Advertisement for orthosearch.org.uk
Results 1 - 20 of 88
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_5 | Pages 9 - 9
23 Apr 2024
Ramlawi AA McClure P Assayag M
Full Access

Introduction

The practice of limb lengthening using intramedullary nails has surged in popularity in recent years. Our study explores the relationship between femur lengthening and overall height gain in adults undergoing cosmetic limb lengthening with telescoping magnetic intramedullary lengthening nails (MILNs).

Materials & Methods

Demographic information, pre- and postoperative radiographic data, and secondary outcomes, such as mechanical angles and sagittal alignment, were analyzed for 42 adult femurs MILNs (PRECICE 2, NuVasive, Inc.). Height was assessed with a digital stadiometer. Limb lengthening was defined as the amount of nail distraction seen on a calibrated weight bearing X-ray at consolidation. mLDFA, mMPTA, MAD, AMA, and femoral sagittal bow were evaluated as secondary outcomes.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 15 - 15
2 Jan 2024
Costa B Alves P Fonseca D Campos F Monteiro AC Pereira R Costa F Gomes P Martínez-de-Tejada G Monteiro C Martins M
Full Access

Orthopedic Device-Related Infections (ODRIs) are a major medical challenge, particularly due to the involvement of biofilm-encased and multidrug-resistant bacteria. Current treatments, based on antibiotic administration, have proven to be ineffective. Consequently, there is a need for antibiotic-free alternatives. Antimicrobial peptides (AMPs) are a promising solution due to their broad-spectrum of activity, high efficacy at very low concentrations, and low propensity to induce resistance. We aim to develop a new AMP-based chitosan nanogel to be injected during orthopedic device implantation to prevent ODRIs. Chitosan was functionalized with norbornenes (NorChit) through the reaction with carbic anhydride and then, a cysteine-modified AMP, Dhvar5, a peptide with potent antibacterial activity, even against methicillin-resistant Staphylococcus aureus (MRSA), was covalently conjugated to NorChit (NorChit- Dhvar5), through a thiol-norbornene photoclick chemistry (UV= 365 nm). For NorChit-Dhvar5 nanogels production, the NorChit-Dhvar5 solution (0.15% w/v) and Milli-Q water were injected separately into microfluidic system. The nanogels were characterized regarding size, concentration, and shape, using Transmission Electron Microscopy (TEM), Nanoparticle Tracking Analysis (NTA) and Dynamic light scattering (DLS). The nanogels antibacterial properties were assessed in Phosphate Buffer (PBS) for 6 h, against four relevant microorganisms (Pseudomonas aeruginosa, S. aureus and MRSA, and in Muller- Hinton Broth (MHB), 50% (v/v) in PBS, supplemented with human plasma (1% (v/v)), for 6 and 24 h against MRSA. The obtained NorChit-Dhvar5 nanogels, presented a round-shaped and ∼100 nm. NorChit- Dhvar5 nanogels in a concentration of 10. 10. nanogels/mL in PBS were capable of reducing the initial inoculum of P. aeruginosa by 99%, S. aureus by 99%, and MRSA by 90%. These results were corroborated by a 99% MRSA reduction, after 24 h in medium. Furthermore, NorChit-Dhvar5 nanogels do not demonstrate signs of cytotoxicity against MC3T3-E1 cells (a pre-osteoblast cell line) after 14 days, having high potential to prevent antibiotic-resistant infection in the context of ODRIs


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 65 - 65
17 Nov 2023
Khatib N Schmidtke L Lukens A Arichi T Nowlan N Kainz B
Full Access

