Advertisement for orthosearch.org.uk
Results 1 - 20 of 1184
Results per page:
Bone & Joint Research
Vol. 13, Issue 11 | Pages 659 - 672
20 Nov 2024
Mo H Sun K Hou Y Ruan Z He Z Liu H Li L Wang Z Guo F

Aims. Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results. We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion. PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation. Cite this article: Bone Joint Res 2024;13(11):659–672


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 32 - 32
14 Nov 2024
Mungalpara N Kim S Baker H Lee C Shakya A Chen K Athiviraham A Koh J Elhassan B Maassen NH Amirouche F
Full Access

Introduction. Supraspinatus and infraspinatus tears (Massive Rotator Cuff Tear- MRCT) cause compensatory activation of the teres minor (TM) and subscapularis (SubS) to maintain humeral head alignment. This study measures force changes in TM and SubS using a dynamic shoulder testing setup. We hypothesize that combining superior capsule reconstruction (SCR) and lower trapezius tendon (LTT) transfer will correct rotator cuff forces. Methods. Eight fresh-frozen human shoulder specimens from donors aged 55-75 (mean = 63.75 years), balanced for gender, averaging 219.5 lbs, were used. Rotator cuff and deltoid tendons were connected to force sensors through a pulley system, with the deltoid linked to a servohydraulic motor for dynamic force measurement. The system allowed unrestricted humeral abduction from 0 to 90 degrees. Results. Teres Minor (TM):. -. Control: 7.43 N (SD = 1.66). -. SS tear: 5.46 N (SD = 1.45). -. MRCT: 3.94 N (SD = 1.43). -. LTT post-MRCT: 5.85 N (SD = 1.13). -. SCR post-MRCT: 4.68 N (SD = 0.71). -. Combined LTT+SCR: 6.43 N (SD = 1.24). -. TM force reduction: 26.51% post-SS tear, 46.97% from intact to MRCT, 63.20% increase with LTT+SCR. Subscapularis (SubS):. -. Control: -0.73 N (SD = 0.43). -. SS tear: -0.46 N (SD = 0.36), 36.99% increase. -. MRCT: 0.96 N (SD = 0.47), 31.51% increase. -. LTT post-MRCT: -0.32 N (SD = 0.47), 66.67% reduction. -. SCR post-MRCT: -0.28 N (SD = 0.16), 70.83% reduction. -. Combined LTT+SCR: -0.66 N (SD = 0.32), 31.25% reduction. Non-parametric Friedman's ANOVA showed overall statistical significance for TM (P = 1.083×10. -6. ) and SubS (P = 4.77×10. -4. ). Conclusion. The cadaveric model assesses rotator cuff compensations, showing significant TM force reductions following rotator cuff tears and improvements with LTT and SCR, particularly when combined. SubS exhibited negative force during normal abduction but compensated during MRCT, returning to normal values post-LTT and SCR


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 16 - 16
14 Nov 2024
Mei J Pasoldt A Matalova E Graessel S
Full Access

Introduction. Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration, inflammation, and pain. Current treatments provide only symptomatic relief, necessitating novel molecular targets. The caspase family, known for its roles in apoptosis and inflammation regulation, may additionally influence crucial processes for cartilage homeostasis such as differentiation and proliferation. However, the specific roles of individual caspases in OA pathogenesis remain unclear. This study aims to investigate the involvement of the caspase family in OA and as potential targets for therapy, with a focus on caspase-1 and -8. Method. Chondrocytes from both healthy and OA donors were cultured in 2D and 3D culture models and stimulated with TNF-α or IL-1β. The expression and activation of caspase-1 and -8 was assessed using RT-PCR, ELISA. Transcriptome analysis of OA and healthy cartilage samples, along with Mendelian randomization (MR) analysis were conducted to explore the involvement of caspase family in OA and to assess its potential as therapeutic targets. Result. Higher expression levels of caspase-1, -8 were observed in OA cartilage compared to healthy cartilage. TNF-α stimulation increased their expression in both healthy and OA chondrocytes, while IL-1β had limited impact. Caspase-8 expression was causally associated with knee OA in MR analysis, suggesting a potential therapeutic target. The caspase-1 inhibitor VX-765 mildly reduced chondrocyte viability, with no significant effect in the presence of TNF-α. While the caspase-8 inhibitor Z-IETD-FMK exhibited slight enhancements in cell viability, these improvements were not statistically significant. Nevertheless, its effectiveness significantly increased in the presence of TNF-α. Conclusion. This study highlights the involvement of caspase-1 and caspase-8 in OA pathology, with caspase-8 emerging as a potential therapeutic target for knee OA treatment. Further investigation into the roles of caspase-1 and -8 in OA pathophysiology, including the efficacy and potential side effects of their corresponding inhibitors, is warranted. Acknowledgements. Funding Inter-Action/Inter-Excellence project (BTHA-JC-2022-36/LUABA22019)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 70 - 70
14 Nov 2024
Cicione C Tilotta V Ascione A Giacomo GD Russo F Tryfonidou M Noel D Camus A Maitre CL Vadalà G
Full Access

