Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_13 | Pages 99 - 99
1 Nov 2021
Gunay H Sozbilen MC Mirzazade J Bakan OM
Full Access

Introduction and Objective

Septic arthritis is an acute infective presentation of the joint calling for urgent intervention, thus making the differential diagnosis process difficult. An increase in temperature in the area containing the suspected septic arthritis is one of the clinically important findings. In this study, it was aimed to investigate whether or not the temperature changes obtained through thermal camera can be used as a new additional diagnostic tool in the differential diagnosis of septic arthritis.

Materials and Methods

The study was approved by the local ethics committee as a prospective cohort. A total of 49 patients, 15 septic and 34 non-septic ones, both male and female ones from all ages admitted to the emergency room or evaluated with the consultation of another clinics who were also present with a pre-diagnosis of arthritis (septic or non-septic) in the knee (with complaints of redness, swelling, pain, effusion, increased temperature, edema, and inability to walk) were included in the study. The patients with non-joint inflammatory problems and a history of surgery in the same joint were excluded from the study. The temperature increase in the joint area with suspected septic arthritis was observed, and the difference in temperature changes of this suspicious area with the joint area of the contralateral extremity was compared after which the diagnosis of septic arthritis was confirmed by taking culture with routine intra-articular fluid aspiration, which is the gold standard for definitive diagnosis.


Objectives

Bioresorbable orthopaedic devices with calcium phosphate (CaP) fillers are commercially available on the assumption that increased calcium (Ca) locally drives new bone formation, but the clinical benefits are unknown. Electron beam (EB) irradiation of polymer devices has been shown to enhance the release of Ca. The aims of this study were to: 1) establish the biological safety of EB surface-modified bioresorbable devices; 2) test the release kinetics of CaP from a polymer device; and 3) establish any subsequent beneficial effects on bone repair in vivo.

Methods

ActivaScrew Interference (Bioretec Ltd, Tampere, Finland) and poly(L-lactide-co-glycolide) (PLGA) orthopaedic screws containing 10 wt% β-tricalcium phosphate (β-TCP) underwent EB treatment. In vitro degradation over 36 weeks was investigated by recording mass loss, pH change, and Ca release. Implant performance was investigated in vivo over 36 weeks using a lapine femoral condyle model. Bone growth and osteoclast activity were assessed by histology and enzyme histochemistry.


The early failure and revision of bimodular primary total hip arthroplasty prostheses requires the identification of the risk factors for material loss and wear at the taper junctions through taper wear analysis. Deviations in taper geometries between revised and pristine modular neck tapers were determined using high resolution tactile measurements. A new algorithm was developed and validated to allow the quantitative analysis of material loss, complementing the standard visual inspection currently used.

The algorithm was applied to a sample of 27 retrievals (in situ from 2.9 to 38.1 months) of the withdrawn Rejuvenate modular prosthesis. The mean wear volumes on the flat distal neck piece taper was 3.35 mm3 (0.55 to 7.57), mainly occurring in a characteristic pattern in areas with high mechanical loading. Wear volume tended to increase with time to revision (r² = 0.423, p = 0.001). Implant and patient specific data (offset, stem size, patient’s mass, age and body mass index) did not correlate with the amount of material loss observed (p >  0.078). Bilaterally revised implants showed higher amounts of combined total material loss and similar wear patterns on both sides. The consistent wear pattern found in this study has not been reported previously, suggesting that the device design and materials are associated with the failure of this prosthesis.

Cite this article: Bone Joint J 2015;97-B:1350–7.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 391 - 391
1 Oct 2006
Lakdawala A Todo S Scott G
Full Access

Introduction: Aseptic loosening due to polyethylene wear is a mode of failure in knee arthroplasty. No study has evaluated the roughness of the articulating surface of retrieved femoral components & its role in creation of polyethylene wear. AIM The aim of our study was to investigate the in-vivo changes in the surface roughness of retrieved femoral components. Our hypothesis was that the surface finish of the femoral components, articulating with the polyethylene inserts deteriorated in accordance with the duration of implantation.

