Advertisement for orthosearch.org.uk
Results 1 - 20 of 26
Results per page:
Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


Bone & Joint Research
Vol. 12, Issue 4 | Pages 231 - 244
1 Apr 2023
Lukas KJ Verhaegen JCF Livock H Kowalski E Phan P Grammatopoulos G

Aims

Spinopelvic characteristics influence the hip’s biomechanical behaviour. However, to date there is little knowledge defining what ‘normal’ spinopelvic characteristics are. This study aims to determine how static spinopelvic characteristics change with age and ethnicity among asymptomatic, healthy individuals.

Methods

This systematic review followed the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines to identify English studies, including ≥ 18-year-old participants, without evidence of hip or spine pathology or a history of previous surgery or interventional treatment, documenting lumbar lordosis (LL), sacral slope (SS), pelvic tilt (PT), and pelvic incidence (PI). From a total of 2,543 articles retrieved after the initial database search, 61 articles were eventually selected for data extraction.


The Bone & Joint Journal
Vol. 105-B, Issue 2 | Pages 102 - 108
1 Feb 2023
MacDessi SJ Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes.

Cite this article: Bone Joint J 2023;105-B(2):102–108.


The Bone & Joint Journal
Vol. 103-B, Issue 7 | Pages 1206 - 1214
1 Jul 2021
Tsikandylakis G Mortensen KRL Gromov K Mohaddes M Malchau H Troelsen A

Aims

We aimed to investigate if the use of the largest possible cobalt-chromium head articulating with polyethylene acetabular inserts would increase the in vivo wear rate in total hip arthroplasty.

Methods

In a single-blinded randomized controlled trial, 96 patients (43 females), at a median age of 63 years (interquartile range (IQR) 57 to 69), were allocated to receive either the largest possible modular femoral head (36 mm to 44 mm) in the thinnest possible insert or a standard 32 mm head. All patients received a vitamin E-doped cross-linked polyethylene insert and a cobalt-chromium head. The primary outcome was proximal head penetration measured with radiostereometric analysis (RSA) at two years. Secondary outcomes were volumetric wear, periacetabular radiolucencies, and patient-reported outcomes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 80 - 80
1 Dec 2020
Kahveci A Cengiz BC Alcan V Zinnuroğlu M Gürses S
Full Access

Differences at motor control strategies to provide dynamic balance in various tasks in diabetic polyneuropatic (DPN) patients due to losing the lower extremity somatosensory information were reported in the literature. It has been stated that dynamics of center of mass (CoM) is controlled by center of pressure (CoP) during human upright standing and active daily movements. Indeed analyzing kinematic trajectories of joints unveil motor control strategies stabilizing CoM. Nevertheless, we hypothesized that imbalance disorders/CoM destabilization observed at DPN patients due to lack of tactile information about the base of support cannot be explained only by looking at joint kinematics, rather functional foot usage is proposed to be an important counterpart at controlling CoM. In this study, we included 14 DPN patients, who are diagnosed through clinical examination and electroneuromyography, and age matched 14 healthy subjects (HS) to identify control strategies in functional reach test (FRT). After measuring participants’ foot arch index (FAI) by a custom-made archmeter, they were tested by using a force plate, motion analysis system, surface electromyography and pressure pad, all working in synchronous during FRT. We analyzed data to determine effect of structural and functional foot pathologies due to neuropathy on patient performance and postural control estimating FAI, reach length (FR), FR to height (H) ratio (FR/H; normalized FR with respect to height), displacement of CoM and CoP in anteroposterior direction only, moment arm (MA, defined as the difference between CoP and CoM at the end of FRT), ankle, knee and hip joint angles computed at the sagittal plane for both extremities. Kinematic metrics included initial and final joint angles, defined with respect to start and end of reaching respectively. Further difference in the final and initial joint angles was defined as Δ. FAI was founded significantly lower in DPN patients (DPN: 0.3404; HS: 0.3643, p= <0.05). The patients’ FR, FR/H and absolute MA and displacement of CoM were significantly shorter than the control group (p= <0.05). Displacement of CoP between the two groups were not significant. Further we observed that CoM was lacking CoP in DPN patients (mean MA: +0.88 cm), while leading CoP in HS (mean MA: −1.59 cm) at the end of FRT. All initial angles were similar in two groups, however in DPN patients final right and left hip flexion angle (p=0.016 and p=0.028 respectively) and left ankle plantar flexion angle (p=0.04) were smaller than HS significantly. DPN patients had significantly less (p=0.029) hip flexion (mean at right hip angle, Δ=25.0°) compared to HS (Δ=33.53°) and ankle plantar flexion (DPN mean at right ankle angle, Δ=6.42°, HS mean Δ=9.07°; p=0.05). The results suggest that movement of both hip and ankle joints was limited simultaneously in DPN patients causing lack of CoM with respect to CoP at the end of reaching with significantly lower FAI. These results lead to the fact that cutaneous and joint somatosensory information from foot and ankle along with the structure of foot arch may play an important role in maintaining dynamic balance and performance of environmental context. In further studies, we expect to show that difference at control strategies in DPN patients due to restricted functional foot usage might be a good predictor of how neuropathy evolves to change biomechanical aspects of biped erect posture


