Introduction. Somatosensory evoked potential (SSEP) monitoring allows for assessment of the spinal cord and susceptible structures during complex spinal surgery. It is well validated for the detection of potential neurological injury but little is known of surgeon's responses to an abnormal trace and its effect on neurological outcome. We aimed to investigate this in spinal deformity patients who are particularly vulnerable during their corrective surgery. Methods. Our institutional neurophysiology database was analysed between 1. st. October 2005 and 31. st. March 2010. Monitoring was performed by a team of trained neurophysiology technicians who were separate from the surgical team. A significant trace was defined as a 50% reduction in trace amplitude or a 10% increase in signal latency. Patients suffering a significant trace event were examined post-operatively by a Consultant Neurologist who was separate from the surgical team. Results. 2386 consecutive operations (F:1719, M:667 median age 16 yrs) were performed in the time period and 72 operations reported a significant trace event (‘red alert’). From these cases 47 (65%) had a clearly documented intervention by the surgeon and 7 patients overall suffered a lasting neurological deficit (0.3%). The most common timing events were during instrumentation (50%) and during correction/distraction (16%). Most common responses were optimisation of patient/monitoring set-up (23%) and adjustment of metalwork (22%). There were 18 wake-up tests performed. We found
The December 2012 Children’s orthopaedics Roundup360 looks at: whether arthrodistraction is the answer to Perthes’ disease; deformity correction in tarsal coalitions; ultrasound used to predict pain in Osgood-Schlatter’s disease; acetabular tilt; hip replacement for juvenile arthritis sufferers; whether post-operative radiographs are needed for supracondylar fractures; intra-articular local anaesthetic following supracondylar fracture fixation; and limb deformity.
We undertook a retrospective analysis of 306
procedures on 233 patients, with a mean age of 12 years (1 to 21),
in order to evaluate the use of somatosensory evoked potential (SSEP)
monitoring for the early detection of nerve compromise during external
fixation procedures for limb lengthening and correction of deformity.
Significant SSEP changes were identified during 58 procedures (19%).
In 32 instances (10.5%) the changes were transient, and resolved
once the surgical cause had been removed. The remaining 26 (8.5%)
were analysed in two groups, depending on whether or not corrective
action had been performed in response to critical changes in the
SSEP recordings. In 16 cases in which no corrective action was taken,
13 (81.2%, 4.2% overall) developed a post-operative neurological
deficit, six of which were permanent and seven temporary, persisting
for five to 18 months. In the ten procedures in which corrective
action was taken, four patients (40%, 1.3% overall) had a temporary
(one to eight months) post-operative neuropathy and six had no deficit. After appropriate intervention in response to SSEP changes, the
incidence and severity of neurological deficits were significantly
reduced, with no cases of permanent neuropathy. SSEP monitoring
showed 100% sensitivity and 91% specificity for the detection of
nerve injury during external fixation. It is an excellent diagnostic
technique for identifying nerve lesions when they are still highly
reversible.
Introduction. Evidence suggests that intra-operative spinal cord monitoring is sensitive and specific for detecting potential neurological injury. However, little is known about surgeons' responses to trace changes and the resultant neurological outcome. Objective. To examine the role of intra-operative somatosensory evoked potential (SSEP) monitoring in the prevention of neurological injury, specifically sensitivity and specificity, and whether the abnormalities were reversible. Methods. 2953 consecutive complex spine operations (male 36% female 64%, median age 25yrs) prospectively performed using spinal cord monitoring at a single institution (2005–2009). All traces and neurophysiological events were prospectively recorded by the neurophysiology technician. All patients with a significant neurophysiology event were examined clinically by a neurologist, separate from the spinal surgery team. Significant trace abnormality was defined as a decrease in signal amplitude of 50% or a 10% increase in latency. Timing of trace abnormality, surgeon's response and prospective neurological outcome were recorded. Sensitivity, specificity, positive/negative predictive value were calculated. A Chi-squared test was performed to assess the impact of intervention on neurological outcome (p < 0.05). Results. 2953 operations involving
Introduction. The British Scoliosis Society published a document in 2008 which set out the minimum standards for paediatric spinal deformity services to achieve over a period of time. But how do the UK paediatric spinal deformity centres measure up to these benchmarks?. Methods. We performed a telephonic survey, contacting every UK spinal deformity centre. The questionnaire probed how each unit compared to the recommended standards. Results. Twenty three centres were interviewed, covering 81 surgeons in total (range 1-8 surgeons per centre). Four centres (17%) did not have 24-hour access to a MRI scanner and all but 2 centres had on-site facilities for long-cassette films/scoliograms. Five centres (22%) always had 2 consultant surgeons per case, 9 centres (39%) routinely have only 1 consultant surgeon per case, and the rest had 1 or 2 consultant surgeons depending on seniority. Six centres (26%) did not routinely have shared care of their patients with the paediatric team. All centres used intra-operative
Objective: Recent reports have suggested a low incidence of neurological complications following anterior deformity surgery; however in patients with co-existing intra-spinal anomalies no quantification of this risk has been made. Also, whether
Objective To assess the validity of Somatosensory Evoked Potential (SSEP) monitoring in identifying potential spinal cord vascular damage resulting from segmental artery ligation in anterior spinal deformity correction. Design
Objective: Determine the incidence of abnormal somatosensory evoked potentials (SSEP) in patients with ‘at risk’ spinal cords undergoing anterior spinal deformity surgery. Design: A retrospective chart and SSEP trace review of cases between 1982–2001. Subjects: Patients undergoing elective anterior spinal deformity surgery were included. Excluded were those with inadequate
We reviewed retrospectively the role of monitoring of somatosensory spinal evoked potentials (SSEP) in 99 patients with neuromuscular scoliosis who had had operative correction with Luque-Galveston rods and sublaminar wiring. Our findings showed that