Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful. Tissue engineering presents a promising alternative to generate functional tissue constructs with improved healing capacities. This study explores tendon tissue constructs’ culture in a platform providing physiological mechanical stimulation and reports on the effect of different loading regimes on the viability of human tendon cells. Method. Porcine decellularized tendon scaffolds were fixed into flexible, self-contained bioreactor chambers, seeded with human tenocytes, allocated in triplicates to either static control, low (15±0.8Newtons [N]), medium (26±0.5N), or high (49±2.1N)-force-regime groups, connected to a perfusion system and cultured under standard conditions. A humanoid robotic arm provided 30-minute
The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different. A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes.Aims
Methods
Aims. Optimal glenoid positioning in reverse shoulder arthroplasty (RSA) is crucial to provide impingement-free range of motion (ROM). Lateralization and inclination correction are not yet systematically used. Using planning software, we simulated the most used glenoid implant positions. The primary goal was to determine the configuration that delivers the best theoretical impingement-free ROM. Methods. With the use of a 3D planning software (Blueprint) for RSA, 41 shoulders in 41 consecutive patients (17 males and 24 females; means age 73 years (SD 7)) undergoing RSA were planned. For the same anteroposterior positioning and retroversion of the glenoid implant, four different glenoid baseplate configurations were used on each shoulder to compare ROM: 1) no correction of the RSA angle and no lateralization (C-L-); 2) correction of the RSA angle with medialization by inferior reaming (C+M+); 3) correction of the RSA angle without lateralization by superior compensation (C+L-); and 4) correction of the RSA angle and additional lateralization (C+L+). The same humeral inlay implant and positioning were used on the humeral side for the four different glenoid configurations with a 3 mm symmetric 135° inclined polyethylene liner. Results. The configuration with lateralization and correction of the RSA angle (C+L+) led to better ROM in flexion, extension,
The liner design is a key determinant of the constraint of a reverse total shoulder arthroplasty (rTSA). The aim of this study was to compare the degree of constraint of rTSA liners between different implant systems. An implant company’s independent 3D shoulder arthroplasty planning software (mediCAD 3D shoulder v. 7.0, module v. 2.1.84.173.43) was used to determine the jump height of standard and constrained liners of different sizes (radius of curvature) of all available companies. The obtained parameters were used to calculate the stability ratio (degree of constraint) and angle of coverage (degree of glenosphere coverage by liner) of the different systems. Measurements were independently performed by two raters, and intraclass correlation coefficients were calculated to perform a reliability analysis. Additionally, measurements were compared with parameters provided by the companies themselves, when available, to ensure validity of the software-derived measurements.Aims
Methods
In order to release the contracture band completely without damaging normal tissues (such as the sciatic nerve) in the surgical treatment of gluteal muscle contracture (GMC), we tried to display the relationship between normal tissue and contracture bands by magnetic resonance neurography (MRN) images, and to predesign a minimally invasive surgery based on the MRN images in advance. A total of 30 patients (60 hips) were included in this study. MRN scans of the pelvis were performed before surgery. The contracture band shape and external rotation angle (ERA) of the proximal femur were also analyzed. Then, the minimally invasive GMC releasing surgery was performed based on the images and measurements, and during the operation, incision lengths, surgery duration, intraoperative bleeding, and complications were recorded; the time of the first postoperative off-bed activity was also recorded. Furthermore, the patients’ clinical functions were evaluated by means of Hip Outcome Score (HOS) and Ye et al’s objective assessments, respectively.Aims
Methods
Aims. This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Methods. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups. Results. No significant differences for the rotational or translational patterns between the different limb alignment groups were found for level walking, downhill walking, or stair descent. Neutral and varus aligned subjects showed a mean centre of rotation located on the medial condyle for the loaded stance phase of all three gait activities. Valgus alignment, however, resulted in a centrally located centre of rotation for level and downhill walking, but a more medial centre of rotation during stair descent. Knee