Introduction. Low back pain (LBP) is a worldwide leading cause of disability. This preclinical study evaluated the safety of a combined advanced therapy medicinal product developed during the European iPSpine project (#825925) consisting of mesendoderm progenitor cells (MEPC), derived from human induced pluripotent stem cells, in combination with a synthetic poly(N-isopropylacrylamide) hydrogel (NPgel) in an ovine intervertebral disc degeneration (IDD) model. Method. IDD was induced through nucleotomy in 4 adult sheep, 5 lumbar discs each (n=20). After 5 weeks, 3 alternating discs were treated with NPgel (n=6) or NPgel+MEPC (n=6). Before sacrifice, animals were subjected to: MRI of lumbar spines (disc height and Pfirmann grading); blood sampling (hematological, biochemical, metabolic and lymphocyte/monocytes immunological). After 3 months the sheep were sacrificed. The spines were processed for: macroscopic morphology (Thompson grading), microscopic morphology (Histological grading), and glycosaminoglycan content (GAG, DMMB Assay). Furthermore, at sacrifice biodistribution of human MEPC was assessed by Alu-sequences quantification (qPCR) from three tissue samples of heart, liver, spleen, brain, lungs, and kidneys, and PBMCs collected to assess activation of systemic immune cells. To each evaluation, appropriate statistical analysis was applied. Result. Flow cytometry showed no induction of systemic activation of T cells or monocytes. Alu quantification did not give detection of any cells in any organ. Disc height index was slightly increased in discs treated with NPgel+MEPC. Pfirmann's and Thompson's classification showed that treatment with NPgel or NPgel+MEPC gave no adverse reactions. Histological grading showed similar degeneration in vertebrae treated with NPgel+MEPC or with NPgel alone. The amount of GAG was significantly increased in the nucleus pulposus following treatment with NPgel+MEPC compared to NPgel alone, in which a decrease was observed compared to untreated discs in both nucleus pulposus and annulus fibrosus. Conclusion. This study showed the safety of both NPgel+MEPC and NPgel treatments


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 21 - 21
14 Nov 2024
Nieuwstraten J Guilak F Danalache M
Full Access

Introduction. Within articular cartilage, chondrocytes reside within the pericellular matrix (PCM), collectively constituting the microanatomical entity known as a chondron. The PCM functions as a pivotal protective shield and mediator of biomechanical and biochemical cues. In the context of Osteoarthritis (OA), enzymatic degradation of the PCM is facilitated by matrix metalloproteinases (MMPs). This study delves into the functional implications of PCM structural integrity decline on the biomechanical properties of chondrons and impact on Ca. 2+. signaling dynamics. Method. Chondrons isolated from human cartilage explants were incubated with activated MMP-2, -3, or -7. Structural degradation of the pericellular matrix (PCM) was assessed by immunolabelling (collagen type VI and perlecan, n=5). Biomechanical properties of chondrons (i.e. elastic modulus (EM)) were analyzed using atomic force microscopy (AFM). A fluorescent calcium indicator (Fluo-4-AM) was used to record and quantify the intracellular Ca. 2+. influx of chondrons subjected to single cell mechanical loading (500nN) with AFM (n=7). Result. Each of the three MMPs disrupted the structural integrity of the PCM, leading to attenuated fluorescence intensity for both perlecan and collagen VI. A significant decrease of EM was observed for all MMP groups (p<0.005) with the most notable decrease observed for MMP-2 and MMP-7 (p<0.001). In alignment with the AFM results, there was a significant alteration in Ca. 2+. influx observed for all MMP groups (p<0.05), in particular for MMP-2 and MMP-7 (p<0.001). Conclusion. Proteolysis of the PCM by MMP-2, -3, and -7 not only significantly alters the biomechanical properties of articular chondrons but also affects their mechanotransduction profile and response to mechanical loading, indicating a close interconnection between these processes. These findings underscore the influence of an intact pericellular matrix (PCM) in protecting cells from high stress profiles and carry implications for the transmission of mechanical signaling during OA onset and progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 51 - 51
14 Nov 2024
Shayestehpour H Shayestehpour MA Wong C Bencke J Rasmussen J
Full Access