Abstract. Objectives. Neonatal motor development transitions from initially spontaneous to later increasingly complex voluntary movements. A delay in transitioning may indicate cerebral palsy (CP). The general movement optimality score (GMOS) evaluates infant movement variety and is used to diagnose CP, but depends on specialized physiotherapists, is time-consuming, and is subject to inter-observer differences. We hypothesised that an objective means of quantifying movements in young infants using motion tracking data may provide a more consistent early diagnosis of CP and reduce the burden on healthcare systems. This study assessed lower limb kinematic and muscle force variances during neonatal infant kicking movements, and determined that movement variances were associated with GMOS scores, and therefore CP. Methods. Electromagnetic motion tracking data (Polhemus) was collected from neonatal infants performing kicking movements (min 50° knee extension-flexion, <2 seconds) in the supine position over 7 minutes. Tracking data from lower limb anatomical landmarks (midfoot inferior, lateral malleolus, lateral knee epicondyle, ASIS, sacrum) were applied to subject-scaled musculoskeletal models (Gait2354_simbody, OpenSim). Inverse kinematics and static optimisation were applied to estimate lower limb kinematics (knee flexion, hip flexion, hip adduction) and muscle forces (quadriceps femoris, biceps femoris) for isolated kicks. Functional principal component analysis (fPCA) was carried out to reduce kicking kinematic and muscle force waveforms to PC scores capturing ‘modes’ of variance. GMOS scores (lower scores = reduced variety of movement) were collected in parallel with motion capture by a trained operator and specialised physiotherapist. Pearson's correlations were performed to assess if the standard deviation (SD) of kinematic and muscle force waveform PC scores, representing the intra-subject variance of movement or muscle activation, were associated with the GMOS scores. Results. The study compared GMOS scores, kinematics, and muscle force variances from a total of 26 infants with a mean corrected gestational age of 39.7 (±3.34) weeks and GMOS scores between 21 and 40. There was a significant association between the SD of the PC scores for knee flexion and the GMOS scores (PC1: R = 0.59, p = 0.002; PC2: R = 0.49, p = 0.011; PC3: R = 0.56, p = 0.003). The three PCs captured variances of the overall flexion magnitude (66% variance explained), early-to-late kick knee extension (20%), and continual to biphasic kicking (6%). For hip flexion, only the SD of PC1 correlated with GMOS scores (PC1: R = 0.52, p = 0.0068), which captured the variance of the overall flexion magnitude (81%). For the biceps femoris, the SD of PC1 and PC3 associated with GMOS scores (PC1: R = 0.50, p = 0.002; PC3: R = 0.45, p = 0.03), which captured the variance of the overall bicep force magnitude (79%) and early-to-late kick bicep activation (8%). Conclusions. Infants with reduced motor development as scored in the GMOS displayed reduced variances of knee and hip flexion and biceps femoris activation across kicking cycles. These findings suggest that combining objectively measured movement variances with existing classification methods could facilitate the development of more consistent and accurate diagnostic tools for early detection of CP. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 17 - 17
1 Dec 2021
Shuttleworth M Vickers O Isaac G Culmer P Williams S Kay R
Full Access

Abstract

Objectives

Dual mobility (DM) hip implants whereby the polyethylene liner is “free-floating” are being used increasingly clinically. The motion of the liner is not well understood and this may provide insight into failure mechanisms; however, there are no published methods on tracking liner motion while testing under clinically relevant conditions. The aim was to develop and evaluate a bespoke inertial tracking system for DM implants that could operate submerged in lubricant without line-of-sight and provide 3D orientation information.

Methods

Trackers (n=5) adhered to DM liners were evaluated using a robotic arm and a six-degree of freedom anatomical hip simulator. Before each set of testing the onboard sensor suites were calibrated to account for steady-state and non-linearity errors. The trackers were subjected to ranges of motion from ±5° to ±25° and cycle frequencies from 0.35Hz to 1.25Hz and the outputs used to find the absolute error at the peak angle for each principle axis. In total each tracker was evaluated for ten unique motion profiles with each sequence lasting 60 cycles.


The Bone & Joint Journal
Vol. 103-B, Issue 3 | Pages 462 - 468
1 Mar 2021
Mendel T Schenk P Ullrich BW Hofmann GO Goehre F Schwan S Klauke F

Aims

Minimally invasive fixation of pelvic fragility fractures is recommended to reduce pain and allow early mobilization. The purpose of this study was to evaluate the outcome of two different stabilization techniques in bilateral fragility fractures of the sacrum (BFFS).