Rotator cuff pathology is the main cause of shoulder pain and dysfunction in older adults. When a rotator cuff tear involves the subscapularis tendon, the symptoms are usually more severe and the prognosis after surgery must be guarded. Isolated subscapularis tears represent 18% of all rotator cuff tears and arthroscopic repair is a good alternative primary treatment. However, when the tendon is deemed irreparable, tendon transfers are the only option for younger or high-functioning patients. The aim of this review is to describe the indications, biomechanical principles, and outcomes which have been reported for tendon transfers, which are available for the treatment of irreparable subscapularis tears. The best tendon to be transferred remains controversial. Pectoralis major transfer was described more than 30 years ago to treat patients with failed surgery for instability of the shoulder. It has subsequently been used extensively to manage irreparable subscapularis tendon tears in many clinical settings. Although pectoralis major reproduces the position and orientation of the subscapularis in the coronal plane, its position in the axial plane – anterior to the rib cage – is clearly different and does not allow it to function as an ideal transfer. Consistent relief of pain and moderate recovery of strength and function have been reported following the use of this transfer. In an attempt to improve on these results, latissimus dorsi tendon transfer was proposed as an alternative and the technique has evolved from an open to an arthroscopic procedure. Satisfactory relief of pain and improvements in functional shoulder scores have recently been reported following its use. Both pectoralis minor and upper trapezius transfers have also been used in these patients, but the outcomes that have been reported do not support their widespread use. Cite this article:
This study evaluated the effect of treating clinician speciality on management of zone 2 fifth metatarsal fractures. This was a retrospective cohort study of patients with acute zone 2 fifth metatarsal fractures who presented to a single large, urban, academic medical centre between December 2012 and April 2022. Zone 2 was the region of the fifth metatarsal base bordered by the fourth and fifth metatarsal articulation on the oblique radiograph. The proportion of patients allowed to bear weight as tolerated immediately after injury was compared between patients treated by orthopaedic surgeons and podiatrists. The effects of unrestricted weightbearing and foot and/or ankle immobilization on clinical healing were assessed. A total of 487 patients with zone 2 fractures were included (mean age 53.5 years (SD 16.9), mean BMI 27.2 kg/m2 (SD 6.0)) with a mean follow-up duration of 2.57 years (SD 2.64).Aims
Methods
Paediatric triplane fractures and adult trimalleolar ankle fractures both arise from a supination external rotation injury. By relating the experience of adult to paediatric fractures, clarification has been sought on the sequence of injury, ligament involvement, and fracture pattern of triplane fractures. This study explores the similarities between triplane and trimalleolar fractures for each stage of the Lauge-Hansen classification, with the aim of aiding reduction and fixation techniques. Imaging data of 83 paediatric patients with triplane fractures and 100 adult patients with trimalleolar fractures were collected, and their fracture morphology was compared using fracture maps. Visual fracture maps were assessed, classified, and compared with each other, to establish the progression of injury according to the Lauge-Hansen classification.Aims
Methods
The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system. This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.Aims
Methods
Hip precautions following total hip arthroplasty (THA) limits flexion,
Precise implant positioning, tailored to individual spinopelvic biomechanics and phenotype, is paramount for stability in total hip arthroplasty (THA). Despite a few studies on instability prediction, there is a notable gap in research utilizing artificial intelligence (AI). The objective of our pilot study was to evaluate the feasibility of developing an AI algorithm tailored to individual spinopelvic mechanics and patient phenotype for predicting impingement. This international, multicentre prospective cohort study across two centres encompassed 157 adults undergoing primary robotic arm-assisted THA. Impingement during specific flexion and extension stances was identified using the virtual range of motion (ROM) tool of the robotic software. The primary AI model, the Light Gradient-Boosting Machine (LGBM), used tabular data to predict impingement presence, direction (flexion or extension), and type. A secondary model integrating tabular data with plain anteroposterior pelvis radiographs was evaluated to assess for any potential enhancement in prediction accuracy.Aims
Methods
The August 2024 Children’s orthopaedics Roundup360 looks at: Antibiotic prophylaxis and infection rates in paediatric supracondylar humerus fractures; Clinical consensus recommendations for the non-surgical treatment of children with Perthes’ disease in the UK; Health-related quality of life in idiopathic toe walkers: a multicentre prospective cross-sectional study; Children with spinal dysraphism: a systematic review of reported outcomes; No delay in age of crawling, standing, or walking with Pavlik harness treatment: a prospective cohort study; No value found with routine early postoperative radiographs after implant removal in paediatric patients; What do we know about the natural history of spastic hip dysplasia and pain in total-involvement cerebral palsy?; Evaluating the efficacy and safety of preoperative gallows traction for hip open reduction in infants
