Advertisement for orthosearch.org.uk
Results 1 - 20 of 47
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 19 - 19
7 Aug 2024
Foster NE Bada E Window P Stovell M Ahuja S Beard D Gardner A
Full Access

Background and Purpose. The UK's NIHR and Australia's NHMRC have funded two randomised controlled trials (RCTs) to determine if lumbar fusion surgery (LFS) is more effective than best conservative care (BCC) for adults with persistent, severe low back pain (LBP) attributable to lumbar spine degeneration. We aimed to describe clinicians’ decision-making regarding suitability of patient cases for LFS or BCC and level of equipoise to randomise participants in the RCTs. Methods. Two online cross-sectional surveys distributed via UK and Australian professional networks to clinicians involved in LBP care, collected data on clinical discipline, practice setting and preferred care of five patient cases (ranging in age, pain duration, BMI, imaging findings, neurological signs/symptoms). Clinicians were also asked about willingness to randomise each patient case. Results. Of 174 responses (73 UK, 101 Australia), 70 were orthopaedic surgeons, 34 neurosurgeons, 65 allied health professionals (AHPs), 5 others. Most worked in public health services only (92% UK, 45% Australia), or a mix of public/private (36% Australia). Most respondents chose BCC as their first-choice management option for all five cases (81–93% UK, 83–91% Australia). For LFS, UK surgeons preferred TLIF (36.4%), whereas Australian surgeons preferred ALIF (54%). Willingness to randomise cases ranged from 37–60% (UK mean 50.7%), and 47–55% (Australian mean 51.9%); orthopaedic and neuro-surgeons were more willing than AHPs. Conclusion. Whilst BCC was preferred for all five patient cases, just over half of survey respondents in both the UK and Australia were willing to randomise cases to either LFS or BCC, indicating clinical equipoise (collective uncertainty) needed for RCT recruitment. Conflicts of interest. None. Sources of funding. No specific funding obtained for the surveys. DB, SA, AG and NEF have funding from the National Institute for Health Research (NIHR) UK (FORENSIC-UK NIHR134859); NEF, DB and SA have funding from the Australian National Health and Medical Research Council (NHMRC FORENSIC-Australia GA268233). AG has funding from Orthopaedic Research UK (combined with British Association of Spine Surgeons and British Scoliosis Society) and Innovate UK. NEF is funded through an Australian National Health and Medical Research Council (NHMRC) Investigator Grant (ID: 2018182)


Bone & Joint Open
Vol. 5, Issue 7 | Pages 612 - 620
19 Jul 2024
Bada ES Gardner AC Ahuja S Beard DJ Window P Foster NE

Aims

People with severe, persistent low back pain (LBP) may be offered lumbar spine fusion surgery if they have had insufficient benefit from recommended non-surgical treatments. However, National Institute for Health and Care Excellence (NICE) 2016 guidelines recommended not offering spinal fusion surgery for adults with LBP, except as part of a randomized clinical trial. This survey aims to describe UK clinicians’ views about the suitability of patients for such a future trial, along with their views regarding equipoise for randomizing patients in a future clinical trial comparing lumbar spine fusion surgery to best conservative care (BCC; the FORENSIC-UK trial).

Methods

An online cross-sectional survey was piloted by the multidisciplinary research team, then shared with clinical professional groups in the UK who are involved in the management of adults with severe, persistent LBP. The survey had seven sections that covered the demographic details of the clinician, five hypothetical case vignettes of patients with varying presentations, a series of questions regarding the preferred management, and whether or not each clinician would be willing to recruit the example patients into future clinical trials.


Bone & Joint 360
Vol. 13, Issue 1 | Pages 29 - 31
1 Feb 2024

The February 2024 Spine Roundup360 looks at: Surgeon assessment of bone – any good?; Robotics reduces radiation exposure in some spinal surgery; Interbody fusion cage versus anterior lumbar interbody fusion with posterior instrumentation; Is robotic-assisted pedicle screw placement an answer to the learning curve?; Acute non-traumatic spinal subarachnoid haematomas: a report of five cases and a systematic review of the literature; Is L4-L5 lateral interbody fusion safe and effective?


The Bone & Joint Journal
Vol. 105-B, Issue 5 | Pages 543 - 550
1 May 2023
Abel F Avrumova F Goldman SN Abjornson C Lebl DR

Aims

The aim of this study was to assess the accuracy of pedicle screw placement, as well as intraoperative factors, radiation exposure, and complication rates in adult patients with degenerative disorders of the thoracic and lumbar spines who have undergone robotic-navigated spinal surgery using a contemporary system.

