Advertisement for orthosearch.org.uk
Results 1 - 20 of 63
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 84 - 84
1 Dec 2022
du Toit C Dima R Jonnalagadda M Fenster A Lalone E
Full Access

The opposable thumb is one of the defining characteristics of human anatomy and is involved in most activities of daily life. Lack of optimal thumb motion results in pain, weakness, and decrease in quality of life. First carpometacarpal (CMC1) osteoarthritis (OA) is one of the most common sites of OA. Current clinical diagnosis and monitoring of CMC1 OA disease are primarily aided by X-ray radiography; however, many studies have reported discrepancies between radiographic evidence of CMC1 OA and patient-related outcomes of pain and disability. Radiographs lack soft-tissue contrast and are insufficient for the detection of early characteristics of OA such as synovitis, which play a key role in CMC OA disease progression. Magnetic resonance imaging (MRI) and two-dimensional ultrasound (2D-US) are alternative options that are excellent for imaging soft tissue pathology. However, MRI has high operating costs and long wait-times, while 2D-US is highly operator dependent and provides 2D images of 3D anatomical structures. Three-dimensional ultrasound imaging may be an option to address the clinical need for a rapid and safe point of care imaging device. The purpose of this research project is to validate the use of mechanically translated 3D-US in CMC OA patients to assess the measurement capabilities of the device in a clinically diverse population in comparison to MRI. Four CMC1-OA patients were scanned using the 3D-US device, which was attached to a Canon Aplio i700 US machine with a 14L5 linear transducer with a 10MHz operating frequency and 58mm. Complimentary MR images were acquired using a 3.0 T MRI system and LT 3D coronal photon dense cube fat suppression sequence was used. The volume of the synovium was segmented from both 3D-US and MR images by two raters and the measured volumes were compared to find volume percent differences. Paired sample t-test were used to determine any statistically significant differences between the volumetric measurements observed by the raters and in the measurements found using MRI vs. 3D-US. Interclass Correlation Coefficients were used to determine inter- and intra-rater reliability. The mean volume percent difference observed between the two raters for the 3D-US and MRI acquired synovial volumes was 1.77% and 4.76%, respectively. The smallest percent difference in volume found between raters was 0.91% and was from an MR image. A paired sample t-test demonstrated that there was no significant difference between the volumetric values observed between MRI and 3D-US. ICC values of 0.99 and 0.98 for 3D-US and MRI respectively, indicate that there was excellent inter-rater reliability between the two raters. A novel application of a 3D-US acquisition device was evaluated using a CMC OA patient population to determine its clinical feasibility and measurement capabilities in comparison to MRI. As this device is compatible with any commercially available ultrasound machine, it increases its accessibility and ease of use, while proving a method for overcoming some of the limitations associated with radiography, MRI, and 2DUS. 3DUS has the potential to provide clinicians with a tool to quantitatively measure and monitor OA progression at the patient's bedside


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 29 - 29
1 Feb 2020
Abe I Shirai C
Full Access

Background. Accurate acetabular cup positioning is considered to be essential to prevent postoperative dislocation and improve the long-term outcome of total hip arthroplasty (THA). Recently various devices such as navigation systems and patient-specific guides have been used to ensure the accuracy of acetabular cup positioning. Objectives. The present study evaluated the usefulness of CT-based three-dimensional THA preoperative planning for acetabular cup positioning. Methods. This study included 120 hips aged mean 68.3 years, who underwent primary THA using CT-based THA preoperative planning software ZedHip® (LEXI, Tokyo Japan) and postoperative CT imaging (Fig.1). The surgical approach adopted the modified Watson-Jones approach in the lateral decubitus position and Trident HA acetabular cups were used for all cases. Preoperatively the optimum cup size and position in the acetabular were decided using the ZedHip® software, taking into consideration femoral anteversion and to achieve the maximum range of motion in dynamic motion simulation. Radiographic inclination (RI) was selected in the range between 40°∼45° and radiographic anteversion (RA) in the range between 5°∼25°. Three-dimensional planning images of the cup positioning were obtained from the ZedHip® software, and the distances between the edge of the implant and anatomical landmarks such as the edge of the anterior or superior acetabular wall were measured on the three-dimensional images and recorded (Fig.2). Intraoperatively, the RI and RA were confirmed by reference to these distances and the acetabular cup was inserted. Relative positional information of the implant was extracted from postoperative CT imaging using the ZedHip® software and used to reproduce the position of the implant on preoperative CT imaging with the software image matching function. The difference between the preoperative planning and the actual implant position was measured to assess the accuracy of acetabular cup positioning using the ZedHip® software. Results. Actual cup size corresponded with that of preoperative planning in 95% of cases (114 hips). Postoperative mean RI was 42.3° ± 4.2° (95% confidence interval (CI), 41.5° ∼ 43.0°) and mean RA was 16.1° ± 5.9° (95%CI, 15.0° ∼ 17.1°). Deviation from the target RI was 4.2° ± 3.7° (95%CI, 3.5° ∼ 4.9°) and deviation from the target RA was 4.0° ± 3.6° (95%CI, 3.4° ∼ 4.7°). Overall 116 hips (96.7%) were within the RI safe zone (30° ∼ 50°) and 108 hips (90.0%) were within the RA safe zone (5° ∼ 25°), and 105 hips (87.5%) were within both the RI and RA safe zones (Fig.3). Mean cup shift from preoperative planning was 0.0mm ± 3.0mm to the cranial side in the cranio-caudal direction, 2.1mm ± 3.0mm to the anterior side in the antero-posterior direction, and 1.7mm ± 2.1mm to the lateral side in the medio-lateral direction. Conclusion. The accuracy of acetabular cup positioning using our method of CT-based three-dimensional THA preoperative planning was slightly inferior to reported values for CT-based navigation, but obviously superior to those without navigation and similar to those with portable navigation. CT-based three-dimensional THA preoperative planning is effective for acetabular cup positioning, and has better cost performance than expensive CT-based navigation. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_1 | Pages 7 - 7
1 Feb 2020
Hettich G Schierjott R Graichen H Jansson V Rudert M Traina F Weber P Grupp T
Full Access

