Advertisement for orthosearch.org.uk
Results 1 - 20 of 31
Results per page:
Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 35 - 35
17 Apr 2023
Afzal T Jones A Williams S
Full Access

Cam-type femoroacetabular impingement is caused by bone excess on the femoral neck abutting the acetabular rim. This can cause cartilage and labral damage due to increased contact pressure as the cam moves into the acetabulum. However, the damage mechanism and the influence of individual mechanical factors (such as sliding distance) are poorly understood. The aim of this study was to identify the cam sliding distance during impingement for different activities in the hip joint. Motion data for 12 different motion activities from 18 subjects, were applied to a hip shape model (selected as most likely to cause damage, anteriorly positioned with a maximum alpha angle of 80°). The model comprised of a pointwise representation of the acetabular rim and points on the femoral head and neck where the shape deviated from a sphere (software:Matlab). The movement of each femoral point was tracked in 3D while an activity motion was applied, and impingement recorded when overlap between a cam point and the acetabular rim occurred. Sliding distance was recorded during impingement for each relevant femoral point. Angular sliding distances varied for different activities. The highest mean (±SD) sliding distance was for leg-crossing (42.62±17.96mm) and lowest the trailing hip in golf swing (2.17±1.11mm). The high standard deviation in the leg crossing sliding distances, indicates subjects may perform this activity in a different manner. This study quantified sliding distance during cam impingement for different activities. This is an important parameter for determining how much the hip moves during activities that may cause damage and will provide information for future experimental studies


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Bone & Joint Open
Vol. 3, Issue 7 | Pages 557 - 565
11 Jul 2022
Meier MK Reche J Schmaranzer F von Tengg-Kobligk H Steppacher SD Tannast M Novais EN Lerch TD

Aims

The frequency of severe femoral retroversion is unclear in patients with femoroacetabular impingement (FAI). This study aimed to investigate mean femoral version (FV), the frequency of absolute femoral retroversion, and the combination of decreased FV and acetabular retroversion (AR) in symptomatic patients with FAI subtypes.

Methods

A retrospective institutional review board-approved observational study was performed with 333 symptomatic patients (384 hips) with hip pain due to FAI evaluated for hip preservation surgery. Overall, 142 patients (165 hips) had cam-type FAI, while 118 patients (137 hips) had mixed-type FAI. The allocation to each subgroup was based on reference values calculated on anteroposterior radiographs. CT/MRI-based measurement of FV (Murphy method) and AV were retrospectively compared among five FAI subgroups. Frequency of decreased FV < 10°, severely decreased FV < 5°, and absolute femoral retroversion (FV < 0°) was analyzed.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_5 | Pages 32 - 32
1 Jul 2020
Horga L Henckel J Fotiadou A Laura AD Hirschmann A Hart A
Full Access

Background. Over 30 million people run marathons annually. The impact of marathon running on hips is unclear with existing literature being extremely limited (only one study of 8 runners). Aim and Objectives. We aimed to better understand the effect of marathon running on the pelvis and hip joints by designing the largest MRI study of asymptomatic volunteers. The objectives were to evaluate the pelvis and both hip joints before and after a marathon. Materials and Methods. This was a prospective cohort study, Fig.1. We recruited 44 asymptomatic volunteers who were registered for the Richmond Marathon. They were divided into novice and experienced marathoners, Fig.2. All volunteers underwent 3T MRI of pelvis and hips with Dixon sequences 4 months before, and within 2 months after the marathon. Outcome measures were: 1. change in radiological score of each hip joint structure and muscle from the pre- to the post-marathon MRI; 2. change in the self-reported hip function questionnaire score (HOOS) between the two timepoints. Results Pre-marathon, Asymptomatic novice marathoners' hips showed few joint abnormalities (cartilage, bone marrow, labrum), while minimal fatty muscle atrophy of the abductors and CAM-type hip impingement were common (68%; 34%, respectively). Experienced marathoners had no cartilage lesions and slightly lower prevalences of abnormalities than novice runners. Post-marathon, Hip joint cartilage, bone edema and labrum did not worsen in neither novice nor experienced marathoners. Abductor muscles were unaffected post-marathon. Self-reported hip outcomes were not significantly different after the run for both groups. Conclusion. This is the largest MRI study of long-distance runners. We showed that marathon running has no negative impact on the pelvis and hip joints. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_6 | Pages 48 - 48
1 Jul 2020
Ng G Daou HE Bankes M y Baena FR Jeffers J
Full Access