The Bone & Joint Journal
Vol. 102-B, Issue 9 | Pages 1261 - 1267
14 Sep 2020
van Erp JHJ Gielis WP Arbabi V de Gast A Weinans H Arbabi S Öner FC Castelein RM Schlösser TPC

Aims

The aetiologies of common degenerative spine, hip, and knee pathologies are still not completely understood. Mechanical theories have suggested that those diseases are related to sagittal pelvic morphology and spinopelvic-femoral dynamics. The link between the most widely used parameter for sagittal pelvic morphology, pelvic incidence (PI), and the onset of degenerative lumbar, hip, and knee pathologies has not been studied in a large-scale setting.

Methods

A total of 421 patients from the Cohort Hip and Cohort Knee (CHECK) database, a population-based observational cohort, with hip and knee complaints < 6 months, aged between 45 and 65 years old, and with lateral lumbar, hip, and knee radiographs available, were included. Sagittal spinopelvic parameters and pathologies (spondylolisthesis and degenerative disc disease (DDD)) were measured at eight-year follow-up and characteristics of hip and knee osteoarthritis (OA) at baseline and eight-year follow-up. Epidemiology of the degenerative disorders and clinical outcome scores (hip and knee pain and Western Ontario and McMaster Universities Osteoarthritis Index) were compared between low PI (< 50°), normal PI (50° to 60°), and high PI (> 60°) using generalized estimating equations.


The Bone & Joint Journal
Vol. 102-B, Issue 3 | Pages 276 - 279
1 Mar 2020
Oussedik S Abdel MP Victor J Pagnano MW Haddad FS

Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved.

Cite this article: Bone Joint J 2020;102-B(3):276–279.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_2 | Pages 81 - 81
1 Feb 2020
Dessinger G Nachtrab J LaCour M Komistek R
Full Access

