Advertisement for orthosearch.org.uk
Results 1 - 20 of 437
Results per page:

Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 40 - 46
1 May 2024
Massè A Giachino M Audisio A Donis A Giai Via R Secco DC Limone B Turchetto L Aprato A

Aims

Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach.

Methods

From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 19 - 19
23 Apr 2024
Guichet J Clementi D
Full Access

Introduction. Humans Functions (locomotion, protection of organs, reproduction) require a strong support system (bones). The ‘Osteostasis’ is the ability of maintaining the bone structure, its mechanical characteristics and function. Five principles are required for an efficient bone system:. Basic Requirements:. 1) Stability and 2) Function. Repair System (like house building in desert or sea):. 3) Roads (vessels), 4) Materials (calories, proteins), 5) Workers (bone cells). Analysis of bone problems through these principles bring to optimised treatments. Materials & Methods. Measurements (>700 lengthening, 32-year follow-up, Full WB Albizzia/G-Nails FWBAG): Bone-DEXA, WB conditions, muscle, fat, etc. Principle-1. Solid bone replacement with a 100% biocompatible and reliable FWBAG with sports (POD0). Principle-2. Bone, Muscle & neural integrity for function Principle-3. Vascular flow lesions induce non-healing (arteriography). Muscle activity accounts for 90% of bone blood flow, ×10 by sports. Required: Checks (arteriography) and treatments (training). Principle-4. Food (NRV Kcal × 2–3, 20–25% proteins). Principle-5. Maintain bone cells and increase them. Suppress ‘opening’, ‘venting’, ‘drainages’. Results. Principle1. Nail fracture (1.2%), nail dysfunction (0%) with FWBAG. Principle2. Intensive sports preop and from POD0 - Principle3. Increased preop vascular supply & muscle force, postop resistance sports fasten recovery. Wheel-chair or low activity decreases healing. Principle4. 6–9 cm circumference loss (non WB-nails or no proper training); 0 cm circumference loss (gain <10 cm) with intense resistance training + high calory intake. - Principle5. Bone cells preservation (no opening, IM saw, increasing bone cells) allow Healing Index down to 8D/cm. Conclusions. The ‘5P’ allow reaching treatment targets by optimisation of problem solving, maintaining Osteostasis. What would I like or tolerate for me? How can I reach it? Full WB and sports from POD0 was a target 38 years-ago, still not enforced by most of us. Resistance sports, high-calory intake suppress muscle loss and fasten healing, thanks to muscle blood flow and the ‘5P’


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 90 - 90
2 Jan 2024
Almeida A Miranda M Crowe L Akbar M Rodrigues M Millar N Gomes M
Full Access

MicroRNA (miR) delivery to regulate chronic inflammation hold extraordinary promise, with new therapeutic possibilities emanating from their ability to fine-tune multiple target gene regulation pathways which is an important factor in controlling aberrant inflammatory reactions in complex multifactorial disease. However, several hurdles have prevented advancements in miR-based therapies. These include off-target effects of miRs, limited trafficking, and inefficient delivery. We propose a magnetically guided nanocarrier to transport therapeutically relevant miRs to assist self- resolving inflammation processes at injury sites and reduce the impact of chronic inflammation- related diseases such as tendinopathies. The high prevalence, significant socio-economic burden and increasing recognition of dysregulated immune mediated pathways in tendon disease provide a compelling rationale for exploring inflammation-targeting strategies as novel treatments in this condition. By combining cationic polymers, miR species (e.g., miR 29a, miR155 antagonist), and magnetic nanoparticles in the form of magnetoplexes with highly efficient magnetofection procedures, we developed inexpensive, easy-to-fabricate, and biocompatible systems with competent miR-binding and fast cellular uptake into different types of human cells, namely macrophages and tendon-derived cells. The system was shown to be cell-compatible and to successfully modulate the expression and production of inflammatory markers in tendon cells, with evidence of functional pro-healing changes in immune cell phenotypes. Hence, magnetoplexes represent a simple, safe, and non-viral nanoplatform that enables contactless miR delivery and high- precision control to reprogram cell profiles toward improved pro-regenerative environments. Acknowledgements: ERC CoG MagTendon No.772817; FCT Doctoral Grant SFRD/BD/144816/2019, and TERM. RES Hub (Norte-01-0145-FEDER-022190)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 17 - 17
2 Jan 2024
Ramos-Díez S Camarero-Espinosa S
Full Access

