Advertisement for orthosearch.org.uk
Results 1 - 20 of 304
Results per page:
Bone & Joint Open
Vol. 5, Issue 8 | Pages 688 - 696
22 Aug 2024
Hanusrichter Y Gebert C Steinbeck M Dudda M Hardes J Frieler S Jeys LM Wessling M

Aims. Custom-made partial pelvis replacements (PPRs) are increasingly used in the reconstruction of large acetabular defects and have mainly been designed using a triflange approach, requiring extensive soft-tissue dissection. The monoflange design, where primary intramedullary fixation within the ilium combined with a monoflange for rotational stability, was anticipated to overcome this obstacle. The aim of this study was to evaluate the design with regard to functional outcome, complications, and acetabular reconstruction. Methods. Between 2014 and 2023, 79 patients with a mean follow-up of 33 months (SD 22; 9 to 103) were included. Functional outcome was measured using the Harris Hip Score and EuroQol five-dimension questionnaire (EQ-5D). PPR revisions were defined as an endpoint, and subgroups were analyzed to determine risk factors. Results. Implantation was possible in all cases with a 2D centre of rotation deviation of 10 mm (SD 5.8; 1 to 29). PPR revision was necessary in eight (10%) patients. HHS increased significantly from 33 to 72 postoperatively, with a mean increase of 39 points (p < 0.001). Postoperative EQ-5D score was 0.7 (SD 0.3; -0.3 to 1). Risk factor analysis showed significant revision rates for septic indications (p ≤ 0.001) as well as femoral defect size (p = 0.001). Conclusion. Since large acetabular defects are being treated surgically more often, custom-made PPR should be integrated as an option in treatment algorithms. Monoflange PPR, with primary iliac fixation, offers a viable treatment option for Paprosky III defects with promising functional results, while requiring less soft-tissue exposure and allowing immediate full weightbearing. Cite this article: Bone Jt Open 2024;5(8):688–696


The management of severe acetabular bone defects poses a complex challenge in revision hip arthroplasty. Although biological fixation materials are currently dominant, cage has played an important role in complex acetabular revision in the past decades, especially when a biological prosthesis is not available. The purpose of this study is to report the long-term clinical and radiographic results of Paprosky type Ⅲ acetabular bone defects revised with cage and morselized allografts. We retrospectively analyzed 45 patients who underwent revision hip arthroplasty with cage and morselized allografts between January 2007 and January 2019. Forty-three patients were followed up. There were 19 Paprosky type IIIA bone defect patients and 24 Paprosky type IIIB bone defect patients and 7 patients of the 24 were also with pelvic discontinuity. Clinical assessment included Harris Hip Score (HHS) and Short Form-12 (SF-12). Radiographic assessment included cage stability, allografts incorporation, and center of rotation. All patients were followed up with a mean follow-up of 10.6 years, HHS and SF-12 improved significantly at last follow-up in comparison to the preoperative. There were 2 re-revisions, one at 5 years after surgery, another at 13.6 years after surgery. Two patients had nonprogressive radiolucency in zone III and the junction of zone II and zone III at the bone implant interface. Allografts of 40 (93%) cases incorporated fully. The combination of cage and morselized allograft is an alternative option for acetabular revision with Paprosky type III bone defects with satisfactory long-term follow-up results


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 53 - 53
19 Aug 2024
Hellemondt van GG Colo E Faraj SSA Hooff van M Spruit M
Full Access