Methods

A non-randomized, prospective study was carried out in a level 1 trauma centre. BFFS in 61 patients (mean age 80 years (SD 10); four male, 57 female) were treated surgically with bisegmental transsacral stablization (BTS; n = 41) versus spinopelvic fixation (SP; n = 20). Postoperative full weightbearing was allowed. The outcome was evaluated at two timepoints: discharge from inpatient treatment (TP1; Fitbit tracking, Zebris stance analysis), and ≥ six months (TP2; Fitbit tracking, Zebris analysis, based on modified Oswestry Disability Index (ODI), Majeed Score (MS), and the 12-Item Short Form Survey 12 (SF-12). Fracture healing was assessed by CT. The primary outcome parameter of functional recovery was the per-day step count; the secondary parameter was the subjective outcome assessed by questionnaires.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 78 - 78
1 Dec 2020
Dandois F Taylan O D'hooge J Vandenneucker H Slane L Scheys L
Full Access

In-situ assessment of collateral ligaments strain could be key to improving total knee arthroplasty outcomes by improving the ability of surgeons to properly balance the knee intraoperatively. Ultrasound (US) speckle tracking methods have shown promise in their capability to measure in-situ soft tissue strain in large tendons but prior work has also highlighted the challenges that arise when attempting to translate these approaches to the in-situ assessment of collateral ligaments strain. Therefore, the aim of this project was to develop and validate an US speckle tracking method to specifically assess in-situ strains of both the MCL and LCL. We hypothesize that coefficients of determination (R2) would be above 0.90 with absolute differences below 0.50% strain for the comparison between US-based and the reference strain, with better results expected for the LCL compared with the MCL.

Five cadaveric legs with total knee implants (NH019 2017-02-03) were submitted to a varus (LCL) and valgus (MCL) ramped loading (0 – 40N). Ultrasound radiofrequency (rf) data and reference surface strains data, obtained with 3D digital image correlation (DIC), were collected synchronously. Prior to processing, US data were qualitatively assessed and specimens displaying substantial imaging artefacts were discarded, leaving five LCL and three MCL specimens in the analysis. Ultrasound rf data were processed in Matlab (The MathWorks, Inc., Natick, MA) with a custom-built speckle tracking approach adapted from a method validated on larger tendons and based on normalized cross-correlation. Digital image correlation data were processed with commercial software VIC3D (Correlated Solutions, Inc., Columbia, SC). To optimize speckle tracking, several tracking parameters were tested: kernel and search window size, minimal correlation coefficient and simulated frame rate. Parameters were ranked according to three comparative measures between US- and DIC-based strains: R2, mean absolute error and strains differences at 40N. Parameters with best average rank were considered as optimal.

To quantify the agreement between US- and DIC-based strain of each specimen, the considered metrics were: R2, mean absolute error and strain differences at 40N. The LCL showed a good agreement with a high average R2 (0.97), small average mean absolute difference (0.37%) and similar strains at 40N (DIC = 2.92 ± 0.10%; US = 2.99 ± 1.16%). The US-based speckle tracking method showed worse performance for the MCL with a lower average correlation (0.55). Such an effect has been observed previously and may relate to the difficulty in acquiring sufficient image quality for tracking the MCL compared to the LCL, which likely arises due to structural or mechanical differences; notably MCL is larger, thinner, more wrapped around the bone and stretches less. However, despite these challenges, the MCL tracking still showed small average mean absolute differences (0.44%) and similar strains at 40N (DIC = 1.48 ± 0.06%; US = 1.44 ± 1.89%).

We conclude that the ultrasound speckle tracking method developed is ready to be used as a tool to assess in-situ strains of LCL. Concerning the MCL strain assessment, despite some promising results in terms of strain differences, further work on acquisition could be beneficial to reach similar performance.