Articular cartilage is a multi-zonal tissue that coats the epiphysis of long bones and avoids its wear during motion. An unusual friction could micro-fracture this connective membrane and progress into an osteochondral defect (OD), where the affected cartilage suffers inflammation, fibrillation, and forfeiture of its anisotropic structure. Clinical treatment for ODs has been focused on micro-fracture techniques, where the defect area is removed and small incisions are performed in the subchondral bone, which allows the exudation of mesenchymal stem cells (hMSCs) to the abraded zone. However, hMSCs represent less than 0.01% of the total cell population and are not able to self-organise coherently, so the treatments fail in the long term. To select, support and steer hMSCs from the bone marrow into a specific differentiation stage, and recreate the cartilage anisotropic microenvironment, multilayer dual-porosity 3D-printed scaffolds were developed. Dual-porosity scaffolds were printed using prepared inks, containing specific ratios of poly-(d,l)lactide-co-caprolactone copolymer and gelatine microspheres of different diameters, which acted as sacrificial micro-pore templates and were leached after printing. The cell adhesion capability was investigated showing an increased cell number in dual-porosity scaffolds as compared to non-porous ones. To mimic the stiffness of the three cartilage zones, several patterns were designed, printed, and checked by dynamic-mechanical analysis under compression at 37 ºC. Three patterns with specific formulations were chosen as candidates to recreate the mechanical properties of the cartilage layers. Differentiation studies in the selected scaffolds showed the formation of mature cartilage by gene expression, protein deposition and biomolecular analysis. Given the obtained results, designed scaffolds were able to guide hMSC behaviour. In conclusion, biocompatible, multilayer and dual-porosity scaffolds with cell entrapment capability were manufactured. These anisotropic scaffolds were able to recreate the physical microenvironment of the natural cartilage, which in turn stimulated cell differentiation and the formation of mature cartilage. Acknowledgments: This work was supported by the EMAKIKER grant


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 16 - 16
2 Jan 2024
Aydin M Luciani T Mohamed-Ahmed S Yassin M Mustafa K Rashad A
Full Access

The aim of this study is to print 3D polycaprolactone (PCL) scaffolds at high and low temperature (HT/LT) combined with salt leaching to induced porosity/larger pore size and improve material degradation without compromising cellular activity of printed scaffolds. PCL solutions with sodium chloride (NaCl) particles either directly printed in LT or were casted, dried, and printed in HT followed by washing in deionized water (DI) to leach out the salt. Micro-Computed tomography (Micro-CT) and scanning electron microscope (SEM) were performed for morphological analysis. The effect of the porosity on the mechanical properties and degradation was evaluated by a tensile test and etching with NaOH, respectively. To evaluate cellular responses, human bone marrow-derived mesenchymal stem/stromal cells (hBMSCs) were cultured on the scaffolds and their viability, attachment, morphology, proliferation, and osteogenic differentiation were assessed. Micro-CT and SEM analysis showed that porosity induced by the salt leaching increased with increasing the salt content in HT, however no change was observed in LT. Structure thickness reduced with elevating NaCl content. Mass loss of scaffolds dramatically increased with elevated porosity in HT. Dog bone-shaped specimens with induced porosity exhibited higher ductility and toughness but less strength and stiffness under the tension in HT whereas they showed decrease in all mechanical properties in LT. All scaffolds showed excellent cytocompatibility. Cells were able to attach on the surface of the scaffolds and grow up to 14 days. Microscopy images of the seeded scaffolds showed substantial increase in the formation of extracellular matrix (ECM) network and elongation of the cells. The study demonstrated the ability of combining 3D printing and particulate leaching together to fabricate porous PCL scaffolds. The scaffolds were successfully printed with various salt content without negatively affecting cell responses. Printing porous thermoplastic polymer could be of great importance for temporary biocompatible implants in bone tissue engineering applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 19 - 19
2 Jan 2024
Li R Zheng J Smith P Chen X
Full Access