The objective of this study was to assess the clinical and radiological results of patients who were revised using a new generation custom-made triflange acetabular component (CTAC) for component loosening and large acetabular defect (Paprosky 3A and 3B) after previous total hip arthroplasty (THA). New generation CTACs involve the use of patient-specific drill guides and incorporate three-dimensional printed bone models, enhancing precision during surgical implantation. Data were extracted from a single centre prospective database of patients with large acetabular defects who were treated with a new generation CTAC. Patients were included if they had a minimum follow-up of five years. The modified Oxford Hip Score (mOHS), EurQol EuroQoL five-dimension three-level (EQ-5D-3L) utility, and Numeric Rating Scale (NRS), including visual analogue score (VAS) for pain, were gathered at baseline, and at two- and five-year follow-up. Reasons for revision, and radiological and clinical complications were registered. Trends over time are described and tested for significance (p<0.05). A total of 49 (70%) of 70 patients with a mean age of 73.5 years (SD 7.7) had a complete follow-up of 5 years. A significant improvement was found in HOOS, mOHS, EQ-5D-3L utility and NRS, VAS pain rest and activity between baseline and final follow-up. Complications included 8 cases with loosening screws, 4 with bony fractures, 4 periprosthetic infections and 2 cases with dislocation. One patient with bilateral pelvic discontinuity had revision surgery due to recurrent dislocations. No revision surgery was performed for screw failure or implant breakage. New generation CTAC in patients with THA acetabular loosening and massive acetabular bone loss (Paprosky 3A and 3B) can result in stable constructs and significant improvement in functioning and health-related quality of life at five years’ follow-up


The Paprosky acetabular bone defect classification system and related algorithms for acetabular reconstruction cannot properly guide cementless acetabular reconstruction in the presence of porous metal augments. We aimed to introduce a rim, points, and column (RPC)-oriented cementless acetabular reconstruction algorithm and its clinical and radiographic outcomes. A total of 123 patients (128 hips) were enrolled. A minimum 5-year radiographic follow-up was available for 96 (75.8%) hips. The mean clinical and radiographic follow-up durations were 6.8±0.9 (range: 5.2–9.2) and 6.3±1.9 (range: 5.0–9.2) years, respectively. Harris hip score (HHS) improved significantly from 35.39±9.91 preoperatively to 85.98±12.81 postoperatively (P<0.001). Among the fixation modes, 42 (32.8%) hips were reconstructed with rim fixation, 42 (32.8%) with three-point fixation without point reconstruction, 40 (31.3%) with three-point fixation combined with point reconstruction, and 4 (3.1%) with three-point fixation combined with pelvic distraction. Complementary medial wall reconstruction was performed in 20 (15.6%) patients. All acetabular components were radiographically stable. Nine-year cumulative Kaplan–Meier survival rates for 123 patients with the endpoint defined as periprosthetic joint infection, any reoperation, and dissatisfaction were 96.91% (confidence interval [CI]: 86.26%, 99.34%), 97.66% (CI: 92.91%, 99.24%), and 96.06% (CI: 86.4%, 98.89%), respectively. Cup stability in cementless acetabular reconstruction depends on rim or three-point fixation. The continuity of the anterior and posterior columns determines whether the points provide adequate stability to the cup. Medial wall reconstruction is an important complementary fixation method for rim or three-point fixation. The patients who underwent cementless acetabular reconstruction guided by the RPC decision-making algorithm demonstrated satisfactory mid-term clinical function, satisfaction levels, radiographic results, and complication rates


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_16 | Pages 18 - 18
19 Aug 2024
Sugano N Ando W Maeda Y Tamura K Uemura K Takashima K Hamada H
Full Access

In primary total hip arthroplasty (THA) for patients with Crowe II or higher classes developmental dysplasia of the hip (DDH) or rapidly destructive coxopathy (RDC), the placement of the cup can be challenging due to superior and lateral acetabular bone defects. Traditionally, bone grafts from resected femoral heads were used to fill these defects, but bulk graft poses a risk of collapse, especially in DDH with hypoplastic femoral heads or in RDC where good quality bone is scarce. Recently, porous metal augments have shown promising outcomes in revision surgeries, yet reports on their efficacy in primary THA are limited. This study retrospectively evaluated 27 patients (30 hips) who underwent primary THA using cementless cups and porous titanium acetabular augments for DDH or RDC, with follow-up periods ranging from 2 to 10 years (average 4.1 years). The cohort included 22 females (24 hips) and 5 males (6 hips), with an average age of 67 years at the time of surgery. The findings at the final follow-up showed no radiographic evidence of loosening or radiolucency around the cups and augments, indicating successful biological fixation in all cases. Clinically, there was a significant improvement in the WOMAC score from an average of 39.1±14.7 preoperatively to 5.1±6.4 postoperatively. These results suggest that the use of cementless cups and porous titanium acetabular augments in primary THA for DDH and RDC can lead to high levels of clinical improvement and reliable biological fixation, indicating their potential as a viable solution for managing challenging acetabular defects in these conditions


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 32 - 39
1 May 2024
Briem T Stephan A Stadelmann VA Fischer MA Pfirrmann CWA Rüdiger HA Leunig M

Aims

The purpose of this study was to evaluate the mid-term outcomes of autologous matrix-induced chondrogenesis (AMIC) for the treatment of larger cartilage lesions and deformity correction in hips suffering from symptomatic femoroacetabular impingement (FAI).