Methods

The authors reviewed the prospectively collected data on 196 adult patients who had pedicle screws implanted with robot-navigated assistance (RNA) using the Mazor X Stealth system between June 2019 and March 2022. Pedicle screws were implanted by one experienced spinal surgeon after completion of a learning period. The accuracy of pedicle screw placement was determined using intraoperative 3D fluoroscopy.


Bone & Joint 360
Vol. 11, Issue 3 | Pages 32 - 35
1 Jun 2022


Introduction and Objective. Posterior and transforaminal lumbar interbody fusion (PLIF, TLIF) represent the most popular techniques in performing an interbody fusion amongst spine surgeons. Pseudarthrosis, cage migration, subsidence or infection can occur, with subsequent failed surgery, persistent pain and patient’ bad quality of life. The goal of revision fusion surgery is to correct any previous technical errors avoiding surgical complications. The most safe and effective way is to choose a naive approach to the disc. Therefore, the anterior approach represents a suitable technique as a salvage operation. The aim of this study is to underline the technical advantages of the anterior retroperitoneal approach as a salvage procedure in failed PLIF/TLIF analyzing a series of 32 consecutive patients. Materials and Methods. We performed a retrospective analysis of patients’ data in patients who underwent ALIF as a salvage procedure after failed PLIF/TLIF between April 2014 to December 2019. We recorded all peri-operative data. In all patients the index level was exposed with a minimally invasive anterior retroperitoneal approach. Results. Thirty-two patients (average age: 46.4 years, median age 46.5, ranging from 21 to 74 years hold- 16 male and 16 female) underwent salvage ALIF procedure after failed PLIF/TLIF were included in the study. A minimally invasive anterior retroperitoneal approach to the lumbar spine was performed in all patients. In 6 cases (18.7%) (2 infection and 4 pseudarthrosis after stand-alone IF) only anterior revision surgery was performed. A posterior approach was necessary in 26 cases (81.3%). In most of cases (26/32, 81%) the posterior instrumentation was overpowered by the anterior cage without a previous revision. Three (9%) intraoperative minor complications after anterior approach were recorded: 1 dural tear, 1 ALIF cage subsidence and 1 small peritoneal tear. None vascular injuries occurred. Most of patients (90.6%) experienced an improvement of their clinical condition and at the last follow-up no mechanical complication occurred. Conclusions. According to our results, we can suggest that a favourable clinical outcome can firstly depend from technical reasons an then from radiological results. The removal of the mobilized cage, the accurate endplate and disc space preparation and the cage implant eliminate the primary source of pain reducing significantly the axial pain, helping to realise an optimal bony surface for fusion and enhancing primary stability. The powerful disc distraction given by the anterior approach allows inserting large and lordotic cages improving the optimal segmental lordosis restoration


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_11 | Pages 20 - 20
1 Sep 2021
De La Torre C Lam KS Carriço G
Full Access

Introduction. The placement of a large interbody implant allows for a larger surface area for fusion, vis a vis, via retroperitoneal direct anterior, antero-lateral and lateral approaches. At the same time, spinal navigation facilitates a minimally invasive fixation for inserting posterior pedicle screws. We report on the first procedures in the United Kingdom performed by a single-surgeon at a single- centre using navigated robot-assisted spine surgery without the need for guide-wires. Materials and Methods. Whilst positioned in the supine or lateral position, a routine supine anterior lumbar interbody fusion (ALIF), and/or antero-lateral ALIF (AL-ALIF) and/or lateral lateral interbody fusion (LLIF) is performed. The patient is then turned prone or kept in the single lateral position (SPL) for insertion of the posterior screws performed under robotic guidance. Intraoperative CT scan 3D images captured then are sent to the Robotic software platform for planning of the screw trajectories and finally use again at the end of the procedure to confirm screw accuracy. We identified 34 consecutive patients from October 2019 to January 2020 who underwent robotic assisted spine surgery. The demographic, intraoperative, and perioperative data of all these patients were reviewed and presented. Results. Of the 34 patients, 65 levels were treated in total using 204 screws. Of the 21 patients (60%) who underwent single-level fixation, 14 of them (67%) were treated at the L5/S1 level, 3 at L3/L4, 3 at L4/L5 and 1 at L2/L3 level. The remaining 13 patients (40%) underwent multi-level fixation, of which 4 were adult scoliosis. 15 underwent a supine ALIF approach, 1 underwent AL-ALIF, 8 patients underwent combined LLIF and AL-ALIF approach in a lateral decubitus, whilst 9 underwent pure LLIF approach (of which 3 patients were in the single position lateral) and one patient had previous TLIF surgery. The average estimated blood loss was 60 cc. The average planning time was 10 min and the average duration of surgery was 50 min. The average patient age was 54 years and 64% (22/34) were male. The average BMI was 28.1 kg/m. 2. There were no re-interventions due to complications or mal positioned screws. Conclusion. Minimally invasive spine surgery using robot-assisted navigation yields an improved level of accuracy, decreased radiation exposure, minimal muscle disruption, decreased blood loss, shorter operating theatre time, length of stay, and lower complication rates. Further follow-up of the patients treated will help compare the clinical outcomes with other techniques