Device-associated bacterial infections are a major and costly clinical challenge. This project aimed to develop a smart new biomaterial for implants that helps to protect against infection and inflammation, promote bone growth, and is biodegradable. Gallium (Ga) doped strontium-phosphate was coated on pure Magnesium (Mg) through a chemical conversion process. Mg was distributed in a graduated manner throughout the strontium-phosphate coating GaSrPO4, with a compact structure and a Ga-rich surface. We tested this sample for its biocompatibility, effects on bone remodeling and antibacterial activities including Staphylococcus aureus, S. epidermidis and E. coli - key strains causing infection and early failure of the surgical implantations in orthopaedics and trauma. Ga was distributed in a gradient way throughout the entire strontium-phosphate coating with a compact structure and a gallium-rich surface. The GaSrPO4 coating protected the underlying Mg from substantial degradation in minimal essential media at physiological conditions over 9 days. The liberated Ga ions from the coatings upon Mg specimens inhibited the growth of bacterial tested. The Ga dopants showed minimal interferences with the SrPO4 based coating, which boosted osteoblasts and undermined osteoclasts in in vitro co-cultures model. The results evidenced this new material may be further translated to preclinical trial in large animal model and towards clinical trial. Acknowledgements: Authors are grateful to the financial support from the Australian Research Council through the Linkage Scheme (ARC LP150100343). The authors acknowledge the facilities, and the scientific and technical assistance of the RMIT University and John Curtin School of Medical Research, Australian National University


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 99 - 99
2 Jan 2024
Johansen Å Lin J Yamada S Yassin MA Hutchinson D Malkoch M Mustafa K
Full Access

Several synthetic polymers have been widely investigated for their use in bone tissue engineering applications, but the ideal material is yet to be engineered. Triazine-trione (TATO) based materials and their derivatives are novel in the field of biomedical engineering but have started to draw interest. Different designs of the TATO monomers and introduction of different chemical linkages and end-groups widens the scope of the materials due to a range of mechanical properties. The aim of our work is to investigate novel TATO based materials, with or without hydroxyapatite filler, for their potential in bone tissue engineering constructs. Initially the biocompatibility of the materials was tested, indirectly and directly, according to ISO standards. Following this the osteoconductive properties were investigated with primary osteoblasts and an osteoblastic cell line. Bone marrow derived mesenchymal stem cells were used to evaluate the osteogenic differentiation and consequently the materials potential in bone tissue engineering applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 133 - 133
2 Jan 2024
Graziani G
Full Access

Decreasing the chance of local relapse or infection after surgical excision of bone metastases is a main goals in orthopedic oncology. Indeed, bone metastases have high incidence rate (up to 75%) and important cross-relations with infection and bone regeneration. Even in patients with advanced cancer, bone gaps resulting from tumor excision must be filled with bone substitutes. Functionalization of these substitutes with antitumor and antibacterial compounds could constitute a promising approach to overcome infection and tumor at one same time. Here, for the first time, we propose the use of nanostructured zinc-bone apatite coatings having antitumor and antimicrobial efficacy. The coatings are obtained by Ionized Jet Deposition from composite targets of zinc and bovine-derived bone apatite. Antibacterial and antibiofilm efficacy of the coatings is demonstrated in vitro against S. Aureus and E. Coli. Anti-tumor efficacy is investigated against MDA- MB-231 cells and biocompatibility is assessed on L929 and MSCs. A microfluidic based approach is used to select the optimal concentration of zinc to be used to obtain antitumor efficacy and avoid cytotoxicity, exploiting a custom gradient generator microfluidic device, specifically designed for the experiments. Then, coatings capable of releasing the desired amount of active compounds are manufactured. Films morphology, composition and ion-release are studies by FEG- SEM/EDS, XRD and ICP. Efficacy and biocompatibility of the coatings are verified by investigating MDA, MSCs and L929 viability and morphology by Alamar Blue, Live/Dead Assay and FEG-SEM at different timepoints. Statistical analysis is performed by SPSS/PC + Statistics TM 25.0 software, one-way ANOVA and post-hoc Sheffe? test. Data are reported as Mean ± standard Deviation at a significance level of p <0.05. Results and Discussion. Coatings have a nanostructured surface morphology and a composition mimicking the target. They permit sustained zinc release for over 14 days in medium. Thanks to these characteristics, they show high antibacterial ability (inhibition of bacteria viability and adhesion to substrate) against both the gram + and gram – strain. The gradient generator microfluidic device permits a fine selection of the concentration of zinc to be used, with many potential perspectives for the design of biomaterials. For the first time, we show that zinc and zinc-based coatings have a selective efficacy against MDA cells. Upon mixing with bone apatite, the efficacy is maintained and cytotoxicity is avoided. For the first time, new antibacterial metal-based films are proposed for addressing bone metastases and infection at one same time. At the same time, a new approach is proposed for the design of the coatings, based on a microfluidic approach. We demonstrated the efficacy of Zn against the MDA-MB-231 cells, characterized for their ability to form bone metastases in vivo, and the possibility to use nanostructured metallic coatings against bone tumors. At the same time, we show that the gradient-generator approach is promising for the design of antitumor biomaterials. Efficacy of Zn films must be verified in vivo, but the dual-efficacy coatings appear promising for orthopedic applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 30 - 30
2 Jan 2024
Procter P Hulsart-Billström G Alves A Pujari-Palmer M Wenner D Insley G Engqvist H Larsson S Pippenger B Bossard D
Full Access