Methods

This single-centre study focused on a cohort of 24 patients with cam- or pincer-type FAI, full-thickness femoral or acetabular chondral lesions, or osteochondral lesions ≥ 2 cm2, who underwent surgical hip dislocation for FAI correction in combination with AMIC between March 2009 and February 2016. Baseline data were retrospectively obtained from patient files. Mid-term outcomes were prospectively collected at a follow-up in 2020: cartilage repair tissue quality was evaluated by MRI using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. Patient-reported outcome measures (PROMs) included the Oxford Hip Score (OHS) and Core Outcome Measure Index (COMI). Clinical examination included range of motion, impingement tests, and pain.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 54 - 58
1 May 2024
Wassilew GI Zimmerer A Fischer M Nonnenmacher L O'Hara L Hube R

Aims. The use of a porous metal shell supported by two augments with the ‘footing’ technique is one solution to manage Paprosky IIIB acetabular defects in revision total hip arthroplasty. The aim of this study was to assess the medium-term implant survival and radiological and clinical outcomes of this technique. Methods. We undertook a retrospective, two-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the ‘footing’ technique for Paprosky IIIB acetabular defects between 2007 and 2020. The median age at the time of surgery was 64.4 years (interquartile range (IQR) 54.4 to 71.0). The median follow-up was 3.9 years (IQR 3.1 to 7.0). Results. The cumulative medium-term survival of the acetabular construct was 89%. Two hips (5.1%) required further revision due to shell loosening, one hip (2.6%) due to shell dislocation, and one hip (2.6%) due to infection. The median Harris Hip Score improved significantly from 47 points (IQR 41.5 to 54.9) preoperatively to 80 points (IQR 73.5 to 88.6) at the latest follow-up (p < 0.001). Conclusion. The reconstruction of Paprosky IIIB acetabular defects with porous tantalum shells and two augments using the ‘footing’ technique showed excellent medium-term results. It is a viable option for treating these challenging defects. Cite this article: Bone Joint J 2024;106-B(5 Supple B):54–58


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 47 - 53
1 May 2024
Jones SA Parker J Horner M

Aims. The aims of this study were to determine the success of a reconstruction algorithm used in major acetabular bone loss, and to further define the indications for custom-made implants in major acetabular bone loss. Methods. We reviewed a consecutive series of Paprosky type III acetabular defects treated according to a reconstruction algorithm. IIIA defects were planned to use a superior augment and hemispherical acetabular component. IIIB defects were planned to receive either a hemispherical acetabular component plus augments, a cup-cage reconstruction, or a custom-made implant. We used national digital health records and registry reports to identify any reoperation or re-revision procedure and Oxford Hip Score (OHS) for patient-reported outcomes. Implant survival was determined via Kaplan-Meier analysis. Results. A total of 105 procedures were carried out in 100 patients (five bilateral) with a mean age of 73 years (42 to 94). In the IIIA defects treated, 72.0% (36 of 50) required a porous metal augment; the remaining 14 patients were treated with a hemispherical acetabular component alone. In the IIIB defects, 63.6% (35 of 55) underwent reconstruction as planned with 20 patients who actually required a hemispherical acetabular component alone. At mean follow-up of 7.6 years, survival was 94.3% (95% confidence interval 97.4 to 88.1) for all-cause revision and the overall dislocation rate was 3.8% (4 of 105). There was no difference observed in survival between type IIIA and type IIIB defects and whether a hemispherical implant alone was used for the reconstruction or not. The mean gain in OHS was 16 points. Custom-made implants were only used in six cases, in patients with either a mega-defect in which the anteroposterior diameter > 80 mm, complex pelvic discontinuity, and massive bone loss in a small pelvis. Conclusion. Our findings suggest that a reconstruction algorithm can provide a successful approach to reconstruction in major acetabular bone loss. The use of custom implants has been defined in this series and accounts for < 5% of cases. Cite this article: Bone Joint J 2024;106-B(5 Supple B):47–53


