Introduction. This research aims to enhance the control of intricate
Introduction. Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine with unclear etiology. Due to the asymmetry of lateral curves, there are differences in the muscle activation between the convex and concave sides. This study utilized a comprehensive thoracic spine and ribcage
The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids. Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.Aims
Methods
Aims. The surgical target for optimal implant positioning in robotic-assisted total knee arthroplasty remains the subject of ongoing discussion. One of the proposed targets is to recreate the knee’s functional behaviour as per its pre-diseased state. The aim of this study was to optimize implant positioning, starting from mechanical alignment (MA), toward restoring the pre-diseased status, including ligament strain and kinematic patterns, in a patient population. Methods. We used an active appearance model-based approach to segment the preoperative CT of 21 osteoarthritic patients, which identified the osteophyte-free surfaces and estimated cartilage from the segmented bones; these geometries were used to construct patient-specific
This study aimed to analyze kinematics and kinetics of the tibiofemoral joint in healthy subjects with valgus, neutral, and varus limb alignment throughout multiple gait activities using dynamic videofluoroscopy. Five subjects with valgus, 12 with neutral, and ten with varus limb alignment were assessed during multiple complete cycles of level walking, downhill walking, and stair descent using a combination of dynamic videofluoroscopy, ground reaction force plates, and optical motion capture. Following 2D/3D registration, tibiofemoral kinematics and kinetics were compared between the three limb alignment groups.Aims
Methods
Abstract. Objectives. Neonatal motor development transitions from initially spontaneous to later increasingly complex voluntary movements. A delay in transitioning may indicate cerebral palsy (CP). The general movement optimality score (GMOS) evaluates infant movement variety and is used to diagnose CP, but depends on specialized physiotherapists, is time-consuming, and is subject to inter-observer differences. We hypothesised that an objective means of quantifying movements in young infants using motion tracking data may provide a more consistent early diagnosis of CP and reduce the burden on healthcare systems. This study assessed lower limb kinematic and muscle force variances during neonatal infant kicking movements, and determined that movement variances were associated with GMOS scores, and therefore CP. Methods. Electromagnetic motion tracking data (Polhemus) was collected from neonatal infants performing kicking movements (min 50° knee extension-flexion, <2 seconds) in the supine position over 7 minutes. Tracking data from lower limb anatomical landmarks (midfoot inferior, lateral malleolus, lateral knee epicondyle, ASIS, sacrum) were applied to subject-scaled
Abstract. OBJECTIVE. Knee varus malalignment increases medial knee compartment loading and is associated with knee osteoarthritis (OA) progression and severity. 1. Altered biomechanical loading and dysregulation of joint tissue biology drive OA progression, but mechanistic links between these factors are lacking. Subchondral bone structural changes are biomechanically driven, involve bone resorption, immune cell influx, angiogenesis, and sensory nerve invasion, and contribute to joint destruction and pain. 2. We have investigated mechanisms underlying this involving RANKL and alkaline phosphatase (ALP), which reflect bone resorption and mineralisation respectively. 3. and the axonal guidance factor Sema3A. Sema3A is osteotropic, expressed by mechanically sensitive osteocytes, and an inhibitor of sensory nerve, blood vessel and immune cell invasion. 4. Sema3A is also differentially expressed in human OA bone. 5. HYPOTHESIS: Medial knee compartment overloading in varus knee malalignment patients causes dysregulation of bone derived Sema3A signalling directly linking joint biomechanics to pathology and pain. METHODS. Synovial fluid obtained from 30 subjects with medial knee OA (KL grade II-IV) undergoing high tibial osteotomy surgery (HTO) was analysed by mesoscale discovery and ELISA analysis for inflammatory, neural and bone turnover markers. 11 of these patients had been previously analysed in a published patient-specific