Introduction. Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine with unclear etiology. Due to the asymmetry of lateral curves, there are differences in the muscle activation between the convex and concave sides. This study utilized a comprehensive thoracic spine and ribcage musculoskeletal model to improve the biomechanical understanding of the development of AIS deformity and approach an explanation of the condition. Methods. In this study, we implemented a motion capture model using a generic rigid-body thoracic spine and ribcage model, which is kinematically determinate and controlled by spine posture obtained, for instance, from radiographs. This model is publicly accessible via a GitHub repository. We simulated gait and standing models of two AIS (averaging 15 years old, both with left lumbar curve and right thoracic curve averaging 25 degrees) and one control subject. The marker set included extra markers on the sternum and the thoracic and lumbar spine. The study was approved by the regional Research Ethics Committee (Journal number: H17034237). Results. We investigated the difference between the muscle activation on the right and left sides including erector spinae (ES), psoas major (PS), and multifidus (MF). Results of the AIS simulations indicated that, on average throughout the gait cycle, the right ES, left PS and left MF had 46%, 44%, and 23% higher activities compared to the other side, respectively. In standing, the ratios were 28%, 40%, and 19%, respectively. However, for the control subject, the differences were under 7%, except ES throughout the gait, which was 17%. Conclusion. The musculoskeletal model revealed distinct differences in force patterns of the right and left sides of the spine, indicating an instability phenomenon, where larger curves lead to higher muscle activations for stabilization. Acknowledgement. The project is funded by the European Union's Horizon 2020 program through Marie Skłodowska-Curie grant No. [764644]


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 124 - 124
14 Nov 2024
Lin Y Lian W Chen Y Wang F
Full Access

Introduction. Osteoporosis accounts for a major risk factor of fracture-associated disability or premature death in the elderly. Enhancement of bone anabolism for slowing osteoporosis is highly demanding. Exerkine fibronectin type III domain containing 5 (FNDC5) regulates energy metabolism, inflammation, and aging. This study was aimed to investigate whether Fndc5 signaling in osteoblasts changed estrogen deficiency-mediated bone loss or microarchitecture deterioration. Method. Female osteoblast-specific Fndc5 transgenic mice (Fndc5Tg), which overexpressed Fndc5 under the control of key osteoblast marker osteocalcin promoter, were given bilateral ovariectomy to induce estrogen deficiency-mediated osteoporosis. Bone mass, microstructures, and biomechanical properties were quantified using μCT imaging and material testing. Dynamic bone formation was traced using fluorescence calcein. Osteogenic differentiation and adipocyte formation of bone-marrow mesenchymal cells were investigated using von Kossa staining and Nile red staining, respectively. Serum osteocalcin, CTX-1 and TRAP5b levels were quantified using designated ELISA kits. Mitochondrial respiration was investigated using Seahorse Extracellular Flux Analyzer. Result. Fndc5Tg mice developed relatively higher bone mass and microarchitecture than wild-type mice. Fndc5 overexpression attenuated the losses of bone mineral density and trabecular network, including trabecular volume, thickness, and trabecular number, and improved cortical thickness and porosity in ovariectomized mice. Gain of Fndc5 function preserved biomechanical characteristics (maximum load, breaking force, and energy), serum bone formation marker osteocalcin levels, and bone formation rate, whereas it reduced serum bone resorption makers CTX-1 and TRAP5b levels, osteoclast overburden, and marrow adiposis. In vitro, Fndc5 reversed the estrogen deficiency-mediated mineralized matrix underproduction and adipocyte formation of bone-marrow mesenchymal cells, and inhibited osteoclast formation in osteoporotic bone. Mechanistically, Fndc5 activated AMPK signaling, promoting mitochondrial respiration and ATP production to enhance osteoblastic activity. Conclusion. Fndc5 signaling exerted bone-protective actions delaying estrogen deficiency-mediated osteoporosis. This study highlighted a new molecular remedial option for osteoporosis development by manipulating Fndc5 functions