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 82 - 88
1 May 2024
Villa JM Rajschmir K Hosseinzadeh S Manrique-Succar J Grieco P Higuera-Rueda CA Riesgo AM

Aims. Large bone defects resulting from osteolysis, fractures, osteomyelitis, or metastases pose significant challenges in acetabular reconstruction for total hip arthroplasty. This study aimed to evaluate the survival and radiological outcomes of an acetabular reconstruction technique in patients at high risk of reconstruction failure (i.e. periprosthetic joint infection (PJI), poor bone stock, immunosuppressed patients), referred to as Hip Reconstruction In Situ with Screws and Cement (HiRISC). This involves a polyethylene liner embedded in cement-filled bone defects reinforced with screws and/or plates for enhanced fixation. Methods. A retrospective chart review of 59 consecutive acetabular reconstructions was performed by four surgeons in a single institution from 18 October 2018 to 5 January 2023. Cases were classified based on the Paprosky classification, excluding type 1 cases (n = 26) and including types 2 or 3 for analysis (n = 33). Radiological loosening was evaluated by an orthopaedic surgeon who was not the operating surgeon, by comparing the immediate postoperative radiographs with the ones at latest follow-up. Mean follow-up was 557 days (SD 441; 31 to 1,707). Results. Out of the 33 cases analyzed, six (18.2%) constructs required revision, with four revisions due to uncontrolled infection, one for dislocation, and one for aseptic loosening. Among the 27 non-revised constructs, only one showed wider radiolucencies compared to immediate postoperative radiographs, indicating potential loosening. Patients who underwent revision (n = 6) were significantly younger and had a higher BMI compared to those with non-revised constructs (p = 0.016 and p = 0.026, respectively). Sex, race, ethnicity, American Society of Anesthesiologists grade, infection status (patients with postoperative PJI diagnosis (septic) vs patients without such diagnosis (aseptic)), and mean follow-up did not significantly differ between revised and non-revised groups. Conclusion. The HiRISC technique may serve as a feasible short-term (about one to two years) alternative in patients with large acetabular defects, particularly in cases of PJI. Longer follow-up is necessary to establish the long-term survival of this technique. Cite this article: Bone Joint J 2024;106-B(5 Supple B):82–88


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims. The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling. Methods. Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants. Results. The median amount of bone removed for TMARS reconstructions was significantly greater than for CTAC implants (9.07 cm. 3. (interquartile range (IQR) 5.86 to 21.42) vs 1.16 cm. 3. (IQR 0.42 to 3.53) (p = 0.004). There was no significant difference between the median overall implant-bone apposition between TMARS reconstructions and CTAC implants (54.8 cm. 2. (IQR 28.2 to 82.3) vs 56.6 cm. 2. (IQR 40.6 to 69.7) (p = 0.683). However, there was significantly more implant-bone apposition within the residual acetabulum (45.2 cm. 2. (IQR 28.2 to 72.4) vs 25.5 cm. 2. (IQR 12.8 to 44.1) (p = 0.001) and conversely significantly less apposition with the outer cortex of the pelvis for TMARS implants compared with CTAC reconstructions (0 cm. 2. (IQR 0 to 13.1) vs 23.2 cm. 2. (IQR 16.4 to 30.6) (p = 0.009). The mean centre of rotation of the hip of TMARS reconstructions differed by a mean of 11.1 mm (3 to 28) compared with CTAC implants. Conclusion. In using TMARS, more bone is removed, thus achieving more implant-bone apposition within the residual acetabular bone. In CTAC implants, the amount of bone removed is minimal, while the implant-bone apposition is more evenly distributed between the residual acetabulum and the outer cortex of the pelvis. The differences suggest that these implants used to treat pelvic discontinuity might achieve short- and long-term stability through different biomechanical mechanisms. Cite this article: Bone Joint J 2024;106-B(5 Supple B):74–81


