Advertisement for orthosearch.org.uk
Results 1 - 6 of 6
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 887 - 891
1 Sep 2024
Whyte W Thomas AM

The critical relationship between airborne microbiological contamination in an operating theatre and surgical site infection (SSI) is well known. The aim of this annotation is to explain the scientific basis of using settle plates to audit the quality of air, and to provide information about the practicalities of using them for the purposes of clinical audit. The microbiological quality of the air in most guidance is defined by volumetric sampling, but this method is difficult for surgical departments to use on a routine basis. Settle plate sampling, which mimics the mechanism of deposition of airborne microbes onto open wounds and sterile instruments, is a good alternative method of assessing the quality of the air. Current practice is not to sample the air in an operating theatre during surgery, but to rely on testing the engineering systems which deliver the clean air. This is, however, not good practice and microbiological testing should be carried out routinely during operations as part of clinical audit. Cite this article: Bone Joint J 2024;106-B(9):887–891


The Bone & Joint Journal
Vol. 100-B, Issue 10 | Pages 1264 - 1269
1 Oct 2018
Thomas AM Simmons MJ

Deep infection was identified as a serious complication in the earliest days of total hip arthroplasty. It was identified that airborne contamination in conventional operating theatres was the major contributing factor. As progress was made in improving the engineering of operating theatres, airborne contamination was reduced. Detailed studies were carried out relating airborne contamination to deep infection rates.

In a trial conducted by the United Kingdom Medical Research Council (MRC), it was found that the use of ultra-clean air (UCA) operating theatres was associated with a significant reduction in deep infection rates. Deep infection rates were further reduced by the use of a body exhaust system. The MRC trial also included a detailed microbiology study, which confirmed the relationship between airborne contamination and deep infection rates.

Recent observational evidence from joint registries has shown that in contemporary practice, infection rates remain a problem, and may be getting worse. Registry observations have also called into question the value of “laminar flow” operating theatres.

Observational evidence from joint registries provides very limited evidence on the efficacy of UCA operating theatres. Although there have been some changes in surgical practice in recent years, the conclusions of the MRC trial remain valid, and the use of UCA is essential in preventing deep infection.

There is evidence that if UCA operating theatres are not used correctly, they may have poor microbiological performance. Current UCA operating theatres have limitations, and further research is required to update them and improve their microbiological performance in contemporary practice.

Cite this article: Bone Joint J 2018;100-B:1264–9.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_3 | Pages 63 - 63
1 Apr 2018
Lum Z Coury J Huff K Trzeciak M
Full Access

Introduction. One method of surgical site infection prevention is lowering intraoperative environmental contamination. We sought to evaluate our hospitals operating room (OR) contamination rates and compare it to the remainder of the hospital. We tested environmental contamination in preoperative, intraoperative and postoperative settings of a total joint arthroplasty patient. Materials & Methods. 190 air settle plates composed of trypsin soy agar (TSA) were placed in 19 settings within our hospital. Locations included the OR with light and heavy traffic, with and without masks, jackets, and shoe covers, sub-sterile rooms, OR hallways, sterile equipment processing center, preoperative areas, post-anesthesia care units, orthopaedic floors, emergency department, OR locker rooms and restrooms, a standard house in the local community, and controls. The plates were incubated in 36 degrees celsius for 48 hours and colony counts were recorded. Numbers were averaged over each individual area. Results. The highest CFU was the OR locker room at 28 CFU/plate/hr. Preoperative & post anesthesia care unit holding areas were 7.4 CFU & 9.6 CFU, respectively. The main orthopaedic surgical ward had 10.0 CFU/plate/hr, while the VIP hospital ward had 17.0 CFU/plate/hr. The OR environment all had low CFUs. A live OR had slightly higher CFUs than ones without OR personnel. The OR sub-sterile room had 5.2 CFU/plate/hr, and the OR hallway had 11.2 CFU/plate/hr. The local community household measured 5.6CFU/plate/hr. Discussion. In comparison to the local community household, the OR locker room, restrooms, hospital orthopaedic wards, ED, pre-operative holding, PACU and OR hallway all had higher airborne contamination than the local household in our surrounding community. We were surprised to find some areas with high rates of contamination. Our hospital has since increased environmental cleaning and monitoring of these areas with improved effect. Based on our results, we can recommend environmental sampling as a simple, fast, inexpensive tool to monitor airborne contamination