Introduction. Revision total hip arthroplasty is often associated with acetabular bone defects. In most cases, assessment of such defects is still qualitative and biased by subjective interpretations. Three-dimensional imaging techniques and novel anatomical reconstructions using statistical shape models (SSM) allow a more impartial and quantitative assessment of acetabular bone defects [1]. The objectives of this study are to define five clinically relevant parameters and to assess 50 acetabular bone defects in a quantitative way. Methods. Anonymized CT-data of 50 hemi-pelvises with acetabular bone defects were included in the study. The assessment was based on solid models of the defect pelvis (i.e. pelvis with bone defect) and its anatomical reconstruction (i.e. native pelvis without bone defect) (Fig.1A). Five clinically relevant parameters were defined: (1) Bone loss, defined by subtracting defect pelvis from native pelvis. (2) Bone formation, defined by subtracting native pelvis from defect pelvis. Bone formation represents bone structures, which were not present in the native pelvis (e.g. caused by remodeling processes around a migrated implant). (3) Ovality, defined by the length to width ratio of an ellipse fitted in the defect acetabulum. A ratio of 1.0 would represent a circular acetabulum. (4) Lateral center-edge angle (LCE angle), defined by the angle between the most lateral edge of the cranial roof and the body Z-axis, and (5) implant migration, defined by the distance between center of rotation (CoR) of the existing implant and CoR of native pelvis (Fig. 1B). Results. All data are presented as single values as well as median and [25. th. , 75. th. ]- percentile (Fig.2). Bone loss was 53.6 [41.5, 76.7] ml with a minimum of 19.0 ml and maximum of 103.9 ml. Bone formation was 15.7 [10.5, 21.2] ml with a minimum of 3.5 ml and a maximum of 41.6 ml. Ovality was 1.3 [1.1, 1.4] with a minimum of 1.0 and a maximum of 2.0. LCE angle was 30.4° [21.5°, 40.1°] with a minimum of 11.6° and a maximum of 63.0°. Implant migration was 25.3 [15.1, 32.6] mm with a minimum of 5.4 mm and a maximum of 53.5 mm. Discussion. Within this study, 50 hemi-pelvises with acetabular bone defects were successfully quantified using five clinically relevant parameters. Application of this method provides impartial and quantitative data of acetabular bone defects, which could be beneficial in clinical practice for pre-operative planning or comparison of surgical outcomes. Including a larger number of cases, this method could even serve as a basis for a novel classification system for acetabular bone defects. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_10 | Pages 57 - 57
1 Jun 2018
Haddad F
Full Access