Introduction. Untreated hip osteoarthritis is a debilitating condition leading to pain, bone deformation, and limited range of motion. Unfortunately, studies have not been conducted under in vivo conditions to determine progressive kinematics variations to a hip joint from normal to pre-operative and post-operative THA conditions. Therefore, the objective was this study was to quantify normal and degenerative hip kinematics, compared to post-operative hip kinematics. Methods. Twenty unique subjects were analyzed; 10 healthy, normal subjects and 10 degenerative, subjects analyzed pre-operatively and then again post-operatively after receiving a THA. During each assessment, the subject performed a gait (stance and swing phase) activity under mobile, fluoroscopic surveillance. The normal and diseased subjects had CT scans in order to acquire bone geometry while implanted subjects had corresponding CAD models supplied. Femoral head and acetabular cup centers were approximated by spheres based on unique geometries while the component centers were pre-defined as the center of mass. These centers were used to compare femoral head sliding magnitudes on the acetabular cup during the activity for all subjects. Subjects were noted to have separation with changes in center magnitudes of more than 1 mm during gait. Utilizing 3D-to-2D registration techniques, the hip joint kinematics were derived and assessed. This allowed for visualization of normal subject positioning, pre-op bone deterioration, and implant placement within the bones. Results. None of the normal, experienced femoral head sliding (FHS) within the acetabulum. Two of the normal subjects revealed tendencies more similar to a degenerative hip. However, 4/10 of the degenerative subjects saw significant FHS with an average maximum of 1.344 0.522 mm. It was interesting to note that none of the implanted subjects experienced FHS, demonstrating improved kinematic trends more normal-like and revealing better kinematic patterns post-operative compared to their pre-operative conditions. Discussion. Overall, analysis has revealed trends of degenerative hips experiencing more abnormal hip kinematics due to lower surface area and greater magnitudes of femoral center head displacement. The implanted subjects saw decreased amounts of displacement which correlated to increases in contact area. These results more closely matched normal hip kinematics and showed an improvement over their diseased condition. It seems that the surgeon in this study better replicated the stem version angle to the pre-operative conditions, leaving less transverse stress of the femoral head on the acetabular cup, possibly leading to the femoral head remaining within the acetabular cup and the subjects not experiencing FHS. Significance. Pre-operative, degenerative hip subjects displayed abnormal femoral hip displacement at greater magnitudes to normal hip subjects. After THA, these subjects saw reduced magnitudes of displacement more in line with normal hip kinematics. For any figures or tables, please contact authors directly


Aims

Patient-specific instrumentation of total knee arthroplasty (TKA) is a technique permitting the targeting of individual kinematic alignment, but deviation from a neutral mechanical axis may have implications on implant fixation and therefore survivorship. The primary objective of this randomized controlled study was to compare the fixation of tibial components implanted with patient-specific instrumentation targeting kinematic alignment (KA+PSI) versus components placed using computer-assisted surgery targeting neutral mechanical alignment (MA+CAS). Tibial component migration measured by radiostereometric analysis was the primary outcome measure (compared longitudinally between groups and to published acceptable thresholds). Secondary outcome measures were inducible displacement after one year and patient-reported outcome measures (PROMS) over two years. The secondary objective was to assess the relationship between alignment and both tibial component migration and inducible displacement.

Patients and Methods

A total of 47 patients due to undergo TKA were randomized to KA+PSI (n = 24) or MA+CAS (n = 23). In the KA+PSI group, there were 16 female and eight male patients with a mean age of 64 years (sd 8). In the MA+CAS group, there were 17 female and six male patients with a mean age of 63 years (sd 7). Surgery was performed using cemented, cruciate-retaining Triathlon total knees with patellar resurfacing, and patients were followed up for two years. The effect of alignment on tibial component migration and inducible displacement was analyzed irrespective of study group.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 28 - 28
1 Apr 2018
Shafizadegan Z Baharlouei H Khoshavi O Garmabi Z Fereshtenejad N
Full Access