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 66 - 73
1 May 2024
Chaudhry F Daud A Greenberg A Braunstein D Safir OA Gross AE Kuzyk PR

Aims. Pelvic discontinuity is a challenging acetabular defect without a consensus on surgical management. Cup-cage reconstruction is an increasingly used treatment strategy. The present study evaluated implant survival, clinical and radiological outcomes, and complications associated with the cup-cage construct. Methods. We included 53 cup-cage construct (51 patients) implants used for hip revision procedures for pelvic discontinuity between January 2003 and January 2022 in this retrospective review. Mean age at surgery was 71.8 years (50.0 to 92.0; SD 10.3), 43/53 (81.1%) were female, and mean follow-up was 6.4 years (0.02 to 20.0; SD 4.6). Patients were implanted with a Trabecular Metal Revision Shell with either a ZCA cage (n = 12) or a TMARS cage (n = 40, all Zimmer Biomet). Pelvic discontinuity was diagnosed on preoperative radiographs and/or intraoperatively. Kaplan-Meier survival analysis was performed, with failure defined as revision of the cup-cage reconstruction. Results. The five-year all-cause survival for cup-cage reconstruction was 73.4% (95% confidence interval (CI) 61.4 to 85.4), while the ten- and 15-year survival was 63.7% (95% CI 46.8 to 80.6). Survival due to aseptic loosening was 93.4% (95% CI 86.2 to 100.0) at five, ten, and 15 years. The rate of revision for aseptic loosening, infection, and dislocation was 3/53 (5.7%), 7/53 (13.2%), and 6/53 (11.3%), respectively. The mean leg length discrepancy improved (p < 0.001) preoperatively from a mean of 18.2 mm (0 to 80; SD 15.8) to 7.0 mm (0 to 35; SD 9.8) at latest follow-up. The horizontal and vertical hip centres improved (p < 0.001) preoperatively from a mean of 9.2 cm (5.6 to 17.5; SD 2.3) to 10.1 cm (6.2 to 13.4; SD 2.1) and 9.3 cm (4.7 to 15.8; SD 2.5) to 8.0 cm (3.7 to 12.3; SD 1.7), respectively. Conclusion. Cup-cage reconstruction provides acceptable outcomes in the management of pelvic discontinuity. One in four constructs undergo revision within five years, most commonly for periprosthetic joint infection, dislocation, or aseptic loosening. Cite this article: Bone Joint J 2024;106-B(5 Supple B):66–73


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 1 - 2
1 May 2024
Berry DJ Haddad FS


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 359 - 364
1 Apr 2024
Özdemir E de Lange B Buckens CFM Rijnen WHC Visser J

Aims

To investigate the extent of bone development around the scaffold of custom triflange acetabular components (CTACs) over time.

Methods

We performed a single-centre historical prospective cohort study, including all patients with revision THA using the aMace CTAC between January 2017 and March 2021. A total of 18 patients (18 CTACs) were included. Models of the hemipelvis and the scaffold component of the CTACs were created by segmentation of CT scans. The CT scans were performed immediately postoperatively and at least one year after surgery. The amount of bone in contact with the scaffold was analyzed at both times, and the difference was calculated.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity.

Cite this article: Bone Joint J 2024;106-B(4):312–318.


Bone & Joint Open
Vol. 5, Issue 4 | Pages 260 - 268
1 Apr 2024
Broekhuis D Meurs WMH Kaptein BL Karunaratne S Carey Smith RL Sommerville S Boyle R Nelissen RGHH

Aims

Custom triflange acetabular components (CTACs) play an important role in reconstructive orthopaedic surgery, particularly in revision total hip arthroplasty (rTHA) and pelvic tumour resection procedures. Accurate CTAC positioning is essential to successful surgical outcomes. While prior studies have explored CTAC positioning in rTHA, research focusing on tumour cases and implant flange positioning precision remains limited. Additionally, the impact of intraoperative navigation on positioning accuracy warrants further investigation. This study assesses CTAC positioning accuracy in tumour resection and rTHA cases, focusing on the differences between preoperative planning and postoperative implant positions.