Bone & Joint Open
Vol. 2, Issue 3 | Pages 163 - 173
1 Mar 2021
Schlösser TPC Garrido E Tsirikos AI McMaster MJ

Aims

High-grade dysplastic spondylolisthesis is a disabling disorder for which many different operative techniques have been described. The aim of this study is to evaluate Scoliosis Research Society 22-item (SRS-22r) scores, global balance, and regional spino-pelvic alignment from two to 25 years after surgery for high-grade dysplastic spondylolisthesis using an all-posterior partial reduction, transfixation technique.

Methods

SRS-22r and full-spine lateral radiographs were collected for the 28 young patients (age 13.4 years (SD 2.6) who underwent surgery for high-grade dysplastic spondylolisthesis in our centre (Scottish National Spinal Deformity Service) between 1995 and 2018. The mean follow-up was nine years (2 to 25), and one patient was lost to follow-up. The standard surgical technique was an all-posterior, partial reduction, and S1 to L5 transfixation screw technique without direct decompression. Parameters for segmental (slip percentage, Dubousset’s lumbosacral angle) and regional alignment (pelvic tilt, sacral slope, L5 incidence, lumbar lordosis, and thoracic kyphosis) and global balance (T1 spino-pelvic inclination) were measured. SRS-22r scores were compared between patients with a balanced and unbalanced pelvis at final follow-up.


The Bone & Joint Journal
Vol. 102-B, Issue 8 | Pages 1062 - 1071
1 Aug 2020
Cheung JPY Fong HK Cheung PWH

Aims

To determine the effectiveness of prone traction radiographs in predicting postoperative slip distance, slip angle, changes in disc height, and lordosis after surgery for degenerative spondylolisthesis of the lumbar spine.

Methods

A total of 63 consecutive patients with a degenerative spondylolisthesis and preoperative prone traction radiographs obtained since 2010 were studied. Slip distance, slip angle, disc height, segmental lordosis, and global lordosis (L1 to S1) were measured on preoperative lateral standing radiographs, flexion-extension lateral radiographs, prone traction lateral radiographs, and postoperative lateral standing radiographs. Patients were divided into two groups: posterolateral fusion or posterolateral fusion with interbody fusion.


Obesity is an increasing public health concern associated with increased perioperative complications and expense in lumbar spine fusions. While open and mini-open fusions such as transforaminal lumbar interbody fusion (TLIF) and minimally invasive TLIF (MIS-TLIF) are more challenging in obese patients, new MIS procedures like oblique lateral lumbar interbody fusion (OLLIF) may improve perioperative outcomes in obese patients relative to TLIF and MIS-TLIF. The purpose of this study is to determine the effects of obesity on perioperative outcomes in OLLIF, MIS-TLIF, and TLIF. This is a retrospective cohort study. We included patients who underwent OLLIF, MIS-TLIF, or TLIF on three or fewer spinal levels at a single Minnesota hospital after conservative therapy had failed. Indications included in this study were degenerative disc disease, spondylolisthesis, spondylosis, herniation, stenosis, and scoliosis. We measured demographic information, body mass index (BMI), surgery time, blood loss, and hospital stay. We performed summary statistics to compare perioperative outcomes in MIS-TLIF, OLLIF, and TLIF. We performed multivariate regression to determine the effects of BMI on perioperative outcomes controlling for demographics and number of levels on which surgeries were operated. OLLIF significantly reduces surgery time, blood loss, and hospital stay compared to MIS-TLIF, and TLIF for all levels. MIS-TLIF and TLIF do not differ significantly except for a slight reduction in hospital stay for two-level procedures. On multivariate analysis, a one-point increase in BMI increased surgery time by 0.56 ± 0.47 minutes (p = 0.24) in the OLLIF group, by 2.8 ± 1.43 minutes (p = 0.06) in the MIS-TLIF group, and by 1.7 ± 0.43 minutes (p < 0.001) in the TLIF group. BMI has positive effects on blood loss for TLIF (p < 0.001) but not for OLLIF (p = 0.68) or MIS-TLIF (p = 0.67). BMI does not have significant effects on length of hospital stay for any procedure. Obesity is associated with increased surgery time and blood loss in TLIF and with increased surgery time in MIS-TLIF. Increased surgery time may be associated with increased perioperative complications and cost. In OLLIF, BMI does not affect perioperative outcomes. Therefore, OLLIF may reduce the disparity in outcomes and cost between obese and non-obese patients