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 100 - 100
14 Nov 2024
Castorena JG Riester R Ornelas MG Guilak F Danalache M
Full Access

Introduction. Piezo1 is a mechanosensitive Ca. 2+. ion channel that has been shown to transduce hyper-physiologic mechanical loads in chondrocytes. In osteoarthritic cartilage, Piezo1 expression was shown to be upregulated by interleukin-1 alpha (IL-1α) and resulted in altered calcium dynamics and actin cytoskeleton rarefication. Together these studies highlight the importance of Piezo1 channels during joint injury. However, the mechanism by which Piezo1 regulates chondrocyte physiology and mechanotransduction during homeostasis is still largely unknown. In this study, we investigate the impact of Piezo1 activation on nuclear mechanics and chromatin methylation state. Methods. Porcine chondrocytes (n=3-5 pigs) were treated with Yoda1, a Piezo1-specific agonist, for either 2, 5, 15 or 180 minutes. To characterize chromatin state, we monitored the abundance of a chromatin methylation marker (H3K9Me3) using immunofluorescence (IF). Atomic force microscopy (AFM, 25 nm cantilever) was employed to quantify the nuclear elastic modulus (NEM) of individual cell nuclei. To explore the interplay between cytoskeletal dynamics and nuclear mechanics, chondrocytes were treated with Latrunculin A (LatA), an actin polymerization inhibitor. Result. IF experiments showed chromatin methylation was the lowest 2 minutes post Yoda1 activation of Piezo1 (p=0.027). Additionally, we found that 2 or 5 minutes post-Piezo1 activation resulted in a significantly lower NEM when compared to the control (p<0.00001). The observed decrease in NEM at 2 and 5 minutes post-Piezo1 activation was not observed after knocking down Piezo1 (p>0.99). In LatA treated cells, the elevated NEM persisted even after Piezo1 activation with Yoda1 (p>0.75). Conclusion. These findings illuminate the mechanism by which Piezo1 activation and actin remodeling regulate transient mechanotransduction during homeostasis. Further research into the transient decrease in nuclear stiffness and chromatin methylation observed during the initial 5 minutes of Piezo1-induced Ca2+ signaling, may contribute to a better understanding of the role of Piezo1 channels in joint injury and development of therapeutic interventions for osteoarthritis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 122 - 122
14 Nov 2024
Tilotta V Vadalà G Giacomo GD Colaiacomo C Cicione C Ambrosio L Russo F Denaro V Papalia R
Full Access

Introduction. Osteoarthritis (OA) is a predominant chronic degenerative disease exerting a deep impact on quality of life and healthcare systems. Recent evidences suggest that pyroptosis, a programmed cell death characterized by inflammatory cytokine release, may play a significant role in modulating OA pain. The aim of the study is to investigate the potential role of extracellular vesicles derived from umbilical cord Wharton's jelly (WJ-MSC EVs) in the attenuation of the pyroptotic process on human chondrocytes (hOAC) pre-treated with synovial fluid in a 3D in vitro model. Method. EVs isolated by tangential filtration of the conditioned medium of WJ-MSCs were characterized for: morphology by TEM, surface markers by WB and size by NTA. Confocal microscopy was used to identify PKH26-labelled EVs and monitor their incorporation into hOACs. The hOACs from surgical waste material of patients undergoing knee replacement, expanded, encapsulated in alginate beads were pre-treated with synovial fluid for 24 h (SF) and subsequently co-incubated with WJ-MSC EVs. We examined viability (CCK-8), metabolic activity (MTT), nitrite production (Griess) activation of the pyroptotis (IF), DNA quantification (PicoGreen) and gene expression levels of extracellular matrix (ECM) components (qPCR). One-way ANOVA analysis was used to compare the groups under exam and data were expressed as mean ± S.D. Result. WJ-MSC EVs increased hOACs viability and metabolic activity. The production of nitrites is significantly decreased compared sample group treated with SF. WJ-MSC EVs inhibited inflammasomes NLRP3 (nucleotide-binding domain, leucine-rich repeat pyrin domain containing 3) activation. The ECM catabolic genes decreased compared to the inflamed SF group for ADAMTS-5 and MMP-1. Conclusion. Our results supported the potential use of WJ-MSC EVs as a cell-free strategy for OA, overcoming the side effects of cell-therapy. Moreover, WJ-MSC EVs are able to mitigate SF-treated hOACs pyroptotic death, attenuate ECM degradation and oxidative stress counteracting the inflamed status in OA development and progression