Materials and Methods: 22 femoral components, all Freeman-Samuelson prostheses, were retrieved from 18 male and 4 female patients at revision knee surgery. The mean age at revision was 68.4 years and the mean period of implantation was 55.64 months. 18 implants were retrieved for aseptic loosening and 4 for infection. Firstly, the surfaces of femoral components & polyethylene inserts were visually inspected for modes of damage in the articulating areas. The surface finish measurements were performed with a contact stylus profilometer with a 2-mm-radius stylus tip and a cut-off length of 0.8mm. The surface roughness was characterised by measuring Ra(mm), which is the arithmetic mean of the absolute values of the measured height deviations taken within the evaluation area and measured from the main line or surface. Both condyles were examined as separate areas articulating with the tibial components from 0° to 60° and 61° to 120° of knee flexion. Surface roughness (Ra) measurements from the sides of the patellar groove at the top of the femoral flange, which do not articulate either with the patella or tibia, were taken as control. The Ewald method of assessing the orientation of the components was applied to derive the coronal angle of the knee (CAK).

Results: The mean CAK was 7.2° ± 1°. Dull edged parallel scratching and burnishing were the main modes of damage identified on the surface in the articulating areas. Visual analysis of polyethylene inserts failed to identify embedded Polymethyl-methacrylate debris or any other damage, which matched the location of the altered surface finish of the femoral components. The mean Ra values recorded were: Control: Mean-0.0230 mm, SD- 0.00821. Medial Femoral condyle (0° – 60°) – 0.0225 mm, SD – 0.00797, P=0.832 Medial Femoral Condyle (61° – 120°) – 0.0244 mm, SD – 0.00532, P= 0.189 Lateral Femoral condyle (0° – 60°) – 0.0263 mm, SD – 0.00694, P= 0.078 Lateral Femoral Condyle (61° – 120°) – 0.0253 mm, SD – 0.00758, P= 0.286 No statistically significant difference was seen in the mean roughness (Ra) of the articulating areas when compared to that of the control (P< 0.05).

Conclusion: This study showed that the surface finish of these implants did not deteriorate during the period of implantation. On this basis we believe that a well-aligned and well-fixed femoral component, without any accumulated wear debris beneath it, does not require mandatory exchange if the revision is carried out for isolated failure of the tibial prosthesis even if the femoral component has fine scratching or burnishing on its surface.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_I | Pages 96 - 96
1 Mar 2006
Lakdawala A Todo S Scott G
Full Access

Aim: The aim of our study was to investigate the in-vivo changes in the surface roughness of retrieved femoral components.

Our hypothesis was that the surface finish of the femoral components deteriorated in accordance with the duration of implantation

Materials and method: 22 femoral components (all Freeman-Samuelson prostheses) were retrieved from 18 male and 4 female patients at revision knee surgery. The mean age at revision was 68.4 years and the mean period of implantation was 55.64 months. 18 implants were retrieved for aseptic loosening and 4 for infection. The surfaces of femoral components & polyethylene inserts were inspected for modes of damage in the articulating areas. The surface finish measurements were performed with a stylus profilometer. The surface roughness was characterised by measuring Ra (micron-meter), which is the mean of the measured height deviations within the evaluation area. The articulating surface on both condyles was examined seperately. Ra measurements from the sides of the patellar groove at the top of the femoral flange, which do not articulate either with the patella or tibia, were taken as control. The Ewald method of assessing the orientation of the components was applied to derive the coronal angle of the knee (CAK)

Results: The mean CAK was 7.2° ± 1°. Parallel scratching and burnishing were the main modes of damage on the surface in the articulating areas. Inspection of polyethylene inserts failed to find embedded Polymethyl-methacrylate debris or any other damage, which matched the location of the altered surface finish of the femoral components.

The mean Ra values were:

Control: Mean-0.0230 mm, SD- 0.00821.

Medial Femoral condyle (0 – 60) = 0.0225 mm, SD – 0.00797

Medial Femoral Condyle (61 – 120) = 0.0244 mm, SD – 0.00532

Lateral Femoral condyle (0 – 60) = 0.0263 mm, SD – 0.00694

Lateral Femoral Condyle (61 – 120) = 0.0253 mm, SD – 0.00758

No statistically significant difference was seen in the mean-Ra of the femoral condyles compared to that of the control (P less than 0.05).

Conclusion: The surface finish of these implants did not deteriorate during the period of implantation. On this basis we believe that a well-aligned and well-fixed femoral component, without any accumulated wear debris beneath it, does not require mandatory exchange if the revision is carried out for isolated failure of the tibial prosthesis.