Surgical management of cam-type femoroacetabular impingement (FAI) aims to preserve the native hip, restore joint function, and delay the onset of osteoarthritis. However, it is unclear how surgery affects joint mechanics and hip joint stability. The aim was to examine the contributions of each surgical stage (i.e., intact cam hip, capsulotomy, cam resection, capsular repair) towards hip joint centre of rotation and microinstability. Twelve fresh, frozen cadaveric hips (n = 12 males, age = 44 ± 9 years, BMI = 23 ± 3 kg/m2) were skeletonized to the capsule and included in this study. All hips indicated cam morphology on CT data (axial α = 63 ± 6°, radial α = 74 ± 4°) and were mounted onto a six-DOF industrial robot (TX90, Stäubli). The robot positioned each hip in four sagittal angles: 1) Extension, 2) Neutral 0°, 3) Flexion 30°, and 4) Flexion 90°, and performed internal and external hip rotations until a 5-Nm torque was reached in each direction, while recording the hip joint centre's neutral path of translation. After the (i) intact hip was tested, each hip underwent a series of surgical stages and was retested after each stage: (ii) T-capsulotomy (incised lateral iliofemoral capsular ligament), (iii) cam resection (removed morphology), and (iv) capsular repair (sutured portal incisions). Eccentricity of the hip joint centre was quantified by the microinstability index (MI = difference in rotational foci / femoral head radius). Repeated measures ANOVA and post-hoc paired t-tests compared the within-subject differences in hip joint centre and microinstability index, between the testing stages (CI = 95%, SPSS v.24, IBM). At the Extension and Neutral positions, the hip joint centre rotated concentrically after each surgical stage. At Flexion 30°, the hip joint centre shifted inferolaterally during external rotation after capsulotomy (p = 0.009), while at Flexion 90°, the hip joint centre further shifted inferolaterally during external rotation (p = 0.005) and slightly medially during internal rotation after cam resection, compared to the intact stages. Consequently, microinstability increased after the capsulotomy at Flexion 30° (MI = +0.05, p = 0.003) and substantially after cam resection at Flexion 90° (MI = +0.07, p = 0.007). Capsular repair was able to slightly restrain the rotational centre and decrease microinstability at the Flexion 30° and 90° positions (MI = −0.03 and −0.04, respectively). Hip microinstability occurred at higher amplitudes of flexion, with the cam resection providing more intracapsular volume and further lateralizing the hip joint during external rotation. Removing the cam deformity and impingement with the chondrolabral junction also medialized the hip during internal rotation, which can restore more favourable joint loading mechanics and stability. These findings support the pathomechanics of cam FAI and suggest that iatrogenic microinstability may be due to excessive motions, prior to post-operative restoration of static (capsular) and dynamic (muscle) stability. In efforts to limit microinstability, proper nonsurgical management and rehabilitation are essential, while activities that involve larger amplitudes of hip flexion and external rotation should be avoided immediately after surgery


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 117 - 117
1 Nov 2018
Catelli D Ng K Kowalski E Beaulé P Lamontagne M
Full Access

Cam-type femoroacetabular impingement (FAI) is a common cause for athletic hip injury and early hip osteoarthritis. Although corrective cam FAI surgery can improve patient reported outcome measures (PROMs), it is not clear how surgery affects muscle forces and hip joint loading. Surgery for FAI may redistribute muscle forces and contact forces at the hip joint during routine activities. The purpose of this study was to examine the muscle contributions and hip contact forces during gait in patients prior and after two years of undergoing surgery for cam FAI. Kinematics and kinetics were recorded in 11 patients with symptomatic cam FAI as they completed a gait task. Muscle and hip contact forces during the stance phase were estimated using musculoskeletal modelling and static optimization in OpenSim. All patients reported improvements in PROMs. Post-operatively, patients showed reduced forces in the long head of the biceps femoris at ipsilateral foot-strike and in the rectus femoris at the contralateral foot-strike. The reduced muscle forces decreased sagittal hip moment but did not change hip contact forces. This was the first study to evaluate hip muscle and contact forces in FAI patients post-operatively. Although hip contact forces are not altered following surgery, muscle forces are decreased even after two years. These findings can provide guidance in optimizing recovery protocols after FAI surgery to improve hip flexor and extensor muscle forces