Restoring native hip biomechanics is crucial to the success of THA. This is reflected both in terms of complications after surgery such as instability, leg length inequality, pain and limp; and in terms of patient satisfaction. The challenge that remains is that of achieving optimal implant sizing and positioning so as to restore, as closely as possible, the native hip biomechanics specific to the hip joint being replaced. This would optimise function and reduce complications, particularly, instability. (Mirza et al., 2010). Ideally, this skill should also be reproducible irrespective of the surgeon's experience, volume of surgery and learning curve. The general consensus is that the most substantial limiting factor in a THA is the surgeon's performance and as a result, human errors and unintended complications are not completely avoidable (Tarwala and Dorr, 2011). The more challenging aspects include acetabular component version, sizing and femoral component sizing, offset and position in the femoral canal. This variability has led to interest in technologies for planning THA, and technologies that help in the execution of the procedure. Advances in surgical technology have led to the development of computer navigation and robotic systems, which assist in pre-operative planning and optimise intra-operative implant positioning. The evolution of surgical technology in lower limb arthroplasty has led to the development of computer navigation and robotics, which are designed to minimise human error and improve implant positioning compared to pre-operative templating using plain radiographs. It is now possible to use pre-operative computerised tomography (image-based navigation) and/or anatomical landmarks (non-imaged-based navigation) to create three-dimensional images of each patient's unique anatomy. These reconstructions are then used to guide bone resection, implant positioning and lower limb alignment. The second-generation RIO Robotic Arm Interactive Orthopaedic system (MAKO Surgical) uses pre-operative computerised tomography to build a computer-aided design (CAD) model of the patient's hip. The surgeon can then plan and execute optimal sizing and positioning of the prostheses to achieve the required bone coverage, minimise bone resection, restore joint anatomy and restore lower limb biomechanics. The MAKO robotic software processes this information to calculate the volume of bone requiring resection and creates a three-dimensional haptic window for the RIO-robotic arm to resect. The RIO-robotic arm has tactile and audio feedback to resect bone to a high degree of accuracy and preserve as much bone stock as possible. We have used this technology in the hip to accurately reproduce the anteversion, closure and center of rotation that was planned for each hip. Whilst the precise safe target varies from patient to patient, the ability to reproduce native biomechanics, to gain fixation as planned and to get almost perfect length and offset are a great advantage. Complications such as instability and leg length inequality are thus dramatically reduced


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 559 - 565
1 May 2018
Bartlett JD Lawrence JE Stewart ME Nakano N Khanduja V

Aims

The aim of this study was to assess the current evidence relating to the benefits of virtual reality (VR) simulation in orthopaedic surgical training, and to identify areas of future research.

Materials and Methods

A literature search using the MEDLINE, Embase, and Google Scholar databases was performed. The results’ titles, abstracts, and references were examined for relevance.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 53 - 53
1 Apr 2018
Cooper R Williams S Mengoni M Jones A
Full Access

Introduction. Geometric variations of the hip joint can give rise to repeated abnormal contact between the femur and acetabular rim, resulting in cartilage and labrum damage. Population-based geometric parameterisation can facilitate the flexible and automated in silico generation of a range of clinically relevant hip geometries, allowing the position and size of cams to be defined precisely in three dimensions. This is advantageous compared to alpha angles, which are unreliable for stratifying populations by cam type. Alpha angles provide an indication of cam size in a single two-dimensional view, and high alpha angles have been observed in asymptomatic individuals. Parametric geometries can be developed into finite element models to assess the potential effects of morphological variations in bone on soft tissue strains. The aim of this study was to demonstrate the capabilities of our parameterisation research tool by assessing impingement severity resulting from a range of parametrically varied femoral and acetabular geometries. Methods. Custom made MATLAB (MathWorks) and Python codes. [1]. were used to generate bone surfaces, which were developed into finite element models in Abaqus (SIMULIA). Parametric femoral surfaces were defined by a spherical proximal head and ellipse sections through the neck/cam region. This method produced surfaces that were well fitted to bone geometry segmented from CT scans of cam patients and capable of producing trends in results similar to those found using segmented models. A simplified spherical geometry, including the labrum and acetabular cartilage, represented the acetabulum. Femoral parameters were adjusted to define relevant variations in cam size and position. Two radii (small and large cams) and two positions (anterior and superior cams) were defined resulting in four models. Alpha angles of these parametric femurs were measured in an anterior-posterior view and a cross-table lateral view using ImageJ (NIH). A further model was developed using a femur with a medium cam size and position, and the level of acetabular coverage and labrum length were varied. Bones were modelled as rigid bodies and soft tissues were modelled as transversely isotropic linearly elastic materials. With the acetabulum fully constrained in all cases, the femurs were constrained in translation and rotated to simulate flexion followed by internal rotation to cause impingement against the labrum. Results and Discussion. Models generated using the parametric approach showed that potential for tissue damage, indicated through local strain, was not predicted by measured alpha angle, but resulted from cam extent and position as defined by the ellipses. When variations were made to the acetabular rim, an increase in bone coverage had the greatest effect on impingement severity, indicated by strain in the cartilage labral-junction. An increase in labral length increased labral displacement, but had less effect on cartilage-labral strain. Patient specific models currently require full image segmentation, but there is potential to further develop these parametric methods to assess likely impingement severity based on a series of measures of the neck and acetabulum when three-dimensional imaging of patients is available


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_20 | Pages 8 - 8
1 Dec 2017
Tian W Fan M Liu Y
Full Access