The Bone & Joint Journal
Vol. 102-B, Issue 10 | Pages 1324 - 1330
3 Oct 2020
Herregodts S Verhaeghe M Paridaens R Herregodts J Vermue H Arnout N De Baets P Victor J

Aims

Inadvertent soft tissue damage caused by the oscillating saw during total knee arthroplasty (TKA) occurs when the sawblade passes beyond the bony boundaries into the soft tissue. The primary objective of this study is to assess the risk of inadvertent soft tissue damage during jig-based TKA by evaluating the excursion of the oscillating saw past the bony boundaries. The second objective is the investigation of the relation between this excursion and the surgeon’s experience level.

Methods

A conventional jig-based TKA procedure with medial parapatellar approach was performed on 12 cadaveric knees by three experienced surgeons and three residents. During the proximal tibial resection, the motion of the oscillating saw with respect to the tibia was recorded. The distance of the outer point of this cutting portion to the edge of the bone was defined as the excursion of the oscillating saw. The excursion of the sawblade was evaluated in six zones containing the following structures: medial collateral ligament (MCL), posteromedial corner (PMC), iliotibial band (ITB), lateral collateral ligament (LCL), popliteus tendon (PopT), and neurovascular bundle (NVB).


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_8 | Pages 48 - 48
1 Aug 2020
Burns D
Full Access

Participation in a physical therapy program is considered one of the greatest predictors for successful conservative management of common shoulder disorders, however, adherence to standard exercise protocols is often poor (around 50%) and typically worse for unsupervised home exercise programs. Currently, there are limited tools available for objective measurement of adherence and performance of shoulder rehabilitation in the home setting. The goal of this study was to develop and evaluate the potential for performing home shoulder physiotherapy monitoring using a commercial smartwatch. We hypothesize that shoulder physiotherapy exercises can be classified by analyzing the temporal sequence of inertial sensor outputs from a smartwatch worn on the extremity performing the exercise.

Twenty healthy adult subjects with no prior shoulder disorders performed seven exercises from a standard evidence-based rotator cuff physiotherapy protocol: pendulum, abduction, forward elevation, internal/external rotation and trapezius extension with a resistance band, and a weighted bent-over row. Each participant performed 20 repetitions of each exercise bilaterally under the supervision of an orthopaedic surgeon, while 6-axis inertial sensor data was collected at 50 Hz from an Apple Watch. Using the scikit-learn and keras platforms, four supervised learning algorithms were trained to classify the exercises: k-nearest neighbour (k-NN), random forest (RF), support vector machine classifier (SVC), and a deep convolutional recurrent neural network (CRNN). Algorithm performance was evaluated using 5-fold cross-validation stratified first temporally and then by subject.

Categorical classification accuracy was above 94% for all algorithms on the temporally stratified cross validation, with the best performance achieved by the CRNN algorithm (99.4± 0.2%). The subject stratified cross validation, which evaluated classifier performance on unseen subjects, yielded lower accuracies scores again with CRNN performing best (88.9 ± 1.6%).

This proof-of concept study demonstrates the feasibility of a smartwatch device and machine learning approach to more easily monitor and assess the at-home adherence of shoulder physiotherapy exercise protocols. Future work will focus on translation of this technology to the clinical setting and evaluating exercise classification in shoulder disorder populations.


The Bone & Joint Journal
Vol. 102-B, Issue 7 Supple B | Pages 99 - 104
1 Jul 2020
Shah RF Bini S Vail T

Aims

Natural Language Processing (NLP) offers an automated method to extract data from unstructured free text fields for arthroplasty registry participation. Our objective was to investigate how accurately NLP can be used to extract structured clinical data from unstructured clinical notes when compared with manual data extraction.

Methods

A group of 1,000 randomly selected clinical and hospital notes from eight different surgeons were collected for patients undergoing primary arthroplasty between 2012 and 2018. In all, 19 preoperative, 17 operative, and two postoperative variables of interest were manually extracted from these notes. A NLP algorithm was created to automatically extract these variables from a training sample of these notes, and the algorithm was tested on a random test sample of notes. Performance of the NLP algorithm was measured in Statistical Analysis System (SAS) by calculating the accuracy of the variables collected, the ability of the algorithm to collect the correct information when it was indeed in the note (sensitivity), and the ability of the algorithm to not collect a certain data element when it was not in the note (specificity).