Background. Balance impairment and falling are of the major health problems in elderly individuals. The ability to maintain standing balance influences the risk of falling while performing everyday activities. Postural control is the base of balance that is the result of collaboration of visual, vestibular and somatosensory systems. Single leg stance test is a simple clinical method to evaluate static balance. In this test, the center of body mass is on a small support level and need to make corrective movements to create balance by postural control system. Kinesiotaping and stretching of ankle plantar flexor muscles used in physical therapy are effective in improvement of postural balance. Kinesiotaping is effective in maintaining balance by activates cutaneous receptors and promoting alpha motor neuron stimulation. Moreover, stretching is a common treatment used to prevent muscle shortness and increase the range of motion that improves the balance. Aim. Therefore the aim of current study was to compare the effects of these two methods in elderly women and men on ankle plantar flexor muscles which are effective to maintain postural status. Materials and Methods. In a single blind randomized clinical trial, 20 elderly male and 20 elderly female were assigned into 2 groups of kinesiotaping and stretching. Inhibitory Y shape tape was applied on the gastrocnemius in first group. In the stretching group, the muscle was stretched for 60 seconds by 4 times. The static balance was examined before and after the interventions by using single leg stance test. In this test, the subjects were asked to stand bare foot on dominant limb and cross their arms over chest. A maximum time for this test is 30 seconds. The researcher who was assessing balance was unaware to the intervention group. Results. According to paired t-test, Despite progress in time to stance on one leg after the interventions, the changes were not significant (P>0.05). Although the trend was more pronounced in the stretching group, independent t-test results showed no significant difference between groups (P>0.05). While in any of the treatment groups, there was no difference between men and women (P=0.1 and P=0.7 for kinesiotaping and stretching group, respectively). Conclusion. While the results did not show any significant difference after the intervention, but Increasing of the test time, which means improving the balance of participants, is evident. However, changes in the stretching group were more pronounced. Keyword. Single leg stance test, Elderly, Stretching, kinesiotaping, Plantar flexor muscle


Bone & Joint Research
Vol. 7, Issue 2 | Pages 196 - 204
1 Feb 2018
Krull A Morlock MM Bishop NE

Objectives

Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues.

Methods

A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 63 - 63
1 Feb 2017
Chapman R Van Citters D Dalury D
Full Access

Introduction. Subluxation and dislocation are frequently cited reasons for THA revision. For patients who cannot accommodate a larger femoral head, an offset liner may enhance stability. However, this change in biomechanics may impact the mechanical performance of the bearing surface. To our knowledge, no studies have compared wear rates of offset and neutral liners. Herein we radiographically compare the in-vivo wear performance of 0mm and 4mm offset acetabular liners. Methods. Two cohorts of 40 individuals (0mm, 4mm offset highly crosslinked acetabular liners, respectively) were selected from a single surgeon's consecutive caseload. All patients received the same THA system via the posterior approach. AP radiographs were taken at 6-week (‘pre’) and 5-year (‘post’) postoperative appointments. Patients with poor radiograph quality were excluded (n. 0mm. =5, n. 4mm. =4). Linear and volumetric wear were quantified according to Patent US5610966A. Briefly, images were processed in computer aided design (CAD) software. Differences in vector length between the center of the femoral head and the acetabular cup (pre- and post-vector, Figure 1) allow for calculation of linear wear and wear rate. The angle (β) between the linear wear vector and the cup inclination line was quantified (Figure 1). Patients with negative β were excluded from volumetric analyses (n. 0mm. =11, n. 4mm. =7). Volumetric wear was accordingly calculated accounting for wear vector direction. The results from three randomly selected patients were compared to results achieved using the “Hip Analysis Suite” software package (UChicagoTech). Results. Linear wear rate (Figure 2A) for 0mm offsets was significantly lower than the 4mm offsets (0.011±0.091 vs. 0.080±0.122mm/yr, p=0.008). Volumetric wear rate (Figure 2B) for 0mm offsets was significantly lower than the 4mm offsets (30.37±20.45 versus 61.58±42.14mm. 3. /year, p=0.001). Demographic differences existed between the two cohorts (age, gender, femoral head size, and acetabular cup size). However, there were no significant correlations found between linear/volumetric wear rate and any demographic including age, gender, BMI, femoral head size, or acetabular cup size. Validation showed no significant differences between the CAD method used herein and the gold standard method (0.083±0.014 versus 0.093±0.041mm/year, p=0.71). Discussion. This study is the first to show that 0mm offset liners have significantly lower linear and volumetric wear rates than do 4mm offset liners. Despite this difference, no revisions have been required in either cohort. The linear wear rates computed in this study are below literature-reported clinically relevant values for wear-induced-osteolysis (∼0.10mm/year). As such, the clinical impact of this wear rate difference is unknown. The higher wear rate in the offset group may owe to the altered biomechanics of the construct. By lateralizing the femoral head through an offset liner, the femur is lateralized with respect to the patient's center of mass (COM) (Figure 3). To maintain stability, the patient must pull the COM over the femoral head by increasing force from the hip abductors. This increased force is transmitted through the polyethylene acetabular liner. Thus, increased wear may result from the forces required to maintain balance in gait. Further work is needed to determine whether these higher wear rates will have clinical sequelae