Bone & Joint Research
Vol. 13, Issue 10 | Pages 596 - 610
21 Oct 2024
Toegel S Martelanz L Alphonsus J Hirtler L Gruebl-Barabas R Cezanne M Rothbauer M Heuberer P Windhager R Pauzenberger L

Aims

This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated.

Methods

Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).


Aims

This study examined the relationship between obesity (OB) and osteoporosis (OP), aiming to identify shared genetic markers and molecular mechanisms to facilitate the development of therapies that target both conditions simultaneously.

Methods

Using weighted gene co-expression network analysis (WGCNA), we analyzed datasets from the Gene Expression Omnibus (GEO) database to identify co-expressed gene modules in OB and OP. These modules underwent Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment and protein-protein interaction analysis to discover Hub genes. Machine learning refined the gene selection, with further validation using additional datasets. Single-cell analysis emphasized specific cell subpopulations, and enzyme-linked immunosorbent assay (ELISA), protein blotting, and cellular staining were used to investigate key genes.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 485 - 496
13 Sep 2024
Postolka B Taylor WR Fucentese SF List R Schütz P

Aims

This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy.

Methods

Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.


Bone & Joint Research
Vol. 13, Issue 9 | Pages 462 - 473
6 Sep 2024
Murayama M Chow SK Lee ML Young B Ergul YS Shinohara I Susuki Y Toya M Gao Q Goodman SB

Bone regeneration and repair are crucial to ambulation and quality of life. Factors such as poor general health, serious medical comorbidities, chronic inflammation, and ageing can lead to delayed healing and nonunion of fractures, and persistent bone defects. Bioengineering strategies to heal bone often involve grafting of autologous bone marrow aspirate concentrate (BMAC) or mesenchymal stem cells (MSCs) with biocompatible scaffolds. While BMAC shows promise, variability in its efficacy exists due to discrepancies in MSC concentration and robustness, and immune cell composition. Understanding the mechanisms by which macrophages and lymphocytes – the main cellular components in BMAC – interact with MSCs could suggest novel strategies to enhance bone healing. Macrophages are polarized into pro-inflammatory (M1) or anti-inflammatory (M2) phenotypes, and influence cell metabolism and tissue regeneration via the secretion of cytokines and other factors. T cells, especially helper T1 (Th1) and Th17, promote inflammation and osteoclastogenesis, whereas Th2 and regulatory T (Treg) cells have anti-inflammatory pro-reconstructive effects, thereby supporting osteogenesis. Crosstalk among macrophages, T cells, and MSCs affects the bone microenvironment and regulates the local immune response. Manipulating the proportion and interactions of these cells presents an opportunity to alter the local regenerative capacity of bone, which potentially could enhance clinical outcomes.

Cite this article: Bone Joint Res 2024;13(9):462–473.


Aims

This study intended to investigate the effect of vericiguat (VIT) on titanium rod osseointegration in aged rats with iron overload, and also explore the role of VIT in osteoblast and osteoclast differentiation.

Methods

In this study, 60 rats were included in a titanium rod implantation model and underwent subsequent guanylate cyclase treatment. Imaging, histology, and biomechanics were used to evaluate the osseointegration of rats in each group. First, the impact of VIT on bone integration in aged rats with iron overload was investigated. Subsequently, VIT was employed to modulate the differentiation of MC3T3-E1 cells and RAW264.7 cells under conditions of iron overload.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 978 - 985
1 Sep 2024
Savoie III FH Delvadia BP Tate JP Winter JE Williams GH Sherman WF O’Brien MJ

Rotator cuff tears are common in middle-aged and elderly patients. Despite advances in the surgical repair of rotator cuff tears, the rates of recurrent tear remain high. This may be due to the complexity of the tendons of the rotator cuff, which contributes to an inherently hostile healing environment. During the past 20 years, there has been an increased interest in the use of biologics to complement the healing environment in the shoulder, in order to improve rotator cuff healing and reduce the rate of recurrent tears. The aim of this review is to provide a summary of the current evidence for the use of forms of biological augmentation when repairing rotator cuff tears.

