Advertisement for orthosearch.org.uk
Results 1 - 20 of 249
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_15 | Pages 13 - 13
7 Aug 2024
Johnson K Pavlova A Swinton P Cooper K
Full Access

Purpose and Background. Work-related musculoskeletal disorders (WRMSD) can affect 56–80% of physiotherapists. Patient handling is reported as a significant risk factor for developing WRMSD with the back most frequently injured. Physiotherapists perform therapeutic handling to manually assist and facilitate patients’ movement to aid rehabilitation, which can increase physiotherapists risk of experiencing high forces during patient handling. Methods and Results. A descriptive cross-sectional study was completed to explore and quantitatively measure the movement of ten physiotherapists during patient handling, over one working day, in a neurological setting. A wearable 3-dimensional motion analysis system, Xsens (Movella, Henderson, NV), was used to measure physiotherapist movement and postures in the ward setting during patient treatment sessions. The resulting joint angles were reported descriptively and compared against a frequently used ergonomic assessment tool, the Rapid Upper Limb Assessment (RULA). Physiotherapists adopted four main positions during patient handling tasks: 1) kneeling; 2) half-kneeling; 3) standing; and 4) sitting. Eight patient handling tasks were identified and described: 1) Lie-to-sit; 2) sit-to-lie; 3) sit-to-stand; facilitation of 4) upper limb; 5) lower limb; 6) trunk; and 7) standing treatments; and 8) walking facilitation. Kneeling and sitting positions demonstrated greater neck extension and greater lumbosacral flexion during treatments which scores highly with the RULA. Conclusion. This research identified that patient treatment tasks were more often performed in kneeling or sitting positions than standing. Current moving and handling guidance teaches moving and handling in a standing position; loading and stresses experienced by the physiotherapists may differ in sitting or kneeling positions. Conflicts of interest. None. Sources of funding. None. This work has been presented as a poster at the CSP conference Glasgow 2023


The Bone & Joint Journal
Vol. 106-B, Issue 8 | Pages 764 - 774
1 Aug 2024
Rivera RJ Karasavvidis T Pagan C Haffner R Ast MP Vigdorchik JM Debbi EM

Aims. Conventional patient-reported surveys, used for patients undergoing total hip arthroplasty (THA), are limited by subjectivity and recall bias. Objective functional evaluation, such as gait analysis, to delineate a patient’s functional capacity and customize surgical interventions, may address these shortcomings. This systematic review endeavours to investigate the application of objective functional assessments in appraising individuals undergoing THA. Methods. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were applied. Eligible studies of THA patients that conducted at least one type of objective functional assessment both pre- and postoperatively were identified through Embase, Medline/PubMed, and Cochrane Central database-searching from inception to 15 September 2023. The assessments included were subgrouped for analysis: gait analysis, motion analysis, wearables, and strength tests. Results. A total of 130 studies using 15 distinct objective functional assessment methods (FAMs) were identified. The most frequently used method was instrumented gait/motion analysis, followed by the Timed-Up-and-Go test (TUG), 6 minute walk test, timed stair climbing test, and various strength tests. These assessments were characterized by their diagnostic precision and applicability to daily activities. Wearables were frequently used, offering cost-effectiveness and remote monitoring benefits. However, their accuracy and potential discomfort for patients must be considered. Conclusion. The integration of objective functional assessments in THA presents promise as a progress-tracking modality for improving patient outcomes. Gait analysis and the TUG, along with advancing wearable sensor technology, have the potential to enhance patient care, surgical planning, and rehabilitation. Cite this article: Bone Joint J 2024;106-B(8):764–774


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 128 - 135
1 Feb 2024
Jenkinson MRJ Cheung TCC Witt J Hutt JRB

Aims

The aim of this study is to evaluate whether acetabular retroversion (AR) represents a structural anatomical abnormality of the pelvis or is a functional phenomenon of pelvic positioning in the sagittal plane, and to what extent the changes that result from patient-specific functional position affect the extent of AR.