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_12 | Pages 8 - 8
1 Jun 2017
Moores T Chatterton B Khan S Harvey G Lewthwaite S
Full Access

Deep infection occurs in 2–4% of lower limb arthroplasty resulting in increasing cost, co-morbidity and challenging revision arthroplasty surgery. Identifying the potential sources of infection helps reduce infection rates. The aim of our study is to identify the impact and potential for contamination of our hands and gowns whilst scrubbing using SSHS. A colony-forming unit (CFU) is a pathogenic particle of 0.5 micrometers to 5 micrometers. Concurrent particle counts and blood agar exposure settle plates for 3 subjects and 1 alcohol cleaned mannequin; testing a standard arthroplasty hood, a SSHS with and without the fan on for a 2 minute exposure to represent scrubbing time. Microbiological plates were incubated using a standard protocol by our local microbiology department. All SSHS were positive for gram-positive cocci with a mean colony count of 410cfu/m. 2. Comparing background counts for laminar flow (mean 0.7 particle/m. 3. ; 95% CI 0–1.4) versus scrub areas (mean 131.5 particle/m3; 95% CI 123.5–137.9; p=0.0003), however neither grew any CFU's with a 2-minute exposure. For the mannequin, the only significant result was with the fan on with a 1.5× increase in the particle count (p=0.042) and a correlating positive organism (13CFU/m. 2. ). With human subjects, however, the particle count increased by 3.75× the background count with the fan on (total p=0.004, CFU p=0.047) and all had positive cultures, mean 36 CFU/m. 2. There were no positive cultures with the standard arthroplasty hood or the SSHS with no fan on. If repeated in laminar flow, there was only a statistically significant increase with the fan on (p=0.049), but with negative cultures following a 2-minute exposure. Sterile gloves and gowns can be contaminated when scrubbing with the SSHS fan on. We recommend having the fan switched off when scrubbing until the hood and gown is in place, ideally in a laminar flow environment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_11 | Pages 9 - 9
1 Jun 2016
Thomas A Bradley C Fraise A Sherwood G
Full Access

As a result of laser imaging studies in an ultraclean theatre we concluded that obstructions to horizontal airflow at the periphery might produce areas of high particulate residence times. High residence times may allow a higher proportion of infected particles to land. We decided to investigate this effect by placing settle plates in defined positions on instrument trays during surgery. In an initial study contamination was 0.25 colonies/plate/hour. When the surgeon, assistant and scrub person all used a body exhaust system the contamination rate was 0.04 colonies/plate/hour. We then organised the instrument tables with two large tables orientated so that the scrub person did not have to stand between the airflow and the table. We placed plates on both trays with the locations recorded. With the instrument trolleys in optimised positions the contamination rate remained consistently at 0.04 colonies/plate/hour. An animation was produced showing how the bacterial colonies appeared over 18 hours of surgery. The majority of the contamination occurred on the surgeons’ side trolley at the opposite end of the trolley to the surgeon. Ultraclean enclosures in the UK are specified by HTM03-01, which sets a standard of <10 cfu/cubic meter measured by active air sampling. The measurement does not however take place during surgery, as it is very difficult to perform air sampling during surgery. There is a reasonable correlation between air contamination and settle plates so they are a viable method for during surgery monitoring. In a modern operating enclosure, using body exhausts, our contamination rate compares favourably to the fourth phase of Charnley's classic study in which he used 300 air changes/hour in the prototype closure. The rate compares favourably to the multi-centre Italian GISIO-ISChIA study. The contamination rate achieved could form a basis for comparative audits based on realistic during surgery monitoring


The Journal of Bone & Joint Surgery British Volume
Vol. 78-B, Issue 5 | Pages 835 - 837
1 Sep 1996
Chosky SA Modha D Taylor GJS

The use of ultraclean air (UCA) in operating theatres reduces the infection rate after joint replacement but some cases of infection still occur. We investigated one possible source of contamination, namely the setting up of instruments in a conventional plenum-ventilated preparation room. We measured bacterial fallout using agar settle plates and compared instruments set up in the preparation room with those set up in the UCA theatre, assessed the effect of covering instruments after preparation and compared fallout during their preparation with total fallout throughout the operation. Our findings showed that covering the instruments reduced total bacterial fallout fourfold by reducing the exposure time, particularly during periods of increased activity and bacterial dispersal. Preparation in the UCA theatre and subsequent covering of the instruments reduced total fallout 28-fold. All measurable bacterial fallout occurred during the setting up and not during surgery