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 831 - 838
1 Jul 2018
Ibrahim MM Poitras S Bunting AC Sandoval E Beaulé PE

Aims

What represents clinically significant acetabular undercoverage in patients with symptomatic cam-type femoroacetabular impingement (FAI) remains controversial. The aim of this study was to examine the influence of the degree of acetabular coverage on the functional outcome of patients treated arthroscopically for cam-type FAI.

Patients and Methods

Between October 2005 and June 2016, 88 patients (97 hips) underwent arthroscopic cam resection and concomitant labral debridement and/or refixation. There were 57 male and 31 female patients with a mean age of 31.0 years (17.0 to 48.5) and a mean body mass index (BMI) of 25.4 kg/m2 (18.9 to 34.9). We used the Hip2Norm, an object-oriented-platform program, to perform 3D analysis of hip joint morphology using 2D anteroposterior pelvic radiographs. The lateral centre-edge angle, anterior coverage, posterior coverage, total femoral coverage, and alpha angle were measured for each hip. The presence or absence of crossover sign, posterior wall sign, and the value of acetabular retroversion index were identified automatically by Hip2Norm. Patient-reported outcome scores were collected preoperatively and at final follow-up with the Hip Disability and Osteoarthritis Outcome Score (HOOS).


Bone & Joint Research
Vol. 7, Issue 5 | Pages 336 - 342
1 May 2018
Hotham WE Malviya A

This systematic review examines the current literature regarding surgical techniques for restoring articular cartilage in the hip, from the older microfracture techniques involving perforation to the subchondral bone, to adaptations of this technique using nanofractures and scaffolds. This review discusses the autologous and allograft transfer systems and the autologous matrix-induced chondrogenesis (AMIC) technique, as well as a summary of the previously discussed techniques, which could become common practice for restoring articular cartilage, thus reducing the need for total hip arthroplasty. Using the British Medical Journal Grading of Recommendations, Assessment, Development and Evaluation (BMJ GRADE) system and Grade system. Comparison of the studies discussed shows that microfracture has the greatest quantity and quality of research, whereas the newer AMIC technique requires more research, but shows promise.

Cite this article: W. E. Hotham, A. Malviya. A systematic review of surgical methods to restore articular cartilage in the hip. Bone Joint Res 2018;7:336–342. DOI: 10.1302/2046-3758.75.BJR-2017-0331.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 82 - 82
1 Jan 2018
Masri B Zhang H Gilbart M Wilson D
Full Access

Cam-type femoroacetabular impingement (cam-FAI) can be treated with femoral neck osteochondroplasty to increase the clearance between the femoral head/neck and the acetabular rim. Because femur-acetabulum contact is very difficult to assess directly in patients, it is not clear if this surgery achieves its objective of reducing femur-acetabulum contact, and it is not clear how much of the femoral head/neck region should be resected to allow clearance in all activities. Our research question was: “Does femoral neck osteochondroplasty increase femur-acetabulum clearance in an extreme hip posture in patients with cam FAI?”. We recruited 8 consecutive patients scheduled to undergo arthroscopic femoral neck osteochondroplasty to treat cam-type FAI. We assessed clearance between the acetabulum and the femoral neck before surgery and at 6 months post-op using an upright open MRI scanner that allowed the hip to be scanned in flexed postures. We scanned each subject in a supine hip flexion (90 degree), adduction and internal rotation (FADIR) posture. We measured the beta angle, which describes clearance between the acetabular rim and the femoral head/neck deformity. Osteochondroplasty increased clearance from a mean beta angle of −9.4 degrees (SD 19.3) to 4.4 degrees (SD 16.2°) (p<0.05). This finding suggests that femoral neck osteochondroplasty increases femur-acetabulum clearance substantially for a posture widely accepted to provoke symptoms in patients with cam-FAI


The Bone & Joint Journal
Vol. 99-B, Issue 4_Supple_B | Pages 41 - 48
1 Apr 2017
Fernquest S Arnold C Palmer A Broomfield J Denton J Taylor A Glyn-Jones S

Aims

The aim of this study was to examine the real time in vivo kinematics of the hip in patients with cam-type femoroacetabular impingement (FAI).