To introduce a new robot-assisted surgical system for spinal posterior fixation which called TiRobot, based on intraoperative three-dimensional images. TiRobot has three components: the planning and navigation system, optical tracking system and robotic arm system. By combining navigation and robot techniques, TiRobot can guide the screw trajectories for orthopedic surgeries. In this randomised controlled study approved by the Ethics Committee, 40 patients were involved and all has been fully informed and sign the informed consent. 17 patients were treated by free-hand fluoroscopy-guided surgery, and 23 patients were treated by robot-assisted spinal surgery. A total of 190 pedicle screws were implanted. The overall operation times were not different for both groups. None of the screws necessitated re-surgery for revised placement. In the robot-assisted group, assessment of pedicle screw accuracy showed that 102 of 102 screws (100%) were safely placed (<2 mm, category A+B). And mean deviation in entry point was 1.70 +/− 0.83mm, mean deviation in end point was 1.84 +/− 1.04mm. In the conventional freehand group, assessment of pedicle screw accuracy showed that 87 of 88 (98.9%) were safely placed (<2 mm, category A+B), 1 screw fall in category C, mean deviation in entry point was 3.73 +/− 2.28mm, mean deviation in end point was 4.11 +/− 2.31mm. This randomised controlled study verified that robot-assisted pedicle screw placement with real-time navigation is a more accuracy and safer method, and also revealed great clinical potential of robot-assisted surgery in the future


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 98 - 98
1 Aug 2017
Ries M
Full Access

Most acetabular defects can be treated with a cementless acetabular cup and screw fixation. However, larger defects with segmental bone loss and discontinuity often require reconstruction with augments, a cup-cage, or triflange component – which is a custom-made implant that has iliac, ischial, and pubic flanges to fit the outer table of the pelvis. The iliac flange fits on the ilium extending above the acetabulum. The ischial and pubic flanges are smaller than the iliac flange and usually permit screw fixation into the ischium and pubis. The custom triflange is designed based on a pre-operative CT scan of the pelvis with metal artifact reduction, which is used to generate a three-dimensional image of the pelvis and triflange component. The design of the triflange involves both the manufacturing engineer and surgeon to determine the most appropriate overall implant shape, screw fixation pattern, and cup location and orientation. A plastic model of the pelvis, and triflange implant can be made in addition to the triflange component to be implanted, in order to assist the surgeon during planning and placement of the final implant in the operating room. A wide surgical exposure is needed including identification of the sciatic nerve. Proximal dissection of the abductors above the sciatic notch to position the iliac flange can risk denervation of the abductor mechanism. Blood loss during this procedure can be excessive. Implant survivorship of 88 to 100% at 53-month follow-up has been reported. However, in a series of 19 patients with Paprosky type 3 defects, only 65% were considered successful. The custom triflange also tends to lateralise the hip center which may adversely affect hip mechanics. The use of a triflange component is indicated in cases with massive bone loss or discontinuity in which other reconstructive options are not considered suitable


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 46 - 46
1 Apr 2017
Barrack R
Full Access

Total hip replacement is among the most successful interventions in medicine and has been termed “The Operation of the Century”. Most major problems have been solved including femoral fixation, acetabular fixation, and wear. With a success rate of over 95% at 10 years in both hip and knee arthroplasty in a number of studies, the question remains as to whether the current status quo is optimal or acceptable. The literature, however, reports are from centers that represent optimised results and registry data, including the Medicare database, indicates that substantial short-term problems persist. The major issue is the variability in the performance of the procedure. The inability to consistently position components, particularly the acetabular component, results in major problems including instability and limb length discrepancy. A report by Malchau, et al. reveals that even among the best surgeons, optimal acetabular component positioning is only achieved 50% of the time. The penalty for missing the target is increased incidence of instability, increased wear rate, and diminished function due to restricted motion. Complications are related to position and a major potential explanation is the impact of patient position. Traditional imaging presents a two-dimensional rather than three-dimensional view of the patient and the patient is in a supine, non-functional position at the time that imaging is performed. Adverse events attributed to malposition, however, occur in functional positions and there is evidence that the orientation of the pelvis changes from the supine position at which imaging is performed. This topic has been studied extensively on three continents and the consensus is that the pelvis shifts on the order of 30–40 degrees from the supine to standing and sitting and furthermore, the acetabular component position changes proportionally with the rotation of the pelvis that occurs. How do we incorporate this information into imaging arthroplasty patients? This would require imaging the entire body, acquiring AP and lateral images simultaneously so that 3D imaging can be performed, performing imaging in a functional position (standing or sitting) and optimally at a lower radiation dose since these patients have repeated images and therefore a cumulative radiation dose over their lifetime. This technology was FDA approved for use in the hip and knee in 2011 and pilot studies have been performed at Washington University School of Medicine in St. Louis to validate the number of the hip and knee arthroplasty applications. In conclusion, weightbearing and rotation have substantial impact on the standard measurements obtained before and after hip and knee arthroplasty. These differences in measurements between supine, sitting, and standing as well as correction for rotation may explain the lack of a stronger correlation between component position and a variety of complications that are observed such as variability in wear rates as well as instability. In knee arthroplasty, the change in mechanical axis that occurs from restoring all of patients to a neutral mechanical axis may explain some of the persistent pain and dissatisfaction that has been recently been reported at a relatively high percentage of knee arthroplasty patients. Because of the numerous potential clinical implications of three-dimensional weightbearing imaging, it is likely that the future of arthroplasty imaging will focus on functional three-dimensional imaging of the patient