Surgeons treating fractures with many small osteochondral fragments have often expressed the clinical need for an adhesive to join such fragments, as an adjunct to standard implants. If an adhesive would maintain alignment of the articular surfaces and subsequently heal it could result in improved clinical outcomes. However, there are no bone adhesives available for clinical indications and few pre-clinical models to assess safety and efficacy of adhesive biomaterial candidates. A bone adhesive candidate based on water, α-TCP and an amino acid phosphoserine was evaluated in-vivo in a novel murine bone core model (preliminary results presented EORS 2019) in which excised bone cores were glued back in place and harvested @ 0, 3, 7, 14, 28 and 42days. Adhesive pull-out strength was demonstrated 0–28 days, with a dip at 14 days increasing to 11.3N maximum. Histology 0–42 days showed the adhesive progressively remodelling to bone in both cancellous and cortical compartments with no signs of either undesirable inflammation or peripheral ectopic bone formation. These favourable results suggested translation to a large animal model. A porcine dental extraction socket model was subsequently developed where dental implants were affixed only with the adhesive. Biomechanical data was collected @ 1, 14, 28 and 56 days, and histology at 1,14,28 and 56 days. Adhesive strength assessed by implant pull-out force increased out to 28 days and maintained out to 56 days (282N maximum) with failure only occurring at the adhesive bone interface. Histology confirmed the adhesive's biocompatibility and osteoconductive behavior. Additionally, remodelling was demonstrated at the adhesive-bone interface with resorption by osteoclast-like cells and followed by new bone apposition and substitution by bone. Whilst the in-vivo dental implant data is encouraging, a large animal preclinical model is needed (under development) to confirm the adhesive is capable of healing, for example, loaded osteochondral bone fragments. Acknowledgements: The murine study was supported, in part, by the Swedish Foundation for Strategic Research (#RMA15-0110)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 9 - 9
2 Jan 2024
Ma H Lei B Zhang Y
Full Access

3D Printed polyether-ether-ketone (PEEK) has gained widespread use in clinical practice due to its excellent biocompatibility, biomechanical compatibility, and personalization. However, pre-printed PEEK implants are not without their flaws, including bioinert, optimization distortion of 3D printing digital model and prosthetic mismatching. Recent advancements in mechanical processing technology have made it possible to print bone implants with PEEK fused deposition, allowing for the construction of mechanically adaptable implants. In this study, we aimed to synthesize silanized polycitrate (PCS) via thermal polymerization and in situ graft it to PEEK surface to construct an elastomer coating for 3D printed PEEK implants (PEEK-PCS). This incorporation of PCS allows the implant to exhibit adaptive space filling ability and stress dispersal. In vivo and in vitro results, PEEK-PCS exhibited exceptional osseointegration and osteogenesis properties along with macrophage M2 phenotypic polarization, inflammatory factors reducing, promotion of osteogenic differentiation in bone marrow mesenchymal stem cells (BMSCs). Additionally, PEEK-PCS displays good autofluorescence properties in vitro and in vivo, with stable fluorescence for 14 days, suggesting potential bioimaging applications. The study confirms that PEEK in situ grafting with thermo-polymerized PCS elastomers is a viable approach for creating multifunctional (bone defect adaptation, bioimaging, immune regulation, and osseointegration) implants for bone tissue engineering