The Bone & Joint Journal
Vol. 98-B, Issue 5 | Pages 641 - 646
1 May 2016
Ballas R Edouard P Philippot R Farizon F Delangle F Peyrot N

Aims

The purpose of this study was to analyse the biomechanics of walking, through the ground reaction forces (GRF) measured, after first metatarsal osteotomy or metatarsophalangeal joint (MTP) arthrodesis.

Patients and Methods

A total of 19 patients underwent a Scarf osteotomy (50.3 years, standard deviation (sd) 12.3) and 18 underwent an arthrodesis (56.2 years, sd 6.5). Clinical and radiographical data as well as the American Orthopaedic Foot and Ankle Society (AOFAS) scores were determined. GRF were measured using an instrumented treadmill. A two-way model of analysis of variance (ANOVA) was used to determine the effects of surgery on biomechanical parameters of walking, particularly propulsion.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_16 | Pages 20 - 20
1 Oct 2014
Asseln M Al Hares G Eschweiler J Radermacher K
Full Access

For a proper rehabilitation of the knee following knee arthroplasty, a comprehensive understanding of bony and soft tissue structures and their effects on biomechanics of the individual patient is essential. Musculoskeletal models have the potential, however, to predict dynamic interactions of the knee joint and provide knowledge to the understanding of knee biomechanics. Our goal was to develop a generic musculoskeletal knee model which is adaptable to subject-specific situations and to use in-vivo kinematic measurements obtained under full-weight bearing condition in a previous Upright-MRI study of our group for a proper validation of the simulation results. The simulation model has been developed and adapted to subject-specific cases in the multi-body simulation software AnyBody. For the implementation of the knee model a reference model from the AnyBody Repository was adapted for the present issue. The standard hinge joint was replaced with a new complex knee joint with 6DoF. The 3D bone geometries were obtained from an optimized MRI scan and then post-processed in the mesh processing software MeshLab. A homogenous dilation of 3 mm was generated for each bone and used as articulating surfaces. The anatomical locations of viscoelastic ligaments and muscle attachments were determined based on literature data. Ligament parameters, such as elongation and slack length, were adjusted in a calibration study in two leg stance as reference position. For the subject-specific adaptation a general scaling law, taking segment length, mass and fat into account, was used for a global scaling. The scaling law was further modified to allow a detailed adaption of the knee region, e.g. align the subject-specific knee morphology (including ligament and muscle attachments) in the reference model. The boundary conditions were solely described by analytical methods since body motion (apart from the knee region) or force data were not recorded in the Upright-MRI study. Ground reaction forces have been predicted and a single leg deep knee bend was simulated by kinematic constraints, such as that the centre of mass is positioned above the ankle joint. The contact forces in the knee joint were computed using the force dependent kinematic algorithm. Finally, the simulation model was adapted to three subjects, a single leg deep knee bend was simulated, subject-specific kinematics were recorded and then compared to their corresponding in-vivo kinematic measurements data. We were able to simulate the whole group of subjects over the complete range of motion. The tibiofemoral kinematics of three subjects could be simulated showing the overall trend correctly, whereas absolute values partially differ. In conclusion, the presented simulation model is highly adaptable to an individual situation and seems to be suitable to approximate subject-specific knee kinematics without consideration of cartilage and menisci. The model enables sensitivity analyses regarding changes in patient specific knee kinematics following e.g. surgical interventions on bone or soft tissue as well as related to the design and placement of partial or total knee joint replacement. However, model optimisation, a higher case number, sensitivity analyses of selected parameters and a semi-automation of the workflow are parts of our ongoing work