Background. The cavovarus foot is a complex 3-dimensional deformity. Although a multitude of techniques are described for its surgical management, few of these are evidence based or guided by classification systems. Surgical management involves realignment of the hindfoot and soft tissue balancing, followed by forefoot balancing. Our aim was to classify the pattern of residual forefoot deformities once the hindfoot is corrected, to guide forefoot correction. Methods. We included 20 cavovarus feet from adult patients with Charcot-Marie-Tooth who underwent weightbearing CT (mean age 43.4 years, 14 males). Patients included had flexible deformities, with no previous surgery. Previous work established majority of rotational deformity in cavovarus feet occurs at the talonavicular joint, which is often reduced during surgery. Using specialised software (Bonelogic 2.1, Disior) a 3-dimensional, virtual model was created. Using data from normal feet as a guide, the talonavicular joint of the cavovarus feet was digitally reduced to a ‘normal’ position. Models of the corrected position were exported and geometrically analysed using Blender 3.6 to identify anatomical trends. Results. We identified 3 types of cavovarus forefoot morphotypes. Type 1 was seen in 13 cases (65%) and was defined as a foot where only the first metatarsal was relatively plantarflexed to the rest of the foot, with no significant residual
The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI). This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm2, who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain.Aims
Methods
Ganz’s studies made it possible to address joint deformities on both the femoral and acetabular side brought about by Perthes’ disease. Femoral head reduction osteotomy (FHRO) was developed to improve joint congruency, along with periacetabular osteotomy (PAO), which may enhance coverage and containment. The purpose of this study is to show the clinical and morphological outcomes of the technique and the use of an implemented planning approach. From September 2015 to December 2021, 13 FHROs were performed on 11 patients for Perthes’ disease in two centres. Of these, 11 hips had an associated PAO. A specific CT- and MRI-based protocol for virtual simulation of the corrections was developed. Outcomes were assessed with radiological parameters (sphericity index, extrusion index, integrity of the Shenton’s line, lateral centre-edge angle (LCEA), Tönnis angle), and clinical parameters (range of motion, visual analogue scale (VAS) for pain, Merle d'Aubigné-Postel score, modified Harris Hip Score (mHHS), and EuroQol five-dimension five-level health questionnaire (EQ-5D-5L)). Early and late complications were reported.Aims
Methods
Dislocation remains a leading cause of failure following revision total hip arthroplasty (THA). While dual-mobility (DM) bearings have been shown to mitigate this risk, options are limited when retaining or implanting an uncemented shell without modular DM options. In these circumstances, a monoblock DM cup, designed for cementing, can be cemented into an uncemented acetabular shell. The goal of this study was to describe the implant survival, complications, and radiological outcomes of this construct. We identified 64 patients (65 hips) who had a single-design cemented DM cup cemented into an uncemented acetabular shell during revision THA between 2018 and 2020 at our institution. Cups were cemented into either uncemented cups designed for liner cementing (n = 48; 74%) or retained (n = 17; 26%) acetabular components. Median outer head diameter was 42 mm. Mean age was 69 years (SD 11), mean BMI was 32 kg/m2 (SD 8), and 52% (n = 34) were female. Survival was assessed using Kaplan-Meier methods. Mean follow-up was two years (SD 0.97).Aims
Methods
Surgical approaches that claim to be minimally invasive, such as the direct anterior approach (DAA), are reported to have a clinical advantage, but are technically challenging and may create more injury to the soft-tissues during joint exposure. Our aim was to quantify the effect of soft-tissue releases on the joint torque and femoral mobility during joint exposure for hip resurfacing performed via the DAA. Nine fresh-frozen hip joints from five pelvis to mid-tibia cadaveric specimens were approached using the DAA. A custom fixture consisting of a six-axis force/torque sensor and motion sensor was attached to tibial diaphysis to measure manually applied torques and joint angles by the surgeon. Following dislocation, the torques generated to visualize the acetabulum and proximal femur were assessed after sequential release of the joint capsule and short external rotators.Aims
Methods
Professional dancers represent a unique patient population in the setting of hip arthroplasty, given the high degree of hip strength and mobility required by their profession. We sought to determine the clinical outcomes and ability to return to professional dance after total hip arthroplasty (THA) or hip resurfacing arthroplasty (HRA). Active professional dancers who underwent primary THA or HRA at a single institution with minimum one-year follow-up were included in the study. Primary outcomes included the rate of return to professional dance, three patient-reported outcome measures (PROMs) (modified Harris Hip Score (mHHS), Hip disability and Osteoarthritis Outcome Score for Joint Replacement (HOOS-JR), and Lower Extremity Activity Scale (LEAS)), and postoperative complications.Aims
Methods
The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR. A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs.Aims
Methods