Occlusal loading and muscle forces during mastication aids in assessment of dental restorations and implants and jaw implant design; however, three-dimensional bite forces cannot be measured with conventional transducers, which obstruct the native occlusion. The aim of this study was to combine accurate jaw kinematics measurements, together with subject-specific computational modelling, to estimate subject-specific occlusal loading and muscle forces during mastication. Motion experiments were performed on one male participant (age: 39yrs, weight: 82kg) with healthy dentition. Two low-profile magnetic sensors were fixed to the participant's teeth and the two dental arches digitised using an intra-oral scanner. The participant performed ten continuous of chewing on a polyurethane rubber sample of known material properties, followed by maximal compression (clenching). This was repeated at the molars, premolars of both the left and right sides, and central incisors. Jaw motion was simultaneously recorded from the sensors, and finite element modelling used to estimate bite force. Specifically, simulations of chewing and biting were performed by driving the model using the measured kinematics, and bite force magnitude and direction quantified. Muscle forces were then evaluated using a rigid-body
The tendency towards using inertial sensors for remote monitoring of the patients at home is increasing. One of the most important characteristics of the sensors is sampling rate. Higher sampling rate results in higher resolution of the sampled signal and lower amount of noise. However, higher sampling frequency comes with a cost. The main aim of our study was to determine the validity of measurements performed by low sampling frequency (12.5 Hz) accelerometers (SENS) in patients with knee osteoarthritis compared to standard sensor-based motion capture system (Xsens). We also determined the test-retest reliability of SENS accelerometers. Participants were patients with unilateral knee osteoarthritis. Gait analysis was performed simultaneously by using Xsens and SENS sensors during two repetitions of over-ground walking at a self-selected speed. Gait data from Xsens were used as an input for AnyBody
Altered mechanical loading is a widely suggested, but poorly understood potential cause of cartilage degeneration in osteoarthritis. In rodents, osteoarthritis is induced following destabilization of the medial meniscus (DMM). This study estimates knee kinematics and contact forces in rats with DMM to gain better insight into the specific mechanisms underlying disease development in this widely-used model. Unilateral knee surgery was performed in adult male Sprague-Dawley rats (n=5 with DMM, n=5 with sham surgery). Radio-opaque beads were implanted on their femur and tibia. 8 weeks following knee surgery, rat gait was recorded using the 3D²YMOX setup (Sanctorum et al. 2019, simultaneous acquisition of biplanar XRay videos and ground reaction forces). 10 trials (1 per rat) were calibrated and processed in XMALab (Knörlein et al. 2016). Hindlimb bony landmarks were labeled on the XRay videos using transfer learning (Deeplabcut, Mathis et al. 2019; Laurence-Chasen et al. 2020). A generic OpenSim
The aim of this research was to determine biomechanical markers which differentiate medial knee osteoarthritis (OA) patients who do and do not show structural progression over a 2-year period. A cohort of 36 subjects was selected from a longitudinal study (Meireles et al 2017) using Kellgren-Lawrence (KL) scores at baseline and 2-year follow-up. The cohort consisted of 10 healthy controls (HC) (KL=0 at both time points), 15 medial knee OA non-progressors (NPKOA) (KL≥1 at baseline and no change over 2 years), and 11 medial knee OA progressors (PKOA) (KL≥1 at baseline and increase of ≥1 over 2 years). 3D integrated motion capture data from three walking trials were processed through a
This study aimed to quantify self-reported outcomes and walking gait biomechanics in patients following primary and revision THA. The specific goals of this study were to investigate: (i) if primary and revision THA patients have comparable preoperative outcomes; and (2) if revision THA patients have worse postoperative outcomes than primary THA patients. Forty-three patients undergoing primary THA for osteoarthritis and 23 patients undergoing revision THA were recruited and followed longitudinally for their first 12 postoperative months. Reasons for revision were loosening (73%), dislocation (9%), and infection (18%). Patients completed the Hip dysfunction and Osteoarthritis Outcome Score (HOOS), and underwent gait analysis preoperatively, and at 3 and 12 months postoperatively. A 10 camera motion analysis system (V5 Vantage, Vicon, UK) recorded marker trajectories (100 Hz) during walking at self- selected speeds. A generic lower-body
Aims. To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle. Methods. In this controlled laboratory study, we developed an original multiscale subject-specific finite element
Introduction and Objective. Clinically, it is considered that spastic muscles of patients with cerebral palsy (CP) are shortened, and produce higher force in shorter muscle lengths. Yet, direct quantification of spastic muscles’ forces is rare. Remarkably, previous intraoperative tests in which muscle forces are measured directly as a function of joint angle showed for spastic gracilis (GRA) that its passive forces are low, and only a small percentage of its maximum active force is measured in flexed knee positions. However, the relationship of force characteristics of spastic GRA with its muscle-tendon unit length (l. MTU. ) is unknown. Combining intraoperative experiments with participants’