Methods

A multicentre observational cohort study in Australia between February 2017 and March 2021 included consecutive patients undergoing acetabular reconstruction with CTACs in rTHA (Paprosky 3A/3B defects) or tumour resection (including Enneking P2 peri-acetabular area). Of 103 eligible patients (104 hips), 34 patients (35 hips) were analyzed.


Bone & Joint Open
Vol. 4, Issue 12 | Pages 932 - 941
6 Dec 2023
Oe K Iida H Otsuki Y Kobayashi F Sogawa S Nakamura T Saito T

Aims

Although there are various pelvic osteotomies for acetabular dysplasia of the hip, shelf operations offer effective and minimally invasive osteotomy. Our study aimed to assess outcomes following modified Spitzy shelf acetabuloplasty.

Methods

Between November 2000 and December 2016, we retrospectively evaluated 144 consecutive hip procedures in 122 patients a minimum of five years after undergoing modified Spitzy shelf acetabuloplasty for acetabular dysplasia including osteoarthritis (OA). Our follow-up rate was 92%. The mean age at time of surgery was 37 years (13 to 58), with a mean follow-up of 11 years (5 to 21). Advanced OA (Tönnis grade ≥ 2) was present preoperatively in 16 hips (11%). The preoperative lateral centre-edge angle ranged from -28° to 25°. Survival was determined by Kaplan-Meier analysis, using conversions to total hip arthroplasty as the endpoint. Risk factors for joint space narrowing less than 2 mm were analyzed using a Cox proportional hazards model.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 2 - 2
23 Jun 2023
Hube R Zimmerer A Nonnenmacher L Najfeld M Fischer M Wassilew GI
Full Access

The use of trabecular metal (TM.) shells supported by two TM augments in the footing technique has been described as a potential option for the treatment of Paprosky 3B acetabular defects. The aim of this study was to assess the mid implant survivorship and radiological and clinical outcomes after acetabular revision using this technique. We undertook a retrospective, double-centre series of 39 hips in 39 patients (15 male, 24 female) treated with the footing technique using a TM shell supported by two TM augments, for severe acetabular bone loss between 2007 and 2020. The mean age at the time of surgery was 62,9 (28 to 86) years. The mean follow-up was 5,4 (1,5 to 15) years. The cumulative mid survivorship of the implant with revision for any cause was 89%. 3 hips (7,6%) required further revision due to aseptic loosening, and 1 (2,8%) required revision for infection. The mean Harris Hip Score improved significantly from 48 (29 to 65) preoperatively to 79 points (62 to 98) at the latest follow-up (p < 0.001). The reconstruction of Paprosky 3B acetabular defects with TM shells and two augments in footing-technique showed excellent mid-term results. This technique appears to be a viable option for treating these defects


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 3 - 3
23 Jun 2023
Berdis GE Couch CG Larson DR Bedard NA Berry DJ Lewallen DG Abdel MP
Full Access

Cup-cage constructs are one of several methods commonly used to treat severe acetabular bone loss during contemporary revision total hip arthroplasty. The purpose of this study was to provide a long-term results of the technique with emphasis on implant survivorship, radiographic results, and clinical outcomes for both full and half cup-cage reconstructions. We identified 57 patients treated with a cup-cage reconstruction for major acetabular bone loss between 2002–2012. All patients had Paprosky Type 2B through 3B bone loss, with 60% having an associated pelvic discontinuity. Thirty-one patients received a full cup-cage construct, and 26 a half cup-cage. Mean age at reconstruction was 66 years, 75% were female, and the mean BMI was 27 kg/m. 2. Mean follow-up was 10 years. The 10-year cumulative incidences of any revision were 14% and 12% for the full and half cup-cage construct groups, respectively. Of the 9 revisions, 3 were for dislocation, 2 for aseptic loosening and construct failure (both were pelvic discontinuities), 1 for adverse local tissue reaction, and 1 for infection with persistent pelvic discontinuity. The 10-year cumulative incidences of revision for aseptic loosening were 4.5% and 5% for the full and half cup-cage constructs, respectively. Of the unrevised cases, incomplete and non-progressive zone 3 radiolucent lines were observed in 10% of patients in each group. Three patients experienced partial motor and sensory sciatic nerve palsies (2 in the full and 1 in the half cup-cage group). Both the full and half cup-cage cohorts demonstrated significantly improved Harris hip scores. Full and half cup-cage reconstructions for major acetabular defects were successful at 10 years in regards to acetabular fixation without appreciable differences between the two techniques. However, zone 3 radiolucent lines were not uncommon in association with discontinuities, and dislocation continues to be a problem