Methods

A comparative radiological study of 19 patients (38 hips) with AR were compared with a control group of 30 asymptomatic patients (60 hips). CT scans were corrected for rotation in the axial and coronal planes, and the sagittal plane was then aligned to the anterior pelvic plane. External rotation of the hemipelvis was assessed using the superior iliac wing and inferior iliac wing angles as well as quadrilateral plate angles, and correlated with cranial and central acetabular version. Sagittal anatomical parameters were also measured and correlated to version measurements. In 12 AR patients (24 hips), the axial measurements were repeated after matching sagittal pelvic rotation with standing and supine anteroposterior radiographs.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 182 - 188
1 Feb 2024
Gallego JA Rotman D Watts AC

Aims

Acute and chronic injuries of the interosseus membrane can result in longitudinal instability of the forearm. Reconstruction of the central band of the interosseus membrane can help to restore biomechanical stability. Different methods have been used to reconstruct the central band, including tendon grafts, bone-ligament-bone grafts, and synthetic grafts. This Idea, Development, Exploration, Assessment, and Long-term (IDEAL) phase 1 study aims to review the clinical results of reconstruction using a synthetic braided cross-linked graft secured at either end with an Endobutton to restore the force balance between the bones of the forearm.

Methods

An independent retrospective review was conducted of a consecutive series of 21 patients with longitudinal instability injuries treated with anatomical central band reconstruction between February 2011 and July 2019. Patients with less than 12 months’ follow-up or who were treated acutely were excluded, leaving 18 patients in total. Preoperative clinical and radiological assessments were compared with prospectively gathered data using range of motion and the abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH) functional outcome score.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 49 - 49
2 Jan 2024
Duquesne K Emmanuel A
Full Access

For many years, marker-based systems have been used for motion analysis. However, the emergence of new technologies, such as 4D scanners provide exciting new opportunities for motion analysis. In 4D scanners, the subjects are measured as a dense mesh, which enables the use of shape analysis techniques. In this talk, we will explore how the combination of the rising new motion analysis methods and shape modelling may change the way we think about movement and its analysis


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 50 - 50
17 Nov 2023
Williams D Ward M Kelly E Shillabeer D Williams J Javadi A Holsgrove T Meakin J Holt C
Full Access

Abstract. Objectives. Spinal disorders such as back pain incur a substantial societal and economic burden. Unfortunately, there is lack of understanding and treatment of these disorders are further impeded by the inability to assess spinal forces in vivo. The aim of this project is to address this challenge by developing and testing a novel image-driven approach that will assess the forces in an individual's spine in vivo by incorporating information acquired from multimodal imaging (magnetic resonance imaging (MRI) and biplane X-rays) in a subject-specific model. Methods. Magnetic resonance and biplane X-ray imaging are used to capture information about the anatomy, tissues, and motion of an individual's spine as they perform a range of everyday activities. This information is then utilised in a subject-specific computational model based on the finite element method to predict the forces in their spine. The project is also utilising novel machine learning algorithms and in vitro, six-axis mechanical testing on human, porcine and bovine samples to develop and test the modelling methods rigorously. Results & Discussion. MRI sequences have been identified that provide high-quality image data and information on different tissue types which will be used to predict subject-specific disc properties. In-vivo protocols to capture motion analysis, EMG muscle activity, and video X-rays of the spine have been designed with planned data collection of 15 healthy volunteers. Preliminary modelling work has evaluated potential machine learning approaches and quantified the sensitivity of the models developed to material properties. Conclusion. The development and testing of these image-driven subject-specific spine models will provide a new tool for determining forces in the spine. It will also provide new tools for measuring and modelling spine movement and quantifying the properties of the spinal tissues. Acknowledgments. Funding from the EPSRC: EP/V036602/1 (Meakin, Holsgrove & Javadi) and EP/V032275/1 (Holt & Williams). Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 36 - 36
17 Nov 2023
Warren J Mengoni M
Full Access