Patients and Methods

A total of 50 patients (83 hips) underwent 4D dynamic CT scanning of the hip, producing real time osseous models of the pelvis and femur being moved through flexion, adduction, and internal rotation. The location and size of the cam deformity and its relationship to the angle of flexion of the hip and pelvic tilt, and the position of impingement were recorded.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 102 - 102
1 Nov 2016
Beaulé P Anwander H Gerd M Rakhra K Mistry M
Full Access

Cam-type femoral acetabular impingement (FAI), is a common structural hip deformity and thought to be a leading cause of early hip osteoarthritis. Although patients who undergo surgical correction notice improved clinical function it is unclear what impact this has on the overall health of the cartilage. T1rho MRI cartilage mapping has been shown to be a reliable imaging technique to assess the proteoglycan (PG) content potentially serving as a biomarker. This study analyses post surgical changes in T1rho levels in hip joints treated with cam FAI. Eleven patients with a mean age of 38 (all males) underwent pre and post T1Rho Cartilage mapping of their hips at a mean time of 20 months post surgical intervention. The acetabulum was spatially divided into 4 main regions of interest (ROI), with levels of T1Rho in cartilage quantified as a whole and in each spatial segment. T1Rho signal is inversely correlated with level of PG content. All patients demonstrated loss of PG content on pre-op imaging with a T1Rho of 33.5ms+2.6ms. Preop T1rho levels were found to significantly correlated with the difference between pre-op and post-op T1rho in entire hip cartilage (R: 0.73; p=0.016). This correlation was reflected both in the anterolateral quadrant (R: 0.86; p=0.002), and in the posteriosuperior quadrant (R:0.70; p=0.035). Additionally, significant correlation was found between improvement of WOMAC pain score over time, and difference of T1rho values over time in the most lateral 3mm slice of the anterolateral quadrant (R: 0.81; p=0.045). Significant correlation was found between pre-op alpha angle at 1:30 and difference between pre-op and post-op total cartilage T1rho content (R: −065;p=0.038). T1Rho Cartilage mapping of the hip is a useful biomarker in the assessment of the surgical management of Cam type FAI. This preliminary data provides some evidence that surgical correction of the deformity can help minimise disease progression


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 10 - 13
1 Jan 2016
Brooks PJ

Hip resurfacing has been proposed as an alternative to traditional total hip arthroplasty in young, active patients. Much has been learned following the introduction of metal-on-metal resurfacing devices in the 1990s. The triad of a well-designed device, implanted accurately, in the correct patient has never been more critical than with these implants.

Following Food and Drug Administration approval in 2006, we studied the safety and effectiveness of one hip resurfacing device (Birmingham Hip Resurfacing) at our hospital in a large, single-surgeon series. We report our early to mid–term results in 1333 cases followed for a mean of 4.3 years (2 to 5.7) using a prospective, observational registry. The mean patient age was 53.1 years (12 to 84); 70% were male and 91% had osteoarthritis. Complications were few, including no dislocations, no femoral component loosening, two femoral neck fractures (0.15%), one socket loosening (0.08%), three deep infections (0.23%), and three cases of metallosis (0.23%). There were no destructive pseudotumours.

Overall survivorship at up to 5.7 years was 99.2%. Aseptic survivorship in males under the age of 50 was 100%. We believe this is the largest United States series of a single surgeon using a single resurfacing system.

