consistency in the clinical outcome measures which are used to assess the effectiveness of interventions. The aim of this study was to define core outcome domains for elbow replacement. Methods. A real-time Delphi survey was conducted over four weeks using outcomes from a scoping review of 362 studies on elbow replacement published between January 1990 and February 2021. A total of 583 outcome descriptors were rationalized to 139 unique outcomes. The survey consisted of 139 outcomes divided into 18 domains. The readability and clarity of the survey was determined by an advisory group including a patient representative. Participants were able to view aggregated responses from other participants in real time and to revisit their responses as many times as they wished during the study period. Participants were able to propose additional items for inclusion. A Patient and Public Inclusion and Engagement (PPIE) panel considered the consensus findings. Results. A total of 45 respondents completed the survey. Nine core mandatory domains were identified: ‘return to work or normal daily role’; delivery of care was measured in the domains ‘patient satisfaction with the outcome of surgery’ and ‘would the patient have the same operation again’; ‘pain’; ‘revision’; ‘elbow function’; ‘independence in activities of daily living’; ‘health-related quality of life’; and ‘adverse events’. ‘Elbow range of motion’ was identified as important by consensus but was felt to be less relevant by the PPIE panel. The PPIE panel unanimously stated that pain should be used as the primary outcome domain. Conclusion. This study defined core domains for the clinical outcomes of elbow replacement obtained by consensus from patients, carers, and healthcare professionals. Pain may be used as the primary outcome in future studies, where appropriate. Further work is required to define the instruments that should be used. Cite this article: Bone Joint J 2024;106-B(11):xxx–xxx


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1203 - 1205
1 Nov 2024
Taylor LA Breslin MA Hendrickson SB Vallier HA Ollivere BJ


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1333 - 1341
1 Nov 2024
Cheung PWH Leung JHM Lee VWY Cheung JPY

Aims

Developmental cervical spinal stenosis (DcSS) is a well-known predisposing factor for degenerative cervical myelopathy (DCM) but there is a lack of consensus on its definition. This study aims to define DcSS based on MRI, and its multilevel characteristics, to assess the prevalence of DcSS in the general population, and to evaluate the presence of DcSS in the prediction of developing DCM.

Methods

This cross-sectional study analyzed MRI spine morphological parameters at C3 to C7 (including anteroposterior (AP) diameter of spinal canal, spinal cord, and vertebral body) from DCM patients (n = 95) and individuals recruited from the general population (n = 2,019). Level-specific median AP spinal canal diameter from DCM patients was used to screen for stenotic levels in the population-based cohort. An individual with multilevel (≥ 3 vertebral levels) AP canal diameter smaller than the DCM median values was considered as having DcSS. The most optimal cut-off canal diameter per level for DcSS was determined by receiver operating characteristic analyses, and multivariable logistic regression was performed for the prediction of developing DCM that required surgery.