Bone & Joint 360
Vol. 9, Issue 2 | Pages 3 - 6
1 Apr 2020
Myint Y Ollivere B


Bone & Joint 360
Vol. 9, Issue 1 | Pages 47 - 50
1 Feb 2020


Bone & Joint Research
Vol. 8, Issue 7 | Pages 313 - 322
1 Jul 2019
Law GW Wong YR Yew AK Choh ACT Koh JSB Howe TS

Objectives

The paradoxical migration of the femoral neck element (FNE) superomedially against gravity, with respect to the intramedullary component of the cephalomedullary device, is a poorly understood phenomenon increasingly seen in the management of pertrochanteric hip fractures with the intramedullary nail. The aim of this study was to investigate the role of bidirectional loading on the medial migration phenomenon, based on unique wear patterns seen on scanning electron microscopy of retrieved implants suggestive of FNE toggling.

Methods

A total of 18 synthetic femurs (Sawbones, Vashon Island, Washington) with comminuted pertrochanteric fractures were divided into three groups (n = 6 per group). Fracture fixation was performed using the Proximal Femoral Nail Antirotation (PFNA) implant (Synthes, Oberdorf, Switzerland; n = 6). Group 1 was subjected to unidirectional compression loading (600 N), with an elastomer (70A durometer) replacing loose fracture fragments to simulate surrounding soft-tissue tensioning. Group 2 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading), also with the elastomer replacing loose fracture fragments. Group 3 was subjected to bidirectional loading (600 N compression loading, 120 N tensile loading) without the elastomer. All constructs were tested at 2 Hz for 5000 cycles or until cut-out occurred. The medial migration distance (MMD) was recorded at the end of the testing cycles.


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_5 | Pages 123 - 123
1 Apr 2019
Doyle R Jeffers J
Full Access

Initial stability of cementless components in bone is essential for longevity of Total Hip Replacements. Fixation is provided by press-fit: seating an implant in an under-reamed bone cavity with mallet strikes (impaction). Excessive impaction energy has been shown to increase the risk of periprosthetic fracture of bone. However, if implants are not adequately seated they may lack the stability required for bone ingrowth. Ideal fixation would maximise implant stability but would minimise peak strain in bone, reducing the risk of fracture. This in-vitro study examines the influence of impaction energy and number of seating strikes upon implant push-out force (indicating stability) and peak dynamic strain in bone substitute (indicating likelihood of fracture). The ratio of these factors is given as an indicator of successful impaction strategy. A custom drop tower with simulated hip compliance was used to seat acetabular cups in 30 Sawbone blocks with CNC milled acetabular cavities. 3 impaction energies were selected; low (0.7j), medium (4.5j) and high (14.4j), representing the wide range of values measured during surgery. Each Sawbone was instrumented with strain gauges, secured on the block surface close to the acetabular cavity (Figure 1). Strain gauge data was acquired at 50 khz with peak tensile strain recorded for each strike. An optical tracker was used to determine the polar gap between the cup and Sawbone cavity during seating. Initially 10 strikes were used to seat each cup. Tracking data were then used to determine at which strike the cups progressed less than 10% of the final polar gap. This value was taken as number of strikes to complete seating. Tests were repeated with fresh Sawbone, striking each cup the number of times required to seat. Following each seating peak push-out forces of the cups were recorded using a compression testing machine. 10, 5 and 2 strikes were required to seat the acetabular cups for the low, medium and high energies respectively. It was found that strain in the Sawbone peaked around the number of strikes to complete seating and subsequently decreased. This trend was particularly pronounced in the high energy group. An increase in Sawbone strain during seating was observed with increasing energy (270 ± 29 µε [SD], 519 ± 91 µε and 585 ± 183 µε at low, medium and high energies respectively). The highest push-out force was achieved at medium strike energy (261 ± 46N). The ratio between push-out and strain was highest for medium strike energy (0.50 ± 0.095 N/µε). Push-out force was similar after 5 and 10 strikes for the medium energy strike. However push-out recorded at ten strikes for the high energy group was significantly lower than for 2 strikes (<40 ± 19 N, p<0.05). These results indicate that a medium strike energy with an appropriate number of seating strikes maximizes initial implant stability for a given peak bone strain. It is also shown that impaction with an excessive strike energy may greatly reduce fixation strength while inducing a very high peak dynamic strain in the bone. Surgeons should take care to avoid an excessive number of impaction strikes at high energy. For any figures or tables, please contact the authors directly


