Oxidized zirconium (OxZi) and highly cross-linked polyethylene (HXLPE) were developed to minimize wear and risk of osteolysis in total hip arthroplasty (THA). However, retrieval studies have shown that scratched femoral heads may lead to runaway wear, and few reports of long-term results have been published. The purpose of this investigation is to report minimum ten-year wear rates and clinical outcomes of THA with OxZi femoral heads on HXLPE, and to compare them with a retrospective control group of cobalt chrome (CoCr) or ceramic heads on HXLPE. From 2003 to 2006, 108 THAs were performed on 96 patients using an OxZi head with a HXLPE liner with minimum ten-year follow-up. Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up (mean 13.3 years). Linear and volumetric liner wear was measured on radiographs of 85 hips with a minimum ten-year follow-up (mean 14.5 years). This was compared to a retrospective control group of 45 THAs using ceramic or CoCr heads from October 1999 to February 2005, with a minimum of ten years’ follow-up.Aims
Methods
Oxidized zirconium (Oxinium) and highly cross-linked polyethylene (HXLPE) were developed with the purpose of minimizing wear, and subsequent osteolysis, in Total Hip Arthroplasty (THA). However, few articles have been published on long-term results of Oxinium on highly cross-linked polyethylene. The purpose of this investigation is to report minimum 10-year HXLPE wear rates and the clinical outcome of patients in this group and compare this population to a control group of cobalt chrome and ceramic. One hundred forty THAs were performed for 123 patients using an Oxinium head with an HXLPE liner. Ninety-seven had 10 years of clinical follow-up (avg. 14.5). Harris Hip Scores (HHS) were collected preoperatively and at the most recent follow-up. Radiographs of 85 hips were available for a minimum 10-year follow-up (avg. 14.5) and used to calculate wear using
The aim of this study was to evaluate the performance of first-generation annealed highly cross-linked polyethylene (HXLPE) in cementless total hip arthroplasty (THA). We retrospectively evaluated 29 patients (35 hips) who underwent THA between December 2000 and February 2002. The survival rate was estimated using the Kaplan-Meier method. Hip joint function was evaluated using the Japanese Orthopaedic Association (JOA) score. Two-dimensional polyethylene wear was estimated using Martell’s Hip Analysis Suite. We calculated the wear rates between years 1 and 5, 5 and 10, 10 and 15, and 15 and final follow-up.Aims
Methods
Highly cross-linked polyethylene (HXLPE) has greatly improved the durability of total hip arthroplasty (THA) in young patients because of its improved wear characteristics. Few studies have followed this population into the second decade, and therefore the purpose of this investigation was to evaluate the clinical outcome for THA patients 50 years of age and younger at a minimum of 15 years postoperatively. The second purpose was to evaluate the radiological findings secondary to wear or mechanical failure of the implant. Between October 1999 and December 2005, 105 THAs were performed in 95 patients (53 female, 42 male) aged 50 years and younger (mean 42 years (20 to 50)). There were 87 patients (96 hips) that were followed for a minimum of 15 years (mean 17.3 years (15 to 21)) for analysis. Posterior approach was used with cementless fixation with a median head size of 28 mm. HXLPE was the acetabular bearing for all hips. Radiographs were evaluated for polyethylene wear, radiolucent lines, and osteolysis.Aims
Methods
The primary aim of this study was to determine dislocation and revision total hip replacement (THR) up to ten years following primary THR, as well as rates of polyethylene wear, in patients previously enrolled in a randomised controlled trial (RCT) which compared 28 mm and 36 mm metal on highly cross-linked polyethylene (XLPE) articulations. 328 primary THR patients were enrolled in the RCT in Australia. Dislocation was identified from hip instability and hospital visit questionnaires completed by patients or, if they were unable to do so, by their next of kin or primary carer, or General Practitioner. All reported dislocations were confirmed radiographically. Patients' names were cross-matched with the Australian National Joint Replacement Registry to determine whether the index hip had undergone revision THR. Linear wear was measured on plain radiographs using
We present the ten-year data of a cohort of patients, aged between
18 and 65 years (mean age 52.7 years; 19 to 64), who underwent total
hip arthroplasty. Patients were randomised to be treated with a
cobalt-chrome (CoCr) femoral head with an ultra-high molecular weight
polyethylene (UHMWPE), highly cross-linked polyethylene (XLPE) or
ceramic-on-ceramic (CoC) bearing surface. A total of 102 hips (91 patients) were randomised into the three
groups. At ten years, 97 hips were available for radiological and
functional follow-up. Two hips (two patients) had been revised (one
with deep infection and one for periprosthetic fracture) and three
were lost to follow-up. Radiological analysis was performed using
a validated digital assessment programme to give linear, directional
and volumetric wear of the two polyethylene groups.Aims
Patients and Methods
This paper describes the methodology, validation and reliability
of a new computer-assisted method which uses models of the patient’s
bones and the components to measure their migration and polyethylene