Bone & Joint 360
Vol. 8, Issue 5 | Pages 30 - 32
1 Oct 2019


The Bone & Joint Journal
Vol. 101-B, Issue 9 | Pages 1115 - 1121
1 Sep 2019
Takenaka S Makino T Sakai Y Kashii M Iwasaki M Yoshikawa H Kaito T

Aims

The aim of this study was to explore risk factors for complications associated with dural tear (DT), including the types of DT, and the intra- and postoperative management of DT.

Patients and Methods

Between 2012 and 2017, 12 171 patients with degenerative lumbar diseases underwent primary lumbar spine surgery. We investigated five categories of potential predictors: patient factors (sex, age, body mass index, and primary disease), surgical factors (surgical procedures, operative time, and estimated blood loss), types of DT (inaccessible for suturing/clipping and the presence of cauda equina/nerve root herniation), repair techniques (suturing, clipping, fibrin glue, polyethylene glycol (PEG) hydrogel, and polyglycolic acid sheet), and postoperative management (drainage duration). Postoperative complications were evaluated in terms of dural leak, prolonged bed rest, headache, nausea/vomiting, delayed wound healing, postoperative neurological deficit, surgical site infection (SSI), and reoperation for DT. We performed multivariable regression analyses to evaluate the predictors of postoperative complications associated with DT.


Bone & Joint 360
Vol. 8, Issue 2 | Pages 31 - 33
1 Apr 2019


Bone & Joint 360
Vol. 8, Issue 1 | Pages 28 - 30
1 Feb 2019


The Bone & Joint Journal
Vol. 99-B, Issue 10 | Pages 1366 - 1372
1 Oct 2017
Rickert M Fleege C Tarhan T Schreiner S Makowski MR Rauschmann M Arabmotlagh M

Aims. We compared the clinical and radiological outcomes of using a polyetheretherketone cage with (TiPEEK) and without a titanium coating (PEEK) for instrumented transforaminal lumbar interbody fusion (TLIF). Materials and Methods. We conducted a randomised clinical pilot trial of 40 patients who were scheduled to undergo a TLIF procedure at one or two levels between L2 and L5. The Oswestry disability index (ODI), EuroQoL-5D, and back and leg pain were determined pre-operatively, and at three, six, and 12 months post-operatively. Fusion rates were assessed by thin slice CT at three months and by functional radiography at 12 months. Results. At final follow-up, one patient in each group had been lost to follow-up. Two patients in each of the PEEK and TiPEEK groups were revised for pseudarthrosis (p = 1.00). The rate of complete or partial fusion at three months was 91.7% in both groups. Overall, there were no significant differences in ODI or in radiological outcomes between the groups. Conclusion. Favourable results with identical clinical outcomes and a high rate of fusion was seen in both groups. The titanium coating appears to have no negative effects on outcome or safety in the short term. A future study to determine the effect of titanium coating is warranted. Cite this article: Bone Joint J 2017;99-B:1366–72


Bone & Joint 360
Vol. 6, Issue 4 | Pages 23 - 25
1 Aug 2017


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 125 - 125
1 Mar 2017
Zhou C Sethi K Willing R
Full Access