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 127 - 127
1 Jul 2014
Boyd J Gill H Zavatsky A
Full Access

Summary Statement. Simulated increases in body weight led to increased displacement, von Mises stress, and contact pressure in finite element models of the extended and flexed knee. Contact shifted to locations of typical medial osteoarthritis lesions in the extended knee models. Introduction. Obesity is commonly associated with increased risk of osteoarthritis (OA). The effects of increases in body weight and other loads on the stresses and strains within a joint can be calculated using finite element (FE) models. The specific effects for different individuals can be calculated using subject-specific FE models which take individual geometry and forces into account. Model results can then be used to propose mechanisms by which damage within the joint may initiate. Patients & Methods. Twelve subject-specific FE models (Abaqus 6.11) of three normal healthy subjects were created by combining geometry (3T T1-weighted MRI scans processed using Mimics 13.0, Geomagic Studio 11, and SolidWorks 2010) and load cases (Vicon and AMTI motion analysis data processed within AnyBody Technology Version 3.0 and Matlab R2007a). Model geometry included the femur and tibia (rigid bodies), tibial cartilage and femoral cartilage (E = 12 MPa, ν = 0.45), and menisci (E. circumferential. = 120 MPa, ν. circumferential. = 0.2; E. axial/radial. = 20 MPa, ν. axial/radial. = 0.3). The tibia was held fixed while loads were applied to the centre of mass of the femur. Frictional contact (µ = 0.02) was modelled between soft tissues. Of the twelve models, six were of extended knees and six were of mid-range flexed (∼50°) knees. Each of these six models represented a paired set: a “normal” model and an “increased-load” model. In the flexed knee “increased-load” models, loads were doubled; in the extended knee “increased-load” models, loads were increased to a standard 2000 N compressive load across the joint (approximately three to four times larger than the original loads). Maximum displacements, von Mises stresses, and contact pressures on the articulating tibial cartilage and femoral cartilage surfaces were calculated; results of the “normal” and “increased-load” models were compared. Results. Increasing the applied loads increased the maximum displacements, von Mises stresses, and contact pressures. Contact shifted anteriorly in the extended knee models to typical locations of medial OA cartilage lesions. No contact shift occurred in the flexed knee models; contact remained in typical locations of lateral OA cartilage lesions, but the contact area extended in all directions, and displacements, stresses, and pressures increased. Discussion/Conclusion. Comparing the “normal” and “increased-load” results suggested two potential mechanical mechanisms involved in osteoarthritic cartilage lesion development. Contact shifted to areas of previously-unloaded cartilage in the extended knee “increased-load” models. Cartilage has regional material properties, with stiffer cartilage in areas of frequent contact and loading; shifting contact to areas of less-stiff cartilage could damage the cartilage and lead to degenerative diseases such as OA. Contact did not shift in the flexed knee “increased-load” models. Instead, the displacements, stresses, and pressures increased while the centres of contact remained relatively stationary. If these contact variables increase beyond a threshold magnitude, the cartilage could be damaged, potentially leading to OA


The Bone & Joint Journal
Vol. 96-B, Issue 3 | Pages 360 - 365
1 Mar 2014
Zheng GQ Zhang YG Chen JY Wang Y