Bone & Joint Research
Vol. 7, Issue 12 | Pages 620 - 628
1 Dec 2018
Tätting L Sandberg O Bernhardsson M Ernerudh J Aspenberg† P

Objectives

Cortical and cancellous bone healing processes appear to be histologically different. They also respond differently to anti-inflammatory agents. We investigated whether the leucocyte composition on days 3 and 5 after cortical and cancellous injuries to bone was different, and compared changes over time using day 3 as the baseline.

Methods

Ten-week-old male C56/Bl6J mice were randomized to either cancellous injury in the proximal tibia or cortical injury in the femoral diaphysis. Regenerating tissues were analyzed with flow cytometry at days 3 and 5, using panels with 15 antibodies for common macrophage and lymphocyte markers. The cellular response from day 3 to 5 was compared in order to identify differences in how cancellous and cortical bone healing develop.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 127 - 127
1 Jun 2018
Vince K
Full Access

“The shortest distance between two points is a straight line.” This explains many cases of patellar maltracking, when the patellar track is visualised in three dimensions. The three-dimensional view means that rotation of the tibia and femur during flexion and extension, as well as rotational positioning of the tibial and femoral components are extremely important. As the extensor is loaded, the patella tends to “center” itself between the patellar tendon and the quadriceps muscle. The patella is most likely to track in the trochlear groove IF THE GROOVE is situated where the patella is driven by the extensor mechanism: along the shortest track from origin to insertion. Attempts to constrain the patella in the trochlear groove, if it lies outside that track, are usually unsuccessful. Physiologic mechanisms for tibial-femoral rotation that benefit patellar tracking (“screw home” and “asymmetric femoral roll-back”) are not generally reproduced. Practical Point. A patellofemoral radiograph that shows the tibial tubercle, illustrates how the tubercle, and with it the patellar tendon and patella itself, are all in line with the femoral trochlea. To accomplish this with a TKA, the femoral component is best rotated to the transepicondylar axis (TEA) and the tibial component to the tubercle. In this way, when the femoral component sits in its designated location on the tibial polyethylene, the trochlear groove will be ideally situated to “receive” the patella. Knee Mechanics. Six “degrees of freedom” refers to translation and rotation on three axes (x,y,z). This also describes how arthroplasty components can be positioned at surgery. The significant positions of tibial, femoral and patellar components are: 1. Internal-external rotation (around y-axis) and 2. Varus-valgus rotation (around z axis). 3. Medial-lateral translation (on x-axis). The other positional variables are less important for patella tracking. Biomechanical analyses of knee function are often broken down into: i. Extensor power analysis (y-z or sagittal plane) and ii. Tracking (x-y or frontal plane). These must be integrated to include the effects of rotation and to better understand patellar tracking. Effect of Valgus. Frontal plane alignment is important but less likely to reach pathological significance for patellar tracking than rotational malposition clinically. For example if a typical tibia is cut in 5 degrees of unintended mechanical valgus, this will displace the foot about 5 cm laterally but the tibial tubercle only 8 mm laterally. An excessively valgus tibial cut will not displace the tubercle and the patella as far as mal-rotation of the tibial component. Effect of Internal Rotation of Tibial Component. By contrast, internal rotation of the tibial component by 22 degrees, which is only 4 degrees in excess of what has been described as tolerable by Berger and Rubash, displaces the tubercle 14 mm, a distance that would place the center of most patella over the center of the lateral femoral condyle, risking dislocation. Dynamically, as the knee flexes, if the tibia is able to rotate externally this forces the tubercle into an even more lateral position, guaranteeing that the patella will align lateral to the tip of the lateral femoral condyle, and dislocate. The design of femoral components, in particular the varus-valgus angle of the trochlear groove, has an effect on patellar tracking. This effect will be accentuated by the surgical alignment technique of the femoral and tibial components. Component positions that mimic the orientation of the normal anatomy usually include more valgus alignment of the femoral component. This rotates the proximal “entrance” of the femoral trochlear groove more medially, making it more difficult for the patella to descend in the trochlear groove