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 60 - 60
2 Jan 2024
Jahr H
Full Access

AM specifically allows for cost-efficient production of patient-specific Orthopaedic medical devices with unusual designs and properties. A porous design allows to adjust the stiffness of metallic implants to that of the host bone. Beyond traditional metals, like titanium alloys, this talk will review the present state-of-the-art of directly printed absorbable metal families. Physicochemical, mechanical and biological properties of standardized design prototypes from all currently available metal families will be compared and their clinical application potential discussed. The impact of in vitro test environments on comparative corrosion behavior, post manufacturing aspects, and the recent status quo in biocompatibility testing and present knowledge gaps will be addressed


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 73 - 73
2 Jan 2024
Montesissa M Graziani G Borciani G Boi M Rubini K Valle F Boanini E Baldini N
Full Access

Calcium phosphates-based (CaPs) nanocoatings on metallic prosthesis are widely studied in orthopedics and dentistry because they mimic the mineral component of native human bone and favor the osseointegration process. Despite the fact that different calcium phosphates have different properties (composition, crystallinity, and ion release), only stoichiometric hydroxyapatite (HA) films have been analyzed in deep. Here, we have realized films of different CaPs (HA, beta-tricalcium phosphate (β-TCP) and brushite (DCPD)) onto Ti6Al4V microrough substrates by Ionized Jet Deposition (IJD). We have implemented the heating of substrates at 400°C during deposition to see the effect on coating properties. Different film features are evaluated: morphology and topography (FEG-SEM, AFM), physical-chemical composition (FT-IR and EDS), dissolution profile and adhesion to substrate (scratch test), with a focus on how the different CaPs and temperature changed the coating features. After coating optimization, we have studied the in vitro BM-MSC behavior, in term of viability and early adhesion. We have obtained good transfer of fidelity in composition from target to coating for all CaPs, with nanostructured films formed by globular aggregates (~300 nm diameter), with homogeneous and uniform coverage of the substrate surface, without cracks. The heating during deposition has increased the adhesion of the films to the substrate, with higher stability in medium immersion and wettability, features that can improve the biological behavior of cells. All CaP coatings have showed excellent biocompatibility, with DCPD coating that promote higher cells viability at 14 days respect to HA and β- TCP films. About the early cell adhesion, the BM-MSC have showed switch from a globular to an elongated morphology at 6 hours in all coatings respect to the uncoated titanium, sign of better adhesion. From these results, the fabrication of different CaP nanocoatings with IJD can be a promising for applications in orthopedics and dentistry


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 111 - 111
2 Jan 2024
Wong S Lee K Razak H
Full Access

Medial opening wedge high tibial osteotomy (MOWHTO) is the workhorse procedure for correcting varus malalignment of the knee. There have been recent developments in the synthetic options to fill the osteotomy gap. The current gold standard for filling this osteotomy gap is autologous bone graft which is associated with donor site morbidity. We would like to introduce and describe the process of utilizing the novel Osteopore® 3D printed, honeycomb structured, Polycaprolactone and β-Tricalcium Phosphate wedge for filling the gap in MOWHTO. In the advent of additive manufacturing and the quest for more biocompatible materials, the usage of the Osteopore® bone wedge in MOWHTO is a promising technique that may improve the biomechanical stability as well the healing of the osteotomy gap


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 119 - 119
2 Jan 2024
Tryfonidou M
Full Access