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_22 | Pages 88 - 88
1 Dec 2016
Nam D
Full Access

A recent proposed modification in surgical technique in total knee arthroplasty (TKA) has been the introduction of patient specific instrumentation or custom cutting guides (CCGs). With CCGs, preoperative three-dimensional imaging is used to manufacture cutting blocks specific to a patient's native anatomy, with proposed benefits including their ease of use; a decrease in operative times and instrument trays and improved cost-efficiency; the ability to preoperative plan component size, alignment, and position; and an improvement in postoperative alignment versus the use of standard instrumentation. However, to date the majority of reports have not confirmed these proposed benefits. Prior studies focusing on cost-efficiency have shown limited benefits in terms of operating and room turnover times, which fail to offset the additional cost of preoperative imaging and fabrication of the CCGs. Furthermore, a number of reports have noted the frequent need for surgeon-directed changes and alterations in alignment intraoperatively, along with errors in the predetermined implant size. The use of CCGs has also failed to improve overall mechanical and component alignment versus standard instrumentation in the majority of investigations. Perhaps most importantly, no investigation has demonstrated CCGs to improve clinical outcomes postoperatively. Therefore, in the absence of proven clinical or radiographic improvements, the continued implementation of CCGs must be questioned


Bone & Joint Research
Vol. 5, Issue 7 | Pages 294 - 300
1 Jul 2016
Nishioka H Nakamura E Hirose J Okamoto N Yamabe S Mizuta H

Objectives. The purpose of this study was to clarify the appearance of the reparative tissue on the articular surface and to analyse the properties of the reparative tissue after hemicallotasis osteotomy (HCO) using MRI T1ρ and T2 mapping. Methods. Coronal T1ρ and T2 mapping and three-dimensional gradient-echo images were obtained from 20 subjects with medial knee osteoarthritis. We set the regions of interest (ROIs) on the full-thickness cartilage of the medial femoral condyle (MFC) and medial tibial plateau (MTP) of the knee and measured the cartilage thickness (mm) and T1ρ and T2 relaxation times (ms). Statistical analysis of time-dependent changes in the cartilage thickness and the T1ρ and T2 relaxation times was performed using one-way analysis of variance, and Scheffe’s test was employed for post hoc multiple comparison. Results. The cartilage-like repair tissue appeared on the cartilage surface of the medial compartment post-operatively, and the cartilage thickness showed a significant increase between the pre-operative and one-year post-operative time points (MFC; p = 0.003, MTP; p < 0.001). The T1ρ values of the cartilage-like repair tissue showed no difference over time, however, the T2 values showed a significant decrease between the pre-operative and one-year post-operative time points (MFC; p = 0.004, MTP; p = 0.040). Conclusion. This study clarified that the fibrocartilage-like repair tissue appeared on the articular surface of the medial compartment after HCO as evidenced by MRI T1ρ and T2 mapping. Cite this article: H. Nishioka, E. Nakamura, J. Hirose, N. Okamoto, S. Yamabe, H. Mizuta. MRI T1ρ and T2 mapping for the assessment of articular cartilage changes in patients with medial knee osteoarthritis after hemicallotasis osteotomy. Bone Joint Res 2016;5:294–300. DOI: 10.1302/2046-3758.57.BJR-2016-0057.R1


Bone & Joint Research
Vol. 5, Issue 6 | Pages 206 - 214
1 Jun 2016
Malak TT Broomfield JAJ Palmer AJR Hopewell S Carr A Brown C Prieto-Alhambra D Glyn-Jones S

Objectives

High failure rates of metal-on-metal hip arthroplasty implants have highlighted the need for more careful introduction and monitoring of new implants and for the evaluation of the safety of medical devices. The National Joint Registry and other regulatory services are unable to detect failing implants at an early enough stage. We aimed to identify validated surrogate markers of long-term outcome in patients undergoing primary total hip arthroplasty (THA).