Few studies have examined the order in which a spinal osteotomy and total hip replacement (THR) are to be performed for patients with ankylosing spondylitis. We have retrospectively reviewed 28 consecutive patients with ankylosing spondylitis who underwent both a spinal osteotomy and a THR from September 2004 to November 2012. In the cohort 22 patients had a spinal osteotomy before a THR (group 1), and six patients had a THR before a spinal osteotomy (group 2). The mean duration of follow-up was 3.5 years (2 to 9). The spinal sagittal Cobb angle of the vertebral osteotomy segment was corrected from a pre-operative kyphosis angle of 32.4 (SD 15.5°) to a post-operative lordosis 29.6 (SD 11.2°) (p < 0.001). Significant improvements in pain, function and range of movement were observed following THR. In group 2, two of six patients had an early anterior dislocation. The spinal osteotomy was performed two weeks after the THR. At follow-up, no hip has required revision in either group. Although this non-comparative study only involved a small number of patients, given our experience, we believe a spinal osteotomy should be performed prior to a THR, unless the deformity is so severe that the procedure cannot be performed.

Cite this article: Bone Joint J 2014;96-B:360–5.


The Bone & Joint Journal
Vol. 95-B, Issue 11_Supple_A | Pages 41 - 45
1 Nov 2013
Zywiel MG Mont MA Callaghan JJ Clohisy JC Kosashvili Y Backstein D Gross AE

Down’s syndrome is associated with a number of musculoskeletal abnormalities, some of which predispose patients to early symptomatic arthritis of the hip. The purpose of the present study was to review the general and hip-specific factors potentially compromising total hip replacement (THR) in patients with Down’s syndrome, as well as to summarise both the surgical techniques that may anticipate the potential adverse impact of these factors and the clinical results reported to date. A search of the literature was performed, and the findings further informed by the authors’ clinical experience, as well as that of the hip replacement in Down Syndrome study group. The general factors identified include a high incidence of ligamentous laxity, as well as associated muscle hypotonia and gait abnormalities. Hip-specific factors include: a high incidence of hip dysplasia, as well as a number of other acetabular, femoral and combined femoroacetabular anatomical variations. Four studies encompassing 42 hips, which reported the clinical outcomes of THR in patients with Down’s syndrome, were identified. All patients were successfully treated with standard acetabular and femoral components. The use of supplementary acetabular screw fixation to enhance component stability was frequently reported. The use of constrained liners to treat intra-operative instability occurred in eight hips. Survival rates of between 81% and 100% at a mean follow-up of 105 months (6 to 292) are encouraging. Overall, while THR in patients with Down’s syndrome does present some unique challenges, the overall clinical results are good, providing these patients with reliable pain relief and good function.

Cite this article: Bone Joint J 2013;95-B, Supple A:41–5.


The Bone & Joint Journal
Vol. 95-B, Issue 2 | Pages 192 - 198
1 Feb 2013
Ackman J Altiok H Flanagan A Peer M Graf A Krzak J Hassani S Eastwood D Harris GF

Van Nes rotationplasty may be used for patients with congenital proximal focal femoral deficiency (PFFD). The lower limb is rotated to use the ankle and foot as a functional knee joint within a prosthesis. A small series of cases was investigated to determine the long-term outcome. At a mean of 21.5 years (11 to 45) after their rotationplasty, a total of 12 prosthetic patients completed the Short-Form (SF)-36, Faces Pain Scale-Revised, Harris hip score, Oswestry back pain score and Prosthetic Evaluation Questionnaires, as did 12 age- and gender-matched normal control participants. A physical examination and gait analysis, computerised dynamic posturography (CDP), and timed ‘Up & Go’ testing was also completed. Wilcoxon Signed rank test was used to compare each PFFD patient with a matched control participant with false discovery rate of 5%.

There were no differences between the groups in overall health and well-being on the SF-36. Significant differences were seen in gait parameters in the PFFD group. Using CDP, the PFFD group had reduced symmetry in stance, and reduced end point and maximum excursions.

Patients who had undergone Van Nes rotationplasty had a high level of function and quality of life at long-term follow-up, but presented with significant differences in gait and posture compared with the control group.