Cite this article: Bone Joint J 2024;106-B(9):978–985.


The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 1021 - 1030
1 Sep 2024
Oto J Herranz R Fuertes M Plana E Verger P Baixauli F Amaya JV Medina P

Aims. Bacterial infection activates neutrophils to release neutrophil extracellular traps (NETs) in bacterial biofilms of periprosthetic joint infections (PJIs). The aim of this study was to evaluate the increase in NET activation and release (NETosis) and haemostasis markers in the plasma of patients with PJI, to evaluate whether such plasma induces the activation of neutrophils, to ascertain whether increased NETosis is also mediated by reduced DNaseI activity, to explore novel therapeutic interventions for NETosis in PJI in vitro, and to evaluate the potential diagnostic use of these markers. Methods. We prospectively recruited 107 patients in the preoperative period of prosthetic surgery, 71 with a suspicion of PJI and 36 who underwent arthroplasty for non-septic indications as controls, and obtained citrated plasma. PJI was confirmed in 50 patients. We measured NET markers, inflammation markers, DNaseI activity, haemostatic markers, and the thrombin generation test (TGT). We analyzed the ability of plasma from confirmed PJI and controls to induce NETosis and to degrade in vitro-generated NETs, and explored the therapeutic restoration of the impairment to degrade NETs of PJI plasma with recombinant human DNaseI. Finally, we assessed the contribution of these markers to the diagnosis of PJI. Results. Patients with confirmed PJI had significantly increased levels of NET markers (cfDNA (p < 0.001), calprotectin (p < 0.001), and neutrophil elastase (p = 0.022)) and inflammation markers (IL-6; p < 0.001) in plasma. Moreover, the plasma of patients with PJI induced significantly more neutrophil activation than the plasma of the controls (p < 0.001) independently of tumour necrosis factor alpha. Patients with PJI also had a reduced DNaseI activity in plasma (p < 0.001), leading to a significantly impaired degradation of NETs (p < 0.001). This could be therapeutically restored with recombinant human DNaseI to the level in the controls. We developed a model to improve the diagnosis of PJI with cfDNA, calprotectin, and the start tail of TGT as predictors, though cfDNA alone achieved a good prediction and is simpler to measure. Conclusion. We confirmed that patients with PJI have an increased level of NETosis in plasma. Their plasma both induced NET release and had an impaired ability to degrade NETs mediated by a reduced DNaseI activity. This can be therapeutically restored in vitro with the approved Dornase alfa, Pulmozyme, which may allow novel methods of treatment. A combination of NETs and haemostatic biomarkers could improve the diagnosis of PJI, especially those patients in whom this diagnosis is uncertain. Cite this article: Bone Joint J 2024;106-B(9):1021–1030


Bone & Joint Research
Vol. 13, Issue 8 | Pages 411 - 426
28 Aug 2024
Liu D Wang K Wang J Cao F Tao L

Aims. This study explored the shared genetic traits and molecular interactions between postmenopausal osteoporosis (POMP) and sarcopenia, both of which substantially degrade elderly health and quality of life. We hypothesized that these motor system diseases overlap in pathophysiology and regulatory mechanisms. Methods. We analyzed microarray data from the Gene Expression Omnibus (GEO) database using weighted gene co-expression network analysis (WGCNA), machine learning, and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis to identify common genetic factors between POMP and sarcopenia. Further validation was done via differential gene expression in a new cohort. Single-cell analysis identified high expression cell subsets, with mononuclear macrophages in osteoporosis and muscle stem cells in sarcopenia, among others. A competitive endogenous RNA network suggested regulatory elements for these genes. Results. Signal transducer and activator of transcription 3 (STAT3) was notably expressed in both conditions. Single-cell analysis pinpointed specific cells with high STAT3 expression, and microRNA (miRNA)-125a-5p emerged as a potential regulator. Experiments confirmed the crucial role of STAT3 in osteoclast differentiation and muscle proliferation. Conclusion. STAT3 has emerged as a key gene in both POMP and sarcopenia. This insight positions STAT3 as a potential common therapeutic target, possibly improving management strategies for these age-related diseases. Cite this article: Bone Joint Res 2024;13(8):411–426


