Advertisement for orthosearch.org.uk
Results 1 - 5 of 5
Results per page:
The Bone & Joint Journal
Vol. 98-B, Issue 8 | Pages 1099 - 1105
1 Aug 2016
Weiser L Dreimann M Huber G Sellenschloh K Püschel K Morlock MM Rueger JM Lehmann W

Aims

Loosening of pedicle screws is a major complication of posterior spinal stabilisation, especially in the osteoporotic spine. Our aim was to evaluate the effect of cement augmentation compared with extended dorsal instrumentation on the stability of posterior spinal fixation.

Materials and Methods

A total of 12 osteoporotic human cadaveric spines (T11-L3) were randomised by bone mineral density into two groups and instrumented with pedicle screws: group I (SHORT) separated T12 or L2 and group II (EXTENDED) specimen consisting of T11/12 to L2/3. Screws were augmented with cement unilaterally in each vertebra. Fatigue testing was performed using a cranial-caudal sinusoidal, cyclic (1.0 Hz) load with stepwise increasing peak force.


The Bone & Joint Journal
Vol. 96-B, Issue 11 | Pages 1436 - 1440
1 Nov 2014
Henderson ER O’Connor MI Ruggieri P Windhager R Funovics PT Gibbons CL Guo W Hornicek FJ Temple HT Letson GD

Previous classification systems of failure of limb salvage focused primarily on endoprosthetic failures and lacked sufficient depth for the effective study of the causes of failure. In order to address these inadequacies, the International Society of Limb Salvage (ISOLS) formed a committee to recommend revisions of the previous systems. The purpose of this study was to report on their recommendations. The modifications were prepared using an earlier, evidence-based model with subclassification based on the existing medical literature. Subclassification for all five primary types of failure of limb salvage following endoprosthetic reconstruction were formulated and a complementary system was derived for the failure of biological reconstruction. An additional classification of failure in paediatric patients was also described.

Limb salvage surgery presents a complex array of potential mechanisms of failure, and a complete and precise classification of types of failure is required. Earlier classification systems lacked specificity, and the evidence-based system outlined here is designed to correct these weaknesses and to provide a means of reporting failures of limb salvage in order to allow the interpretation of outcome following reconstructive surgery.

Cite this article: Bone Joint J 2014;96-B:1436–40.


The Bone & Joint Journal
Vol. 96-B, Issue 4 | Pages 541 - 547
1 Apr 2014
Kose KC Inanmaz ME Isik C Basar H Caliskan I Bal E

The purpose of this study was to evaluate and compare the effect of short segment pedicle screw instrumentation and an intermediate screw (SSPI+IS) on the radiological outcome of type A thoracolumbar fractures, as judged by the load-sharing classification, percentage canal area reduction and remodelling.

We retrospectively evaluated 39 patients who had undergone hyperlordotic SSPI+IS for an AO-Magerl Type-A thoracolumbar fracture. Their mean age was 35.1 (16 to 60) and the mean follow-up was 22.9 months (12 to 36). There were 26 men and 13 women in the study group. In total, 18 patients had a load-sharing classification score of seven and 21 a score of six. All radiographs and CT scans were evaluated for sagittal index, anterior body height compression (%ABC), spinal canal area and encroachment. There were no significant differences between the low and high score groups with respect to age, duration of follow-up, pre-operative sagittal index or pre-operative anterior body height compression (p = 0.217, 0.104, 0.104, and 0.109 respectively). The mean pre-operative sagittal index was 19.6° (12° to 28°) which was corrected to -1.8° (-5° to 3°) post-operatively and 2.4° (0° to 8°) at final follow-up (p = 0.835 for sagittal deformity). No patient needed revision for loss of correction or failure of instrumentation.

Hyperlordotic reduction and short segment pedicle screw instrumentation and an intermediate screw is a safe and effective method of treating burst fractures of the thoracolumbar spine. It gives excellent radiological results with a very low rate of failure regardless of whether the fractures have a high or low load-sharing classification score.

Cite this article: Bone Joint J 2014;96-B:541–7.


Orthopaedic Proceedings
Vol. 92-B, Issue SUPP_III | Pages 377 - 377
1 Jul 2010
Konyves A Chiverton N Douglas D Breakwell L Cole A
Full Access

Purpose of study: There is a controversy in the surgical treatment of unstable thoracolumbar burst fractures scoring high on the Load Sharing Classification (LSC). We have been treating unstable thoracolumbar fractures with postero-lateral fusion using short segment instrumentation and in this study we investigated our complication rate. Methods and results: We retrospectively reviewed notes and radiographs of patients presenting with thoracolumbar burst fractures and stabilised with a short-segment instrumented postero-lateral fusion between 1998 and 2007. We identified 31 patients who had adequate documentation and radiographs. Twenty patients had a high (> =7) LSC score and none of these fixations failed. Overall early and late complication rate was low (one wound infection, one dehiscence and four unrelated infections), the one metalwork failure related to infection. Fifty-five percent of patients returned to full-time work. Approximately 50% of correction of kyphosis was lost but the average kyphosis at final follow-up was 11 degrees that we thought was acceptable. Conclusion: We concluded that treating unstable burst fractures with posterior instrumented fusion alone using a pedicle screw construct does not result in late instrumentation failure, high complication rate or unacceptable final deformity. Ethics approval: None. Interest Statement: None


Orthopaedic Proceedings
Vol. 91-B, Issue SUPP_III | Pages 495 - 495
1 Sep 2009
Garrido E Tome F Tucker S Noordeen H Morley T
Full Access

Study Design: Retrospective study with clinical and radiological evaluation of 29 patients with congenital scoliosis who underwent 31 short segment anterior instrumented fusions of lateral hemivertebrae. Objective: To evaluate the safety and efficacy of early surgical anterior instrumented fusion with partial preservation of the HV in the treatment of progressive congenital scoliosis in children below the age of 6. Summary of background data: A variety of treatments have been described in the literature for the treatment of HV. We report the results of a novel technique. Materials and Methods: Between 1996 and 2005, 29 consecutive patients with 31 lateral HV and progressive scoliosis underwent short segment anterior instrumentation and fusion with preservation of the HV. Mean age at surgery was 2.9 years. Mean follow-up period was 6.3 years. Results: Preoperative segmental Cobb angle averaging 39°, was corrected to 150 after surgery, being 15º at the last follow up (60% of improvement). Compensatory cranial and caudal curves corrected by approximately 50% and did not change significantly on follow up. The angle of segmental kyphosis averaged 13º before surgery, 12º after surgery, and 12° at follow up. There was 2 wound infection requiring surgical debridment, 1 intraoperative fracture of the vertebral body and 1 case lost correction due to implant failure. All went on to stable bony union. There were no neurologic complications. Conclusions: Early diagnosis and early and aggressive surgical treatment are mandatory for a successful treatment of congenital scoliosis and to prevent the development of secondary compensatory deformities. Anterior instrumentation is a safe and effective technique capable of transmitting a high amount of convex compression allowing short segment fusion which is of great importance in the growing spine