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 5 - 5
23 Jun 2023
Higuera CA Villa JM Rajschmir K Grieco P Manrique-Succar J Riesgo AM
Full Access

Osteolysis, fractures, and bone destruction caused by osteomyelitis or metastasis can cause large bone defects and present major challenges during acetabular reconstruction in total hip arthroplasty. We sought to evaluate the survivorship and radiographic outcomes of an acetabular reconstruction consisting of a polyethylene liner (semi-constrained) embedded in cement filling bone defect(s) reinforced with screws and/or plates for enhanced fixation (HiRISC). Retrospective chart review of 59 consecutive acetabular reconstructions as described above performed by 4 surgeons in a single institution (10/18/2018-1/5/2023) was performed. After radiographs and operative reports were reviewed, cases were classified following the Paprosky classification for acetabular defects. Paprosky type 1 cases (n=26) were excluded, while types 2/3 (n=33) were included for analysis. Radiographic loosening was evaluated up to latest follow-up. Mean follow-up was: 487 days (range, 20–1,539 days). Out of 33 cases, 2 (6.1%) cases were oncological (metastatic disease) and 22 (66.7%) had deep infection diagnosis (i.e., periprosthetic joint infection [PJI] or septic arthritis). In total, 7 (21.2%) reconstructions were performed on native acetabula (3 septic, 4 aseptic). At a mean follow-up of 1.3 years, 5 (15.2%) constructs were revised: 4 due to uncontrolled infection (spacer exchange) and 1 for instability. On follow-up radiographs, only 1 non-revised construct showed increased radiolucencies, but no obvious loosening. When compared to patients with non-revised constructs, those who underwent revision (n=5) were significantly younger (mean 73.8 vs. 60.6 years, p=0.040) and had higher body mass index (24.1 vs. 31.0 Kg/m. 2. , p=0.045), respectively. Sex, race, ethnicity, American-Society-of-Anesthesiologist classification, infection diagnosis status (septic/aseptic), and mean follow-up (449.3 vs. 695.6 days, respectively, p=0.189) were not significantly different between both groups. HiRISC construct may be a viable short-term alternative to more expensive implants to treat large acetabular defects, particularly in the setting of PJI. Longer follow up is needed to establish long term survivorship


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 29 - 29
23 Jun 2023
Briem T Stadelmann VA Rüdiger HA Leunig M
Full Access

Femoroacetabular impingement is a prearthritic deformity frequently associated with early chondral damage. Several techniques exist for restoring larger cartilage defects. While AMIC proved to be an effective treatment in knee and ankle, there are only short-term data available in hip. This study aimed to investigate the mid-term clinical outcome of patients with chondral lesions treated by AMIC and evaluate the quality of repair tissue via MRI. This retrospective, single center study includes 18 patients undergoing surgical hip dislocation for FAI between 2013 and 2016. Inclusion criteria were: cam or pincer-type FAI, femoral or acetabular chondral lesions > 1 cm. 2. , (IRCS III-IV). Due to exclusion criteria and loss-to-follow-up 9 patients (10 hips) could be included. Patient reported outcome measures included Oxford Hip Score (OHS) & Core Outcome Measure Index (COMI)). MRIs were evaluated using the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score. None of the patients underwent revision surgery except screw removals from the greater trochanter. Followup data indicate a satisfactory to good hip function at 5 years: PROMS improved from pre- to postop at 5 years: OHS from 38.1 to 43.4, COMI from to 1.8 and UCLA from 4 to 8.1 respectively. MOCART score was 67.5 postoperatively. Subgrouping showed slightly better results for acetabular defects (Ø 69.4) compared femoral defects (Ø 60). Based on the reported mid-term results, we consider AMIC as a valuable treatment option for larger chondral defects of the hip