Transforaminal lumbar interbody fusion (TLIF) using an implanted cage is the gold standard surgical treatment for disc diseases such as disc collapse and spinal cord compression, when more conservative medical therapy fails. Titanium (Ti) alloys are widely used implant materials due to their superior biocompatibility and corrosion resistance. A new Ti-6Al-4V TLIF cage concept featuring an I-beam cross-section was recently proposed, with the intent to allow bone graft to be introduced secondary to cage implantation. In designing this cage, we desire a clear pathway for bone graft to be injected into the implant, and perfused into the surrounding intervertebral space as much as possible. Therefore, we have employed shape optimization to maximize this pathway, subject to maintaining stresses below the thresholds for fatigue or yielding. The TLIF I-beam cage (Fig. 1(a)) with an irregular shape was parametrically designed considering a lumbar lordotic angle of 10°, and an insertion angle of 45° through the left or right Kambin's triangles with respect to the sagittal plane. The overall cage dimensions of 30 mm in length, 11 mm in width and 13 mm in height were chosen based on the dimensions of other commercially available cages. The lengths (la, lp) and widths (wa, wp) of the anterior and posterior beams determine the sizes of the cage's middle and posterior windows for bone graft injection and perfusion, so they were considered as the design variables for shape optimization. Five dynamic tests (extension/flexion bending, lateral bending, torsion, compression and shear compression, as shown in Fig. 2(b)) for assessing long term cage durability (10. 7. cycles), as described in ASTM F2077, were simulated in ANSYS 15.0. The multiaxial stress state in the cage was converted to an equivalent uniaxial stress state using the Manson-Mcknight approach, in order to test the cage based on uniaxial fatigue testing data of Ti-6Al-4V. A fatigue factor (K) and a critical stress (σcr) was introduced by slightly modifying Goodman's equation and von Mises yield criterion, such that a cage design within the safety design region on a Haigh diagram (Fig. 2) must satisfy K ≤ 1 and σcr ≤ SY = 875 MPa (Ti-6Al-4V yield strength) simultaneously. After shape optimization, a final design with la = 2.30 mm, lp = 4.33 mm, wa = 1.20 mm, wp = 2.50 mm, was converged upon, which maximized the sizes of the cage's windows, as well as satisfying the fatigue and yield strength requirements. In terms of the strength of the optimal cage design, the fatigue factor (K) under dynamic torsion approaches 1 and the critical stress (σcr) under dynamic lateral bending approaches the yield strength (SY = 875 MPa), indicating that these two loading scenarios are the most dangerous (Table 1). Future work should further validate whether or not the resulting cage design has reached the true global optimum in the feasible design space. Experimental validation of the candidate TLIF I-beam cage design will be a future focus. For any figures or tables, please contact authors directly (see Info & Metrics tab above).


The Bone & Joint Journal
Vol. 98-B, Issue 9 | Pages 1227 - 1233
1 Sep 2016
Bao H Yan P Qiu Y Liu Z Zhu F

Aims

There is a paucity of information on the pre-operative coronal imbalance in patients with degenerative lumbar scoliosis (DLS) and its influence on surgical outcomes.

Patients and Methods

A total of 284 DLS patients were recruited into this study, among whom 69 patients were treated surgically and the remaining 215 patients conservatively Patients were classified based on the coronal balance distance (CBD): Type A, CBD < 3 cm; Type B, CBD > 3 cm and C7 Plumb Line (C7PL) shifted to the concave side of the curve; Type C, CBD > 3 cm and C7PL shifted to the convex side.


Bone & Joint Research
Vol. 5, Issue 4 | Pages 145 - 152
1 Apr 2016
Bodalia PN Balaji V Kaila R Wilson L

Objectives

We performed a systematic review of the literature to determine the safety and efficacy of bone morphogenetic protein (BMP) compared with bone graft when used specifically for revision spinal fusion surgery secondary to pseudarthrosis.

Methods

The MEDLINE, EMBASE and Cochrane Library databases were searched using defined search terms. The primary outcome measure was spinal fusion, assessed as success or failure in accordance with radiograph, MRI or CT scan review at 24-month follow-up. The secondary outcome measure was time to fusion.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_5 | Pages 4 - 4
1 Feb 2016
Tian W Jin P
Full Access

Objective. To compare between the CAMISS-TLIF group and the OP-TLIF group in the clinical efficacy and radiographic manifest. Methods. This study was a registration study, selected 27 patients with lumbar spondylolisthesis from May 2011 to March 2014 in our hospital. Patients in one group are treated with computer assisted navigation minimally invasive TLIF (CAMISS -TLIF) while the others are treated with the OP-TLIF (OPEN-TLIF). The former group has 13 cases while the latter group has 14 cases. We collected information and present statistical analysis on the following aspects in order to compare the two different surgical methods of treatment. They are the operation duration, blood loss, days of hospitalisation, the preoperative and follow-up JOA and JOA improvement rate, the preoperative and follow-up ODI scores, the preoperative and follow-up VAS and Odom's criteria. By analysing the follow-up CT results, we compare the pedicle screw accuracy rate between the two groups in order to make a comprehensive assessment of these two surgical methods. Results. There is a significant difference in blood loss, follow-up JOA improvement rate and follow-up ODI scores between the CAMISS-TLIF group and OP-TLIF group (P <0.05), while in other fields there is no statistically significant differences. Conclusion. CAMISS-TLIF surgical approach has an advantage of less blood loss, less muscle stripping, smaller surgical trauma and more quickly recovery after surgery