Tryfonidou leads the Horizon 2020 consortium (iPSpine; 2019–2023) bringing a transdisciplinary team of 21 partners together to address the challenges and bottlenecks of iPS-based advanced therapies towards their transition to the clinic. Here, chronic back pain due to intervertebral disc degeneration is employed as a show case. The project develops the iPS-technology and designed smart biomaterials to carry, protect and instruct the iPS cells within the degenerate disc environment. This work will be presented including ongoing activities focus on translating the developed methodology and tools towards clinically relevant animal models. The consortium optimized the protocol for the differentiated iPS-notochordal-like cells (iPS-NLCs) and shortlisted two biomaterials shortlisted based on their physicochemical, cytotoxicity, biomechanical and biocompatibility testing. Both were shown to be safe and have been tested with the progenitors of iPS-NLCs. An advanced platform (e.g., the dynamic loading bioreactor for disc tissue) was used to evaluate their performance: the biomaterials supported the iPS-NLC progenitors after injection into the degenerate disc and seem to also support their maturation towards NLCs. Furthermore, we confirmed the capacity of these cells to survive inside degenerated discs at 30 days upon injection in sheep, whereafter we continued with their evaluation at 3 months post-injection. We achieved full evaluation of the sheep spines, including biomechanical analysis using the portable spine biomechanics tester prior analysis at the macro- and microscopic, and biochemical level


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 130 - 130
2 Jan 2024
Dvorak N
Full Access

In-vitro models of disease are valuable tools for studying disease and analysing response to therapeutics. Recently, advances in patient-derived organoid (PDO) models have been shown to faithfully recapitulate structure, function, and therapeutic response for a wide range of tissues. Frozen shoulder is a rare example of a chronic inflammatory fibrotic disease which is self-limiting, unlike many other soft tissue fibrotic disorders. As no in-vitro 3D models or in-vivo animal models exist for frozen shoulder, establishing an organoid model which recapitulates core diseases features may give insight into fibrosis resolution. Consequently, using biocompatible hydrogels, primary capsular fibroblasts, monocyte-derived macrophages and HUVEC cells, we generated stable PDO cultures which exhibited key disease phenotypes, including vascularization, increased stiffness, and an expanded lining layer over 21 days of culture. Through further investigation of cell-matrix and cell-cell interactions in the organoid model, we intend to unpack the differences between resolving and non-resolving fibrotic disease and uncover clinically relevant therapeutic targets for fibrosis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 137 - 137
2 Jan 2024
Tavernaraki N Platania V Chatzinikolaidou M
Full Access

Bone is a dynamic tissue that undergoes continuous mechanical forces. Mechanical stimuli applied on scaffolds resembling a part of the human bone tissue affects the osteogenesis [1]. Poly(3,4-ethylenedioxythiophene) (PEDOT) is a piezoelectric material that responds to mechanical stimulation producing an electrical signal, which in turn promotes the osteogenic differentiation of bone-forming cells by opening voltage-gated calcium channels [2]. In this study we examined the biological behavior of pre-osteoblastic cells seeded onto lyophilized piezoelectric PEDOT-containing scaffolds applying uniaxial compression. Two different concentrations of PEDOT (0.10 and 0.15% w/v) were combined with a 5% w/v poly(vinyl alcohol) (PVA) and 5% w/v gelatin, casted into wells, freeze dried and crosslinked with 2% v/v (3-glycidyloxypropyl)trimethoxysilane and 0.025% w/v glutaraldehyde. The scaffolds were physicochemically characterized by FTIR, measurement of the elastic modulus, swelling ratio and degradation rate. The cell-loaded scaffolds were subjected to uniaxial compression with a frequency of 1 Hz and a strain of 10% for 1 h every second day for 21 days. The loading parameters were selected to resemble the in vivo loading situation [3]. Cell viability and morphology on the PEDOT/PVA/gelatin scaffolds was determined. The alkaline phosphatase (ALP) activity, the collagen and calcium production were determined. The elastic modulus of PEDOT/PVA/gelatin scaffolds ranged between 1 and 5 MPa. The degradation rate indicates a mass loss of 15% after 21 days. The cell viability assessment displays excellent biocompatibility, while SEM images display well-spread cells. The ALP activity at days 3, 7 and 18 as well as the calcium production are higher in the dynamic culture compared to the static one. Moreover, energy dispersive spectroscopy analysis revealed the presence of calcium phosphate in the extracellular matrix after 14 days. The results demonstrate that PEDOT/PVA/gelatin scaffolds promote the adhesion, proliferation, and osteogenic differentiation of pre-osteoblastic cells under mechanical stimulation, thus favoring bone regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 114 - 114
2 Jan 2024
Fiordalisi M Sousa I Barbosa M Gonçalves R Caldeira J
Full Access