Cite this article: Bone Joint J 2016;98-B (1 Suppl A):10–13.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 181 - 181
1 Jul 2014
Speirs A Frei H Lamontagne M Beaule P
Full Access

Summary. The cartilage layer from cam-type femoroacetabular impingement deformities had lower stiffness and increased permeability compared to normal cartilage. This is consistent with osteoarthritis and supports the hypothesis of abnormal contact stresses. Introduction. Femoroacetabular impingement (FAI) has recently been associated with osteoarthritic (OA) degeneration of the hip and may be responsible for up to 90% of adult idiopathic OA cases. FAI results from deformities in the hip joint which may lead to abnormal contact stresses and degeneration. The more common cam-type deformity consists of a convex anterior femoral head-neck junction which impinges the anterosuperior acetabular rim during flexion and internal rotation of the hip. Increased subchondral bone density has been reported in this region which may be a bone remodelling response to increased contact stress. The abnormal contact is expected to cause degeneration of the cartilage layer. The goal of this study was to assess the mechanical properties of cartilage retrieved from the cam deformity and to compare this with normal articular cartilage from the femoral head. It is hypothesised that the cartilage will have a lower elastic modulus and higher permeability than normal cartilage. Patients & Methods. Osteochondral biopsies were retrieved from nine patients undergoing surgical correction of a symptomatic cam deformity as well as 10 fresh cadaveric specimens (10 hips, 6 donors). An indentation stress relaxation test was performed on each specimen to 10% of the estimated cartilage thickness. A needle penetration test was performed to accurately measure the thickness. The equilibrium modulus was calculated per Hayes et al. A specimen-specific axisymmetric finite element model was used in a non-linear optimization to obtain the fibril-reinforced poroelastic properties of the cartilage that best fit the experimental data. The material properties were non-fibrillar modulus (E. s. ), Poisson's ratio (ν. s. ) and permeability (k) and strain-independent and –dependent moduli (E. 0. , E. ε. )[4]. Results. The equilibrium modulus was 0.14 MPa and 0.63 from surgical and cadaver specimens, respectively (p=0.002). Compared to cadaver specimens, E. s. in surgical specimens was 73% lower (p=0.01), ν. s. was 43% lower (p=0.01) and k was an order of magnitude higher (p=0.02). Fibril moduli were not significantly different (p>0.35). Discussion/Conclusions. This study showed decreased elastic modulus and increased permeability in cartilage from cam deformities compared to cadaver controls. These differences are consistent with changes expected in osteoarthritic cartilage degeneration. Fibril moduli were 14% to 57% lower in surgical specimens consistent with fibrillation, however results were not significant due to high variability. Altered cellular activity and proteoglycan depletion has been reported in cartilage of cam deformities, which are similar to changes expected in osteoarthritis. The altered mechanical and biochemical properties of this cartilage therefore support the hypothesis that osteoarthritis is secondary to cam FAI deformities and is a result of abnormal contact stresses between the deformity and acetabular rim


The Bone & Joint Journal
Vol. 96-B, Issue 6 | Pages 724 - 729
1 Jun 2014
Murgier J Reina N Cavaignac E Espié A Bayle-Iniguez X Chiron P

Slipped upper femoral epiphysis (SUFE) is one of the known causes of cam-type femoroacetabular impingement (FAI). The aim of this study was to determine the proportion of FAI cases considered to be secondary to SUFE-like deformities. . We performed a case–control study on 96 hips (75 patients: mean age 38 years (15.4 to 63.5)) that had been surgically treated for FAI between July 2005 and May 2011. Three independent observers measured the lateral view head–neck index (LVHNI) to detect any SUFE-like deformity on lateral hip radiographs taken in 45° flexion, 45° abduction and 30° external rotation. A control group of 108 healthy hips in 54 patients was included for comparison (mean age 36.5 years (24.3 to 53.9). The impingement group had a mean LVHNI of 7.6% (16.7% to -2%) versus 3.2% in the control group (10.8% to -3%) (p < 0.001). A total of 42 hips (43.7%) had an index value > 9% in the impingement group versus only six hips (5.5%) in the control group (p < 0.001). The impingement group had a mean α angle of 73.9° (96.2° to 53.4°) versus 48.2° (65° to 37°) in the control group (p < 0.001). Our results suggest that SUFE is one of the primary aetiological factors for cam-type FAI. Cite this article: Bone Joint J 2014; 96-B:724–9


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 449 - 454
1 Apr 2014
Laborie LB Lehmann TG Engesæter IØ Sera F Engesæter LB Rosendahl K