Methods

We conducted a systematic review of studies evaluating surrogate markers for predicting long-term outcome in primary THA. Long-term outcome was defined as revision rate of an implant at ten years according to National Institute of Health and Care Excellence guidelines. We conducted a search of Medline and Embase (OVID) databases. Separate search strategies were devised for the Cochrane database and Google Scholar. Each search was performed to include articles from the date of their inception to June 8, 2015.


Purpose. Medial tibial condylar fractures (MTCFs) are rare but a serious complication after unicompartmental knee arthroplasty (UKA). The reasons for MTCFs was thought to be associated with the surgical procedures that are the halls for the guide pins, extended cut of the posterior tibial cortex, an incorrect positioning of the tibial keel groove, and an excessive force application when placing the tibial component. However, the relationship between MTCFs and the alignment of the tibial component has not been proven. The purpose of the study was to investigate the effect of the tibial component alignment to the MTCFs using the finite element method (FEM). Materials and Methods. We used three-dimensional (3D) image model of the tibia (Sawbones: Washington, US) on the FEM analysis software (ANSYS Design Space ver. 12, Tokyo, Japan). We measured the bone stresses in the 3D image model of the tibia at the site of the medial metaphyseal cortex and the anterior/posterior cortex. The tibial component was placed 0°, 3°varus, 3°valgus, 6°varus, and 6° valgus relative to the tibial anatomical axis in the coronal plane (Figure 1). In sagittal plane, tibial component was positioned 7° posterior inclination relative to the tibial anatomical axis. And, making an additional vertical groove at the posterior cortex by the extended sagittal saw cut of 2° and 10° posterior inclination, the impact of posterior cortical bone stress was evaluated (Figure 2). A load of 900 N was applied to the center of the tibial component parallel to the tibial axis, the maximum bone stress was subsequently calculated. Furthermore, to evaluate the stress distribution, we calculated the bone mass of the 3D bone model below the tibia component under the various alignment of the tibial component (Figure 3). Results. The bone stress at the medial metaphyseal cortex and the anterior cortex did not change depending on the alignment of the tibial component (Figure 4). When the tibial component was placed varus, the bone stress at the posteiror cortex decreased. By contrast, the valgus position of the tibial component increased the bone stress. An extended sagittal saw cut increased the bone stress depending on the depth of the groove. The bone mass of the tibia below the tibial component decreased as positioning the tibial component valgus. Conclusions. Surgeons should be aware of the potential pitfalls of valgus alignemnt of the tibial component and an extended sagittal saw cut, because this can lead to increased risk of the MTCFs


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 18 - 18
1 May 2016
Scheerlinck T Polfliet M Dekleck R Van Gompel G Buls N Vandemeulebroucke J
Full Access

Accurate detection of migration of hip arthroplasty stems without the burden of bone markers and stereo-radiographic equipment is of interest. This would facilitate the study of stem migration in an experimental setting, but more importantly, it would allow assessing stem loosening in patients with a painful hip outside a study protocol. We developed and validated a marker-free automated CT-based spatial analysis method (CTSA) to quantify stem-bone migration in successive CT scan acquisitions. First, we segmented the bone and stem within both three-dimensional images, then we pairwise registered those elements (Fig. 1). By comparing the rigid transformations of stem and bone, we calculated the migration of the stem with reference to the bone and transferred the three translation and three rotation parameters to an anatomic coordinate system. Based on the rigid transformation, we also calculated the point of the stem that presented the maximal migration (PMM). Accuracy was assessed in a stem-bone model (Fig. 2) by imposing 39 predefined stem rotations and translations, and by comparing those with values calculated with the CTSA tool. In all cases, differences were below 0.20 mm for translations and 0.19° for rotations (95% tolerance interval (95% TI) below 0.22 mm and 0.20°, largest standard deviation of the signed error (SDSE) 0.081 mm and 0.057°). Precision was defined as stem migration calculated in eight clinical relevant zero-migration scenarios. In all cases, precision was below 0.05 mm and 0.08° (95% TI below 0.06 mm and 0.08°, largest SDSE 0.012 mm and 0.020°). The largest displacement of the PMM on the stem was 0.169mm. The precision estimated in five patients was very dependent on the CT scan resolution and was below 0.48 mm and 0.37° (95% TI below 0.59 mm and 0.61°, largest SDSE 0.202 mm and 0.279°, largest displacement of the PMM 0.972 mm). In optimized conditions, the precision in patients improved largely and was below 0.040 mm and 0.111° (largest SDSE 0.202 mm and 0.279°, largest displacement of the PMM 0.156 mm). Our marker-free automated CT-based spatial analysis can detect hip stem migration with an accuracy and precision comparable to that of radiostereometric analysis (RSA), but without the burden of bone markers and the cost of stereo-radiographic equipment. As such, we believe our tool could make accurate measurement of stem migration available to departments without access to RSA and boost this type of research. Moreover, as CTSA does not rely on bone makers, it is applicable to all-comers with a painful hip arthroplasty. Indeed, in those patients with a reference CT scan after hip replacement, a new CT scan could demonstrate stem migration. If no initial CT scan is available, a reference scan could be taken during a first visit and repeated later. Additionally, a “stress test” of the hip could be performed. During such test, comparing CT images acquired during forced maximal intern and external rotation could demonstrate stem loosening