Cite this article: Bone Joint J 2013;95-B:192–8.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XXIX | Pages 72 - 72
1 Jul 2012
Metcalfe A Stewart C Postans N Barlow D Whatling G Holt C Roberts A
Full Access

Introduction. Patients with knee osteoarthritis frequently complain that they develop pain in other joints due to over-loading during gait. However, there have been no previous studies examining the effect of knee arthritis on the other weight bearing joints. The aim of this study was to examine the loading of the hips and contra-lateral knee during gait in a cohort of patients pre- and post knee replacement. Methods. Twenty patients with single joint osteoarthritis awaiting knee replacement and 20 healthy volunteers were recruited. Gait analysis during level gait and at self selected speed was performed using a 12 camera Vicon motion analysis system. The ground reaction force was collected using EMG electrodes attached to the medial and lateral hamstrings and quadriceps bilaterally. Patients were invited to return 12 months post-operatively. Data was analysed using the Vicon plug-in-gait model and statistical testing was performed with SPSS v16.0 using ANCOVA to account for gait speed. Results. The mean age of the patients was 69 (range 53-82) and the controls was 70 (range 60-83). Mid-stance moments and knee adduction impulses were elevated at both hips and both knees in patients compared to normal individuals (Impulses: OA Knee=1.87Nms; opposite knee=1.46Nms; controls=0.86Nms; p<0.01) whilst peak moments were not significantly different. Muscular co-contraction was elevated in both knees compared to normal (p<0.01). Ten patients returned for follow up. Correction of varus resulted in improvements in moments at the replaced knee however recovery of moments in the other joints was variable and dependant on alignment, gait speed and their ability to mobilise their centre of mass. Conclusion. Patients with single joint knee osteoarthritis have abnormal loading of both knees and both hips, potentially leading to further disease and disability. Recovery following knee replacement is variable and dependant on limb alignment and the patient's functional recovery


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_II | Pages 224 - 224
1 May 2009
Haverstock J Dunbar M Hennigar A Leahey L Halifax N
Full Access

The purpose of this study was to assess the effect of total knee arthroplasty (TKA) on the gait symmetry of patients suffering from osteoarthritis. TKA is an effective method of relieving pain and restoring function but many established outcome measures are subjective and based on patient self-report. This study used clinical gait analysis with the Walkabout Portable Gait MonitorTM (WPGM) to describe pre and post-operative function in a more objective manner. The WPGM is a tri-axial arrangement of accelerometers that a subject wears around the waist, approximating the position of the center of mass (COM). Twenty-one TKA patients underwent a standardised WPGM assessment (a walk at a self-selected speed along a 50m hospital corridor) and completed the WOMAC and SF-36 subjective questionnaires preoperatively and three years after surgery. Data was recorded at 200 Hz for approximately twenty to twenty-five seconds. Automated Fast Fourier transformations (FFT) of the displacement data in three axes yields data on the ‘repeating irregularities’ that result from musculoskeletal injury or compensatory mechanisms and provides three clinically significant ratios Surge (asymmetry in the gait cycle in the forward direction), Lurch (side to side displacements that becomes asymmetrical with unilateral pathology) and Functional Leg Length Difference (FLLD) (asymmetry in vertical displacement during the gait cycle). Paired t-tests show that mean Surge (p< 0.006), FLLD (p< 0.0001) and Lurch (p< 0.008) were reduced following TKA for treatment of osteoarthritis. This is evidence that the asymmetry of gait was successfully reduced and subsequently overall gait was improved following surgical intervention. Patients’ WOMAC and SF-36 questionnaires showed significant improvements in patient pain, stiffness and physical function post-operatively (p’s< 0.01). Advantages of using the WPGM in addition to standard patient self-report questionnaires include the ease of testing, quick analysis and ability to detect musculo-skeletal health changes that might otherwise be masked by extraneous variables. A small subset of patients did not realise significant improvement in gait parameters post-operatively. On closer inspection, these patients had near normal gait patterns pre-operatively. This suggests the WPGM has great potential for objectively prioritizing patients waiting for TKA and assessing post-operative outcome