We report on gender-specific reference intervals of the alpha angle and its association with other qualitative cam-type findings in femoroacetabular impingement at the hip, according to a population-based cohort of 2038 19-year-olds, 1186 of which were women (58%). The alpha angle was measured on standardised frog-leg lateral and anteroposterior (AP) views using digital measurement software, and qualitative cam-type findings were assessed subjectively on both views by independent observers. In all, 2005 participants (837 men, 1168 women, mean age 18.6 years (17.2 to 20.1) were included in the analysis. For the frog-leg view, the mean alpha angle (right hip) was 47° (26 to 79) in men and 42° (29 to 76) in women, with 97.5 percentiles of 68° and 56°, respectively. For the AP view, the mean values were 62° (40 to 105) and 52° (36 to 103) for men and women, respectively, with 97.5 percentiles of 93° and 94°. Associations between higher alpha angles and all qualitative cam-type findings were seen for both genders on both views. The reference intervals presented for the alpha angle in this cross-sectional study are wide, especially for the AP view, with higher mean values for men than women on both views.

Cite this article: Bone Joint J 2014;96-B:449–54.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_28 | Pages 11 - 11
1 Aug 2013
Kooyman J Hodgson A
Full Access

Introduction. Bracing, a strategy employed by humans and robotic devices, can be generally described as a parallel mechanical link between the actor, the environment, and/or the workpiece that alters the mechanical impedance between the tool and workpiece in order to improve task performance. In this study we investigated the potential value of bracing in the context of bone milling to treat cam-type femoroacetabular impingement (FAI) lesions. The goal of this study was to evaluate whether a proposed bracing technique could enable a user to perform a cam resection more accurately and quickly than a currently employed arthroscopic technique. Materials/Methods. Test samples consisted of white urethane plastic reproductions of a commercially available adult proximal femur, which were laser scanned to obtain ground-truth surface information. A black cam lesion was then cast onto the surface of the femur in the anterosuperior region of the femoral neck, creating a clear visual resection boundary for the simulated osteochondroplasty. Test subjects were 4 adult males (25 +/− 3 years) with no surgical experience. Test conditions included two binary factors: (1) Braced vs. Unbraced – The braced case introduced a spherical bearing tool support mounted in the approximate anterolateral arthroscopic portal position. (2) Speed vs. Accuracy – The subject was instructed to perform the resection as quickly as possible or as accurately as possible with a moderate regard for time. Following the removal of the lesion, femurs were laser scanned to acquire the post-resection surface geometry, with accuracy being reported as RMS deviation between the pre- and post-resection scans over the anterosuperior neck region. Results. In both accuracy and speed cases, bracing tended to reduce errors (on the order of 7–14%) and task duration (on the order of 32–52%), although given the small number of subjects in this pilot study, these differences were not statistically significant. Conclusion. These results provide some encouragement that our hypothesis that bracing can improve both speed and accuracy of cam lesion resection by untrained subjects may be true. The standard deviations between subjects are high and are likely due to both the difficulty of the task and differences in experience using handheld power tools, so additional subjects would be needed to verify the trends identified here


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 11 | Pages 1487 - 1493
1 Nov 2012
Wensaas A Gunderson RB Svenningsen S Terjesen T

Deformity after slipped upper femoral epiphysis (SUFE) can cause cam-type femoroacetabular impingement (FAI) and subsequent osteoarthritis (OA). However, there is little information regarding the radiological assessment and clinical consequences at long-term follow-up. We reviewed 36 patients (43 hips) previously treated by in situ fixation for SUFE with a mean follow-up of 37 years (21 to 50). Three observers measured the femoral head ratio (FHR), lateral femoral head ratio (LFHR), α-angle on anteroposterior (AP) and frog-leg lateral views, and anterior femoral head–neck offset ratio (OSR). A Harris hip score < 85 and/or radiologically diagnosed osteoarthritis (OA) was classified as a poor outcome. Patients with SUFE had significantly higher FHR, LFHR and α-angles and lower OSR than a control group of 22 subjects (35 hips) with radiologically normal hips. The interobserver agreement was less, with wider limits of agreement (LOA), in hips with previous SUFE than the control group. At long-term follow-up abnormal α-angles correlated with poor outcome, whereas FHR, LFHR and OSR did not. We conclude that persistent deformity with radiological cam FAI after SUFE is associated with poorer clinical and radiological long-term outcome. Although the radiological measurements had quite wide limits of agreement, they are useful for the diagnosis of post-slip deformities in clinical practice