Bone & Joint Research
Vol. 5, Issue 4 | Pages 122 - 129
1 Apr 2016
Small SR Rogge RD Malinzak RA Reyes EM Cook PL Farley KA Ritter MA

Objectives

Initial stability of tibial trays is crucial for long-term success of total knee arthroplasty (TKA) in both primary and revision settings. Rotating platform (RP) designs reduce torque transfer at the tibiofemoral interface. We asked if this reduced torque transfer in RP designs resulted in subsequently reduced micromotion at the cemented fixation interface between the prosthesis component and the adjacent bone.

Methods

Composite tibias were implanted with fixed and RP primary and revision tibial trays and biomechanically tested under up to 2.5 kN of axial compression and 10° of external femoral component rotation. Relative micromotion between the implanted tibial tray and the neighbouring bone was quantified using high-precision digital image correlation techniques.


The Bone & Joint Journal
Vol. 98-B, Issue 3 | Pages 326 - 333
1 Mar 2016
Morvan A Moreau S Combourieu B Pansard E Marmorat JL Carlier R Judet T Lonjon G

Aims

The primary aim of this study was to analyse the position of the acetabular and femoral components in total hip arthroplasty undertaken using an anterior surgical approach.

Patients and Methods

In a prospective, single centre study, we used the EOS imaging system to analyse the position of components following THA performed via the anterior approach in 102 patients (103 hips) with a mean age of 64.7 years (sd 12.6). Images were taken with patients in the standing position, allowing measurement of both anatomical and functional anteversion of the acetabular component.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 57 - 57
1 Jan 2016
Tamaki T Matsumoto K Oinuma K Miura Y Higashi H Kaneyama R Shiratsuchi H
Full Access

Background. In total hip arthroplasty (THA), the importance of preserving muscles is widely recognized; therefore, muscle-sparing approaches are widely used. Recently, we reported that there are bony impressions, that we called the obturator attachment (OA), on the greater trochanter that indicate the insertions of the short external rotator tendons. In this study, we used a three-dimensional (3-D) template to evaluate damage to the insertions of the short external rotator muscles during a femoral procedure. Methods. We investigated 12 hips in 10 patients who underwent THA. Preoperative CT imaging of the hip was performed, and 3-D reconstruction of the greater trochanter was used to visualize the bony impressions that indicate the insertions of the obturator internus and externus muscles (Fig 1A). We performed preoperative 3-D templating of two different femoral prosthesis (flat tapered-wedge stem: J-Taper, cylindrical straight stem: PerFix910) and then evaluated the extent of damage to the OA during the stem placement (Fig 1B, 1C). The extent of damage to the OA was classified using the following scale: grade 0, no damage of the insertion area; grade 1, less than 1/3; grade 2, equal to or more than 1/3–2/3; grade 3, equal to or more than 2/3; grade 4, complete. Results. The attachment area of the obturator internus tendon was damaged in 9 hips (7 hips: grade 1, 2 hips: grade 2) using J-Taper and all hips (8 hips: grade 2, 4 hip: grade 3) using PerFix910. The attachment area of the obturator externus tendon was not damaged in any hip using J-Taper but was damaged in 5 hips (5 hips: grade 1) using PerFix910. Conclusions. The tendon insertion site for the obturator internus was more likely to be damaged by rasping or reaming. The tapered-wedge type stem was considered to be superior to the straight, cylindrical stem for preserving the tendon insertions on the greater trochanter. Fig.1 Three-dimensional reconstructed images of the left greater trochanter, after removal of the femoral head. A: The deep depression in the anterior part of the trochanteric fossa (blue area) indicates the insertion of the obturator internus, and the posterior depression in the trochanteric fossa (red area) indicates the insertion of the obturator externus. B: Preoperative 3-D templating of the J-taper (Kyocera, Kyoto, Japan) was performed. The insertion area of the obturator internus was damaged (Grade 1), while the insertion area of the obturator externus was not damaged. C: Preoperative 3-D templating of the PerFix910 (Kyocera, Kyoto, Japan) was performed. The most of the insertion area of the obturator internus was damaged (Grade 3), while the insertion area of the obturator externus was not damaged. Oi = obturator internus, Oe = obturator externus, Lt = lessor trochanter, Sup = superior, and Ant = anterior


Bone & Joint Research
Vol. 2, Issue 12 | Pages 255 - 263
1 Dec 2013
Zhang Y Xu J Wang X Huang J Zhang C Chen L Wang C Ma X

Objective

The objective of this study was to evaluate the rotation and translation of each joint in the hindfoot and compare the load response in healthy feet with that in stage II posterior tibial tendon dysfunction (PTTD) flatfoot by analysing the reconstructive three-dimensional (3D) computed tomography (CT) image data during simulated weight-bearing.