wear from radiographs after total hip arthroplasty (THA). Models of the patient’s acetabular and femoral component obtained
from the manufacturer and models of the patient’s pelvis and femur
built from a single computed tomography (CT) scan, are used by a
computer program to measure the migration of the components and
the penetration of the femoral head from anteroposterior and lateral radiographs
taken at follow-up visits. The program simulates the radiographic
setup and matches the position and orientation of the models to
outlines of the pelvis, the acetabular and femoral component, and
femur on radiographs. Changes in position and orientation reflect
the migration of the components and the penetration of the femoral
head. Validation was performed using radiographs of phantoms simulating
known migration and penetration, and the clinical feasibility of
measuring migration was assessed in two patients.Aims
Materials and Methods
Introduction. Highly cross-linked polyethylene (HXLPE) was developed to reduce the wear of articular-bearing surfaces in total hip arthroplasty (THA). This study aimed to compare the mean linear wear of HXLPE with a 22.225 mm diameter zirconia head with that of conventional polyethylene (CPE) with a 22.225 mm diameter ortron head. Materials and Methods. A prospective cohort study performed on 93 patients (113 hips) who had undergone primary cemented THAs at our hospital between January 2001 and December 2003. The subject population included 85 females and 8 males with a mean age of 58.0 years (22 to 78) at the time of surgery. The mean follow-up period was 10.2 years (9 to 12). We randomly used two types of implants: the HXLPE cup with a 22.225 mm diameter zirconia head (Kyocera Medical, Osaka, Japan) in 60 hips (HXLPE group), and the CPE cup with a 22.225 mm diameter ortron head (DePuy International, Leeds, UK) in 53 hips (CPE group). Linear wear (penatration) by computer-assisted method with
Polyethylene wear debris can cause osteolysis
and the failure of total hip arthroplasty. We present the five-year
wear rates of a highly cross-linked polyethylene (X3) bearing surface
when used in conjunction with a 36 mm ceramic femoral head. This was a prospective study of a cohort of 100 THAs in 93 patients.
Pain and activity scores were measured pre- and post-operatively.
Femoral head penetration was measured at two months, one year, two
years and at five years using validated edge-detecting software
(PolyWare Auto). At a mean of 5.08 years (3.93 to 6.01), 85 hips in 78 patients
were available for study. The mean age of these patients was 59.08
years (42 to 73, the mean age of males (n = 34) was 59.15 years,
and females (n = 44) was 59.02 years). All patients had significant
improvement in their functional scores (p <
0.001). The steady
state two-dimensional linear wear rate was 0.109 mm/year. The steady
state volumetric wear rate was 29.61 mm3/year. No significant
correlation was found between rate of wear and age (p = 0.34), acetabular
component size (p = 0.12) or clinical score (p = 0.74). Our study shows low steady state wear rates at five years in
X3 highly cross-linked polyethylene in conjunction with a 36 mm
ceramic femoral head. The linear wear rate was almost identical
to the osteolysis threshold of 0.1 mm/year recommended in the literature. Cite this article:
There is no single standardised method of measuring
the orientation of the acetabular component on plain radiographs
after total hip arthroplasty. We assessed the reliability and accuracy
of three methods of assessing anteversion of the acetabular component
for 551 THAs using the
Background. An increasing number of hip prostheses are inserted without bone cement. Experimental research has shown that hydroxyapatite (HA) coated implants are strongly fixated in the bone, which is believed to reduce the likelihood of prosthetic loosening. However, in recent years, there has been much debate about the role of HA particles in third-body polyethylene (PE) wear and formerly we have shown the revision rate to be high among older-design HA coated cups. Purpose. We hypothesized increased PE wear-rate using HA coated acetabular components in comparison with non-HA coated components (control group). Materials and Methods. We performed a retrospective comparative clinical study based on two patient populations identified in the Danish Hip Arthroplasty Registry (October 2006). All patients had primary total hip arthroplasty (THA) between 1997 and 2001 with cementless Mallory-Head acetabular components. One group received HA coated acetabular components (75 patients, 77 hips). The other group received identical components without HA (70 patients, 73 hips). In all cases the liner was similar and 28 mm metal femoral heads were used. All patients were invited for a radiographic follow-up in 2007. The AP radiographs were analysed for two-dimensional (2D) polyethylene wear using the semi-automated