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 9 | Pages 1187 - 1192
1 Sep 2012
Rakhra KS Lattanzio P Cárdenas-Blanco A Cameron IG Beaulé PE

Advanced MRI cartilage imaging such as T1-rho (T1ρ) for the diagnosis of early cartilage degradation prior to morpholgic radiological changes may provide prognostic information in the management of joint disease. This study aimed first to determine the normal T1ρ profile of cartilage within the hip, and secondly to identify any differences in T1ρ profile between the normal and symptomatic femoroacetabular impingement (FAI) hip. Ten patients with cam-type FAI (seven male and three female, mean age 35.9 years (28 to 48)) and ten control patients (four male and six female, mean age 30.6 years (22 to 35)) underwent 1.5T T1ρ MRI of a single hip. Mean T1ρ relaxation times for full thickness and each of the three equal cartilage thickness layers were calculated and compared between the groups. The mean T1ρ relaxation times for full cartilage thickness of control and FAI hips were similar (37.17 ms (sd 9.95) and 36.71 ms (sd 6.72), respectively). The control group demonstrated a T1ρ value trend, increasing from deep to superficial cartilage layers, with the middle third having significantly greater T1ρ relaxation values than the deepest third (p = 0.008). The FAI group demonstrated loss of this trend. The deepest third in the FAI group demonstrated greater T1ρ relaxation values than controls (p = 0.028).

These results suggest that 1.5T T1ρ MRI can detect acetabular hyaline cartilage changes in patients with FAI.


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 5 | Pages 624 - 629
1 May 2012
Audenaert E Smet B Pattyn C Khanduja V

The aim of this study was to determine the accuracy of registration and the precision of the resection volume in navigated hip arthroscopy for cam-type femoroacetabular impingement, using imageless and image-based registration. A virtual cam lesion was defined in 12 paired cadaver hips and randomly assigned to either imageless or image-based (three-dimensional (3D) fluoroscopy) navigated arthroscopic head–neck osteochondroplasty. The accuracy of patient–image registration for both protocols was evaluated and post-operative imaging was performed to evaluate the accuracy of the surgical resection. We found that the estimated accuracy of imageless registration in the arthroscopic setting was poor, with a mean error of 5.6 mm (standard deviation (. sd. ) 4.08; 95% confidence interval (CI) 4.14 to 7.19). Because of the significant mismatch between the actual position of the probe during surgery and the position of that probe as displayed on the navigation platform screen, navigated femoral osteochondroplasty was physically impossible. The estimated accuracy of image-based registration by means of 3D fluoroscopy had a mean error of 0.8 mm (. sd. 0.51; 95% CI 0.56 to 0.94). In terms of the volume of bony resection, a mean of 17% (. sd. 11; -6% to 28%) more bone was resected than with the virtual plan (p = 0.02). The resection was a mean of 1 mm deeper (. sd. 0.7; -0.3 to 1.6) larger than on the original virtual plan (p = 0.02). In conclusion, given the limited femoral surface that can be reached and digitised during arthroscopy of the hip, imageless registration is inaccurate and does not allow for reliable surgical navigation. However, image-based registration does acceptably allow for guided femoral osteochondroplasty in the arthroscopic management of femoroacetabular impingement


Bone & Joint 360
Vol. 1, Issue 2 | Pages 28 - 30
1 Apr 2012

The April 2012 Children’s orthopaedics Roundup360 looks at osteonecrosis of the femoral head and surgery for dysplasia, femoral head blood flow during surgery, femoroacetabular impingement and sport in adolescence, the Drehmann sign, a predictive algorithm for septic arthritis, ACL reconstruction and arthrofibrosis in children, spinal cord monitoring for those less than four years old, arthroereisis for the flexible flat foot, fixing the displaced lateral humeral fracture, and mobile phones and inclinometer applications