Introduction and Objective. The human body is designed to walk in an efficient way. As energy can be stored in elastic structures, it is no surprise that the strongest elastic structure of the human body, the iliofemoral ligament (IFL), is located in the lower limb. Numerous popular surgical hip interventions, however, affect the structural integrity of the hip capsule and there is a growing evidence that surgical repair of the capsule improves the surgical outcome. Though, the exact contribution of the iliofemoral ligament in energy efficient hip function remains unelucidated. Therefore, the objective of this study was to evaluate the influence of the IFL on energy efficient ambulation. Materials and Methods. In order to assess the potential passive contribution of the IFL to energy efficient ambulation, we simulated walking using the large public dataset (n=50) from Schreiber in a the AnyBody
Acetabular edge-loading was a cause of increased wear rates in metal-on-metal hip arthroplasties, ultimately contributing to their failure. Although such wear patterns have been regularly reported in retrieval analyses, this study aimed to determine their in vivo location and investigate their relationship with acetabular component positioning. 3D CT imaging was combined with a recently validated method of mapping bearing surface wear in retrieved hip implants. The asymmetrical stabilizing fins of Birmingham hip replacements (BHRs) allowed the co-registration of their acetabular wear maps and their computational models, segmented from CT scans. The in vivo location of edge-wear was measured within a standardized coordinate system, defined using the anterior pelvic plane.Aims
Methods
Introduction. Although total knee arthroplasty (TKA) is generally considered successful, 16–30% of patients are dissatisfied. There are multiple reasons for this, but some of the most frequent reasons for revision are instability and joint stiffness. A possible explanation for this is that the implant alignment is not optimized to ensure joint stability in the individual patient. In this work, we used an artificial neural network (ANN) to learn the relation between a given standard cruciate-retaining (CR) implant position and model-predicted post-operative knee kinematics. The final aim was to find a patient-specific implant alignment that will result in the estimated post-operative knee kinematics closest to the native knee. Methods. We developed subject-specific
Abstract. Objectives. The need for gender specific knee arthroplasty is debated. This research aimed to establish whether gender differences in patellar tendon moment arm (PTMA), a composite measure that characterises function of both the patellofemoral and tibiofemoral joints, are a consequence of knee size or other variation. Methods. PTMA about the instantaneous helical axis was calculated from positional data acquired using optical tracking. First, data post-processing was optimised, comparing four smoothing techniques (raw, Butterworth filtered, generalised cross-validation cubic spline interpolated and combined filtered/interpolated) using a fabricated knee. Then PTMA was measured during open-chain extension for N=24 (11 female) fresh-frozen cadaveric knees, with physiologically based loading and extension rates (420°/s) applied. Gender differences in PTMA were assessed before and after accounting for knee size with epicondylar width. Results. Combined smoothing enabled sub-mm accuracy (root-mean-squared (RMS) error 0.16mm, max error 0.47mm), whereas large errors were measured for raw (RMS 3.61mm, max 23.71mm), filtered-only (RMS 1.19mm, max 7.38mm) and interpolated-only (RMS 0.68mm, max 1.80mm) techniques. Before scaling, average PTMA throughout knee flexion was 46mm and mean, maximum, and minimum absolute values of PTMA were larger in males (mean differences >8mm, p<0.001), as were the PTMAs at terminal extension and flexion, and the change in PTMA from peak to terminal extension (differences >4mm, p<0.05). After scaling, the PTMA in deep flexion and the change in PTMA from peak to terminal extension were still larger in male knees (differences >2mm, p<0.05). The flexion angle of peak PTMA, unaffected by scaling, was closer to terminal extension for female knee (female 15°, male 29°, p<0.05). Conclusion. Gender differences in PTMA were identified both before and after accounting for knee size, with implications for gender-specific arthroplasty and
Abstract. OBJECTIVES. Bone health deterioration is a major public health issue. General guidelines for the limitation of bone loss prescribe a healthy lifestyle and a minimum level of physical activity. However, there is no specific recommendation regarding targeted activities that can effectively maintain lumbar spine bone health. To provide a better understanding of such influencing activities, a new predictive modelling framework was developed to study bone remodelling under various loading conditions. METHODS. The approach is based on a full-body subject-specific