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_1 | Pages 76 - 76
1 Jan 2018
Marsden-Jones D McKenna R Jones C Walter W
Full Access

The pelvis is known to undergo significant movement during Total Hip Replacement (THR). We developed a 4D-tracking device employing an inertial measurement unit (IMU) to track changes in pelvic orientation during THR.

The IMU was mounted on the iliac crest in 39 cases with tracking initiated at the commencement of surgery and digital logging of significant intra-operative milestones (i.e. acetabular impaction). The system was validated by videoing a select number of cases and the 4D model linked in real-time. Data were processed using a custom Java-based infrastructure to calculate roll (left/right) and tilt (flexion/extension).

19 patients underwent direct anterior approach (DAA) and 20 posterior approach (PA). Comparing DAA to PA, at acetabular impaction there was mean pelvic roll seen of 3.7°(range 0.5–10.1°) in the DAA group, and 5.6°(range 0.1–16.2°) in the PA group. Mean tilt in the DAA group was 3.7°(range: 0.2–7.1°) and in the PA group was 1.7°(range: 0.2–4.3°).

Mean BMI in the DAA group was 25.2(range: 18.4–34.2) and 29.1(range: 21.5–42.4). There was no direct correlation between BMI and the amount of roll or tilt recorded for individual patients.

The IMU tracking device provided a useful and real-time method of assessing pelvic orientation during THR via both the DAA and posterior approach. Specific variations in tilt and roll are consistent with previous literature. Significant variation in the pattern of pelvic movement was noted to be dependent on the approach and the position of the patient on the operating table.


Bone & Joint 360
Vol. 6, Issue 6 | Pages 17 - 20
1 Dec 2017


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 14 - 14
1 Dec 2017
Pflugi S Lerch T Vasireddy R Boemke N Tannast M Ecker TM Siebenrock K Zheng G
Full Access

Purpose

To validate a small, easy to use and cost-effective augmented marker-based hybrid navigation system for peri-acetabular osteotomy [PAO] surgery.

Methods

A cadaver study including 3 pelvises (6 hip joints) undergoing navigated PAO was performed. Inclination and anteversion of two navigation systems for PAO were compared during acetabular reorientation. The hybrid system consists of a tracking unit which is placed on the patient's pelvis and an augmented marker which is attached to the patient's acetabular fragment. The tracking unit sends a video stream of the augmented marker to the host computer. Simultaneously, the augmented marker sends orientation output from an integrated inertial measurement unit (IMU) to the host computer. The host computer then computes the pose of the augmented marker and uses it (if visible) to compute acetabular orientation. If the marker is not visible, the output from the IMU is used to update the orientation. The second system served as ground truth and is a previously developed and validated optical tracking-based navigation system.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 25 - 25
1 Nov 2016
Gundle K Mickelson D Cherones A Hanel D
Full Access