INTRODUCTION. Cementless Total Hip Replacement surgery is a well established procedure for relative young patients with severe hip disease. Excellent long term clinical results have been published on the performance of the femoral component. With growing clinical experience, our concern focused on excessive wear of the Ultra High Molecular Weight Polyethylene (UHMWPE) ringloc liner of the Mallory Head cementless Total Hip Prosthesis. After its introduction in our clinic in 1997, this implant is still in use without any modification. We were concerned that due to premature liner wear, the performance of this implant would not be compliant with the international guideline on implant survival (NICE guidelines: at 10 year follow up, 90% of all implants should still be in situ). Our objective was to establish the amount of liner wear in our first 200 MH implants. METHODS. Our first 200 patients consecutively treated with Mallory Head prostheses were followed up to obtain a recent digital image. Follow up was complete for 181 (90.5%) of our 200 patients. Ten had died and nine were not able or willing to come for follow up. The mean duration of follow up was 8.3 years (range: 8–13). The 181 recent digital images were classified as either excessive wear or no excessive wear by two independent orthopedic surgeons. Next, liner wear was measured in the 2D frontal plane using
Objectives. The accuracy and precision of two new methods of model-based
radiostereometric analysis (RSA) were hypothesised to be superior
to a plain radiograph method in the assessment of polyethylene (PE)
wear. Methods. A phantom device was constructed to simulate three-dimensional
(3D) PE wear. Images were obtained consecutively for each simulated
wear position for each modality. Three commercially available packages
were evaluated: model-based RSA using laser-scanned cup models (MB-RSA),
model-based RSA using computer-generated elementary geometrical
shape models (EGS-RSA), and
Using a larger diameter femoral head in total hip arthroplasty (THA) has advantages in terms of the increased joint stability and range of motion. And the wear resistance of highly cross-linked polyethylene (HXLPE) even combined with a larger head has already been demonstrated by in vitro studies. The purpose of this study was to compare the in vivo wear of Longevity HXLPE sockets against 32 mm and 26 mm heads at a 5-year follow-up. From November 2000 to November 2001, 51 primary cementless THAs were performed with a 26 mm cobalt-chromium head and a Longevity HXLPE socket (Zimmer). A cohort of 32 mm cobalt-chromium heads was comprised of 51 THAs with the same prosthesis performed from December 2001 to December 2003. No significant differences between the groups were observed in gender, age, and BMI, however, polyethylene liners with 32 mm heads were significantly thinner than those with 26 mm heads. Two-dimensional linear wear was measured using
We conducted a systematic review and meta-analysis of randomised controlled trials comparing cross-linked with conventional polyethylene liners for total hip replacement in order to determine whether these liners reduce rates of wear, radiological evidence of osteolysis and the need for revision. The MEDLINE, EMBASE and COCHRANE databases were searched from their inception to May 2010 for all trials involving the use of cross-linked polyethylene in total hip replacement. Eligibility for inclusion in the review included the random allocation of treatments, the use of cross-linked and conventional polyethylene, and radiological wear as an outcome measure. The pooled mean differences were calculated for bedding-in, linear wear rate, three-dimensional linear wear rate, volumetric wear rate and total linear wear. Pooled risk ratios were calculated for radiological osteolysis and revision hip replacement. A search of the literature identified 194 potential studies, of which 12 met the inclusion criteria. All reported a significant reduction in radiological wear for cross-linked polyethylene. The pooled mean differences for linear rate of wear, three-dimensional linear rate of wear, volumetric wear rate and total linear wear were all significantly reduced for cross-linked polyethylene. The risk ratio for radiological osteolysis was 0.40 (95% confidence interval 0.27 to 0.58; I2 = 0%), favouring cross-linked polyethylene. The follow-up was not long enough to show a difference in the need for revision surgery.
To assess if highly cross-linked polyethylene is associated with less linear wear than ultra high molecular weight polyethylene in vivo. To assess whether alteration in biomechanical characteristics of the reconstructed hip influence’s wear patterns. A randomised prospective trial comparing conventional polyethylene with highly cross-linked polyethylene in an acetabular component was designed. Identical cemented stems were used in all cases, with a metal head. The polyethylene thickness was controlled. The trial design required 124 cases to be entered to give the study sufficient power to determine any difference in wear rates.
The aim was to review patients that had single stage bilateral total hip joint replacements (SSBTHJR) of two surgeons in the Wellington area, to assess symptomatic relief and overall quality of life before and after surgery. To also review xrays of this population to assess acetabular component orientation. Fifty patients from two hospitals, with minimum follow up of two years, who had SSBTHJR, were reviewed for duration of stay, time to mobilisation, and complications (eg. wound infections, venous thrombus and embolism (VTE), gastrointestinal ileus, and cardiac events). Patient opinions on hip joint function (Oxford Hip Score) and overall quality of life (EQ-5D Score) were performed (37/50 patients could participate). Patient’s postoperative radiographs were analysed with
Introduction: Ultra high molecular weight polyethylene (UHMWPE) wear debris generated at the articulating interface of total hip arthroplasties continues to be the major cause of early failure of these implants. Aim: To validate the accuracy and reproducibility of the three-dimensional technique (3D) of in vivo measurement of UHMWPE wear using