Intervertebral disc (IVD) degeneration is the most frequent cause of Low Back Pain (LBP) affecting nearly 80% of the population [1]. Current treatments fail to restore a functional IVD or to provide a long-term solution, so, there is an urgent need for novel therapeutic strategies. We have defined the IVD extracellular matrix (ECM) profile, showing that the pro-regenerative molecules Collagen type XII and XIV, are uniquely expressed during fetal stages [2]. Now we propose the first fetal injectable biomaterial to regenerate the IVD. Fetal decellularized IVD scaffolds were recellularized with adult IVD cells and further implanted in vivo to evaluate their anti-angiogenic potential. Young decellularized IVD scaffolds were used as controls. Finally, a large scale protocol to produce a stable, biocompatible and easily injectable fetal IVD-based hydrogel was developed. Fetal scaffolds were more effective at promoting Aggrecan and Collagen type II expression by IVD cells. In a Chorioallantoid membrane assay, only fetal matrices showed an anti-angiogenic potential. The same was observed in vivo when the angiogenesis was induced by human NP cells. In this context, human NP cells were more effective in GAG synthesis within a fetal microenvironment. Vaccum-assisted perfusion decellularized IVDs were obtained, with high DNA removal and sGAG retention. Hydrogel pre-solution passed through 21-30G needles. IVD cells seeded on the hydrogels initially decreased metabolic activity, but increased up to 70% at day 7, while LDH assay revealed cytotoxicity always below 30%. This study will open new avenues for the establishment of a disruptive treatment for IVD degeneration with a positive impact on the angiogenesis associated with LBP, and on the improvement of patients’ quality of life. Acknowledgements: Financial support was obtained from EUROSPINE, ON Foundation and FCT (Fundação para a Ciência e a Tecnologia)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 59 - 59
2 Jan 2024
Depboylu F
Full Access

Production of porous titanium bone implants is a highly promising research and application area due to providing high osseointegration and achieving the desired mechanical properties. Production of controlled porosity in titanium implants is possible with laser powder bed fusion (L- PBF) technology. The main topics of this presentation includes the L-PBF process parameter optimization to manufacture thin walls of porous titanium structures with almost full density and good mechanical properties as well as good dimensional accuracy. Moreover, the cleaning and coating process of these structures to further increase osseointegration and then in-vitro biocompatibility will be covered


Bone & Joint Research
Vol. 12, Issue 12 | Pages 722 - 733
6 Dec 2023
Fu T Chen W Wang Y Chang C Lin T Wong C

Aims

Several artificial bone grafts have been developed but fail to achieve anticipated osteogenesis due to their insufficient neovascularization capacity and periosteum support. This study aimed to develop a vascularized bone-periosteum construct (VBPC) to provide better angiogenesis and osteogenesis for bone regeneration.

Methods

A total of 24 male New Zealand white rabbits were divided into four groups according to the experimental materials. Allogenic adipose-derived mesenchymal stem cells (AMSCs) were cultured and seeded evenly in the collagen/chitosan sheet to form cell sheet as periosteum. Simultaneously, allogenic AMSCs were seeded onto alginate beads and were cultured to differentiate to endothelial-like cells to form vascularized bone construct (VBC). The cell sheet was wrapped onto VBC to create a vascularized bone-periosteum construct (VBPC). Four different experimental materials – acellular construct, VBC, non-vascularized bone-periosteum construct, and VBPC – were then implanted in bilateral L4-L5 intertransverse space. At 12 weeks post-surgery, the bone-forming capacities were determined by CT, biomechanical testing, histology, and immunohistochemistry staining analyses.