Milestone-based outcome oriented training is now an important framework for residency education and program accreditation. Analysing 18 months of Orthopaedic Surgery Patient Care Milestone real-time evaluations via a web platform in a single residency program demonstrated significant variability in the rate of assessment and competency level among Milestones. In 614 evaluations, there was a strong, positive linear relationship between postgraduate year and competency level. Chief residents achieved an average competency level of 4.0, the graduation target, as assessed by faculty in real-time. These data may inform ongoing discussions about potential revisions to the Orthopaedic Surgery Milestones, and highlight one potential model for improving resident feedback. The Accreditation Council for Graduate Medical Education (ACGME) now requires the biannual submission of a variety of Milestones by United States residency programs, as part of a move towards competency-based medical training. Our program developed a web-based platform to collect Milestone-based evaluations in real-time, in an effort to improve feedback and facilitate ACGME compliance. After 18 months of use, we assessed how frequently each Milestone is evaluated in real-time, as well as the distribution of competency levels by each Patient Care Milestone and postgraduate year (PGY). These results may inform on relative strengths and weaknesses of a program, or of particular Milestones. At a single academic orthopaedic residency program with 40 residents in total, the use of a web-based trainee-driven evaluation tool (eMTRCS – electronic Milestone Tracking and Competency System) was initiated in 2014. Residents initiate evaluation in real-time, triggering a digital Milestone-based evaluation by a particular faculty member. De-identified data from January 2014 to December 2015 was abstracted. Descriptive statistics on the distribution of evaluations submissions, type of Milestone, faculty evaluation levels, and resident PGY were calculated. As the data was ordinal with evidence of non-normality, nonparametric tests were utilised to analyse differences in the distribution, and assess correlation between planned outcome variables. A total of 614 evaluations were included in the analysis, for an average of 38.4 evaluations per Patient Care Milestone. There was a wide variability in the number of evaluations per Milestone, ranging from only four “Diabetic Foot” submissions to 75 submissions on “Hip and Knee Arthritis” (Figure 1). Faculty-scored competency also varied significantly among the Milestones (Figure 2, p = 0.009 by Kruskal-Wallis rank sum test). Higher levels of competency were seen as resident PGY progressed (mean = 2.1, 2.4, 3.1, 3.7, 4.0 for PGY1–5 respectively, p<0.001). Through 18 months of use and 614 real-time evaluations, a web-based system for assessing Milestone levels showed significant variability in the number of assessments and competency level among the Orthopaedic Surgery Patient Care Milestones. There are multiple possible explanations, ranging from resident and faculty confusion about the Milestones to a lack of clinical volume in specific areas. In contrast to the inter-Milestone variability in assessments and competency levels, the strong stepwise relationship between advancing PGY and increasing levels of competency does provide evidence of validity for Milestone-based evaluations. Graduating residents in this program achieved, on average, the graduation target competency level as assessed by faculty in real-time


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_12 | Pages 13 - 13
1 Jun 2016
Hindle P Khan N Baily J Biant L Simpson H Péault B
Full Access

Our unpublished data has indicated that the perivascular stem cells (PSCs) have increased chondrogenic potential compared to mesenchymal stem cells (MSCs) derived in culture. There has been a recent change in the theory that stem cells work by a paracrine effect rather than differentiation. There are minimal data demonstrating the persistence of implanted stem cells when used for engraftment. This study aimed to develop an autologous large animal model for perivascular stem cells as well as to determine if cells were retained in the articular cartilage defects.

The reactivity of anti-human and anti-ovine antibodies was ascertained using immunohistochemistry and fluorescence-activated cell sorting (FACS). A panel of antibodies were combined and used to identify and purify pericytes (CD34-CD45-CD146+) and adventitial cells (CD34+CD45-CD146-) using FACS. The purified cells were cultured and their identity checked using FACS. These cultured cells demonstrated osteogenic, adipogenic and chondrogenic potential.

Autologous ovine PSCs (oPSCs) were isolated, cultured and transfected using a GFP virus. The transfection rate was 88%. The cells were implanted into an articular cartilage defect on the medial femoral condyle using a hydrogel, four weeks following implantation the condyle was explanted and confocal laser scanning microscopy demonstrated the presence of oPSCs in the defect. Histology did not demonstrate any repair tissue at this early time point.

These data have confirmed the viability our large animal model and that the implanted stem cells were retained in the defect four weeks following implantation.