Methods

CT scans of 15 healthy feet and 15 feet with stage II PTTD flatfoot were taken first in a non-weight-bearing condition, followed by a simulated full-body weight-bearing condition. The images of the hindfoot bones were reconstructed into 3D models. The ‘twice registration’ method in three planes was used to calculate the position of the talus relative to the calcaneus in the talocalcaneal joint, the navicular relative to the talus in talonavicular joint, and the cuboid relative to the calcaneus in the calcaneocuboid joint.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 282 - 282
1 Dec 2013
DeClaire J Lombardi A Berend K
Full Access

Background:. Coronal malalignment occurs frequently in total knee arthroplasty (TKA) and reduces implant longevity and function. Designed to improve consistency and efficiency, patient- specific positioning guides (PSPG) generated from preoperative imaging studies represent a paradigm shift from manual instrumentation (MI) and intraoperative computer navigation. Purposes:. We compare the efficacy of PSPG to MI in (1) restoring mechanical axis of the extremity and (2) achieving neutral alignment of the femoral and tibial components. Methods:. We retrospectively examined 696 postoperative anteroposterior standing long-leg radiographs after TKA (545 PSPG, 151 MI) by two surgeons. Coronal alignment was assessed by determining the zone in which the overall mechanical axis (OMA) passed through the knee, measuring the hip-knee-ankle (HKA) angle between the tibial and femoral mechanical axes, and finally, noting the alignment of the femoral and tibial components with respect to their mechanical axes. Results:. The OMA passed through the central third more frequently with PSPG than MI for both surgeons (JHD: 86.6% vs. 77%, p = 0.02; AVL: 86.4% vs. 74.5%, p = 0.11). For the senior author, while percent of HKA outliers >3ï,° was similar between PSPG and MI, the mean error from neutral for these patients was significantly less with PSPG than MI (4.50ï,° vs. 5.25ï,°, p = 0.0031). The tibial component demonstrated no significant difference between PSPG and MI. With PSPG, average individual deviation from neutral for the femoral component was significantly less (0.91ï,° vs. 1.34ï,°, p = 0.0005) and had fewer outliers >2ï,° (4.9% vs. 19.6%, p = 0.017). Discussion:. Improved coronal alignment in total knee arthroplasty (TKA) is associated with greater patient satisfaction, better functional scores and increased implant longevity [11,30,31,36]. Recently, preoperative three-dimensional imaging and custom manufacturing have enabled the development of patient-specific positioning guides (PSPG). Designed to improve consistency and efficiency, PSPG represents a paradigm shift away from intramedullary and extramedullary guides, or manual instrumentation (MI), and an evolution from intraoperative computer-assisted navigation (CAN). Even in the hands of experienced surgeons, MI frequently results in significant component angulation and mechanical axis malalignment [32]. Multiple studies support the restoration of a neutral axis as a critical factor in implant performance and potential longevity of total knee arthroplasty [2, 3, 5, 18, 41, 44]. Intraoperative CAN has been shown to improve precision and accuracy of alignment compared to MI with a reduction in the number of outliers (less than 3ï,° varus/valgus) [32, 38] and the amount of blood loss [39], but is hindered by time-consuming landmark registration, increased operative length [7], greater cost, the risk for stress fracture, pin loosening, and a substantial learning curve [6, 22, 29, 43]. Patient-specific positioning guides, on the other hand, purportedly eliminate many of the disadvantages of CAN while still allowing the bone resections to match the measured overall mechanical axis. While accurate and precise alignment guides are potent tools in restoring the proper overall mechanical axis, they are not a substitute for careful preoperative planning, good clinical and intraoperative judgment, appropriate soft tissue balancing, and precise implantation technique. Nevertheless, patient-specific positioning guides can provide the first step in the right direction to a successful TKA. Conclusions:. Patient-specific positioning guides can assist in restoration of the mechanical axis with reduction in outliers. Level of Evidence: Level III, retrospective case-control study


Bone & Joint 360
Vol. 2, Issue 6 | Pages 24 - 26
1 Dec 2013

The December 2013 Spine Roundup360 looks at: Just how common is lumbar spinal stenosis?; How much will they bleed?; C5 palsy associated with stenosis; Atlanto-axial dislocations revisited; 3D predictors of progression in scoliosis; No difference in outcomes by surgical approach for fusion; Cervical balance changes after thoracolumbar surgery; and spinal surgeons first in space.