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 86 - 86
19 Aug 2024
Pyrhönen H Tham J Stefansdottir A Malmgren L Rogmark C
Full Access

After a hip fracture, infections are common, but signs of infection resemble those of systemic inflammatory response to trauma and surgery, and conventional infection markers lack specificity. Plasma-calprotectin, a novel marker of neutrophil activation, has shown potential as an infection marker in ER and ICU settings. To investigate if plasma-calprotectin is superior compared to conventional infection biomarkers after hip fracture. Prospective cohort study of hip fracture patients admitted to our department. Calprotectin, procalcitonin (PCT), C-reactive protein (CRP), and white blood cell (WBC) count were measured in blood plasma upon admission and on day 3 post-surgery. Patients with infection (pneumonia, UTI, sepsis, SSI, other soft tissue infections) pre- or post-surgery were compared to a control group without infection within 30 days. Statistics: Wilcoxon rank-sum test, medians with interquartile range, and area under the curve (AUC) with 95% confidence intervals. Pilot study comprises calprotectin obtained at least once for 60 patients at admission and 48 on day 3. Mean age 84 years (SD 8.4), 65% women. 9/60 patients (23%) were admitted with infections. They had higher levels of CRP (median 111 [73-149]) and PCT (0.35 [0.18–0.86]) compared to the control group (29 [16-64], p=0.037; 0.10 [0.07–0.17], p=0.007). Calprotectin (2.67 vs 2.51) and WBC (12.2 vs 9.3) did not differ significantly. AUC was highest for PCT (0.79 [CI 0.60–0.97]), followed by CRP (0.71 [0.46–0.96]), WBC (0.60 [0.35–0.84]), and calprotectin (0.58, [0.33–0.83]). Day 3, 6/48 (13%) had infections, without significant differences between groups in any marker. The median levels were: calprotectin 3.5 vs 3.1, CRP 172 vs 104, WBC 12 vs 9, PCT 0.16 vs 0.17. Calprotectin had highest AUC 0.68 (0.41–0.93, n.s.). AUC for WBC was 0.67 (0.31–1.00), CRP 0.66 (0.38–0.94), PCT 0.56 (0.29–0.82). Preliminary data show no significant associations with postoperative infection for any of the studied biomarkers. However, plasma-calprotectin might perform slightly better compared to conventional markers


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 30 - 30
7 Aug 2024
Preece S Smith J Brookes N Ghio D
Full Access

Purpose. Cognitive Muscular Therapy (CMT) is a new treatment for low back pain which integrates psychological techniques for pain management alongside training to improve postural control. Rather than focus on postural alignment or strength, CMT aims to improve the regulation of postural tone (low-level activity which supports the body against gravity). This is achieved by teaching patients an awareness of compensatory paraspinal activation, which can be triggered by overactivity of the abdominal muscles. The aim of this study was to understand whether CMT could reduce symptoms associated with low back pain and improve paraspinal muscle activation. Methods and results. Fifteen patients with chronic low back pain received seven weekly sessions of CMT from a physiotherapist. Clinical data was captured at baseline and two weeks after the intervention using the Roland-Morris questionnaire and the pain catastrophising scale. Activation of the erector spinae muscle during walking was also measured at baseline and after the final intervention session. Change data were analysed using paired t-tests. There was a 75% reduction (p<0.001) in the Roland-Morris score from a mean (SD) of 9.3(2.9) to 2.3(2.6), along with a 78% reduction in pain catastrophising (p<0.002) from 16.6(13) to 3.7(4.8). Activation of the contralateral erector spinae muscles reduced by 30% (p<0.01) during the contralateral swing phase of walking. Conclusion. In this small sample, CMT delivered large clinical improvements and reduced activation of the low back muscles during walking. Larger randomised trials are now required to confirm whether CMT could outperform existing physiotherapy treatments for chronic back pain. Conflict of interest. No conflicts of interest. Source of funding. University of Salford