Abstract. Objectives. While spinal fusion is known to be associated with adjacent disc degeneration, little is known on the role of the facet joints in the process, and whether their altered biomechanics following fusion plays a role in further spinal degeneration. This work aimed to develop a model and method to sequentially measure the effects of spinal fusion on lumbar facet joints through synchronisation of both motion analysis, pressure mapping and mechanical analysis. Methods. Parallel measurements of mature ovine lumbar facet joints (∼8yr old, n=3) were carried out using synchronised load and displacement measurements, motion capture during loading and pressure mapping of the joint spaces during loading. Functional units were prepared and cemented in PMMA endcaps. Displacement-controlled compression measurements were carried out using a materials testing machine (3365, Instron, USA) at 1 mm/min up to 950 N with the samples in a neutral position, while motion capture of the facet joints during compression was carried out using orthogonal HD webcams (Logitech, Switzerland) to measure the displacement of key facet joint features. The pressure mapping of load transfer during displacement was carried out using a flexible pressure sensor (6900 series, Tekscan, USA). Each sample was imaged at an isotropic resolution of 82 microns using a μCT scanner (XtremeCT, Scanco, Switzerland) to quantify the curvature within the facet joints. Results. Relative facet joint displacement under load, in a neutral position, showed more displacement (2.36 ±1.68 mm) compared to the cross-head when under compression (2.06 ±1.19 mm). Motion capture indicated the relative displacement of the facet joints was more posterior with some lateral motion. For five of the six facet joints, pressure measurement was possible only on 24±7 % of the surface due to the large change in curvature. Partially measured loads through the facets was 10.5 ±1.1 N. Conclusions. The relative displacement of the lumbar facet joints compared to the crosshead displacement was consistent with previous studies of cervical facet joints, despite the differences in anatomical geometry between cervical and lumbar joints. The difficulties in accurately measuring the load transfer through the facet joints was due to the age of the tissue and the degree of curvature of the facet joints. Synchronisation of the biomechanical data will provide a setup to assess the effect of interventions such as spinal fusion, with curvature-related issues unlikely to occur in human spines. Declaration of Interest. (a) fully declare any financial or other potential conflict of interest


Bone & Joint Research
Vol. 12, Issue 9 | Pages 571 - 579
20 Sep 2023
Navacchia A Pagkalos J Davis ET

Aims. The aim of this study was to identify the optimal lip position for total hip arthroplasties (THAs) using a lipped liner. There is a lack of consensus on the optimal position, with substantial variability in surgeon practice. Methods. A model of a THA was developed using a 20° lipped liner. Kinematic analyses included a physiological range of motion (ROM) analysis and a provocative dislocation manoeuvre analysis. ROM prior to impingement was calculated and, in impingement scenarios, the travel distance prior to dislocation was assessed. The combinations analyzed included nine cup positions (inclination 30-40-50°, anteversion 5-15-25°), three stem positions (anteversion 0-15-30°), and five lip orientations (right hip 7 to 11 o’clock). Results. The position of the lip changes the ROM prior to impingement, with certain combinations leading to impingement within the physiological ROM. Inferior lip positions (7 to 8 o’clock) performed best with cup inclinations of 30° and 40°. Superior lip positions performed best with cup inclination of 50°. When impingement occurs in the plane of the lip, the lip increases the travel distance prior to dislocation. Inferior lip positions led to the largest increase in jump distance in a posterior dislocation provocation manoeuvre. Conclusion. The lip orientation that provides optimal physiological ROM depends on the orientation of the cup and stem. For a THA with stem anteversion 15°, cup inclination 40°, and cup anteversion 15°, the optimal lip position was posterior-inferior (8 o’clock). Maximizing jump distance prior to dislocation while preventing impingement in the opposite direction is possible with appropriate lip positioning. Cite this article: Bone Joint Res 2023;12(9):571–579


Bone & Joint Research
Vol. 12, Issue 5 | Pages 313 - 320
8 May 2023
Saiki Y Kabata T Ojima T Kajino Y Kubo N Tsuchiya H

Aims

We aimed to assess the reliability and validity of OpenPose, a posture estimation algorithm, for measurement of knee range of motion after total knee arthroplasty (TKA), in comparison to radiography and goniometry.

Methods

In this prospective observational study, we analyzed 35 primary TKAs (24 patients) for knee osteoarthritis. We measured the knee angles in flexion and extension using OpenPose, radiography, and goniometry. We assessed the test-retest reliability of each method using intraclass correlation coefficient (1,1). We evaluated the ability to estimate other measurement values from the OpenPose value using linear regression analysis. We used intraclass correlation coefficients (2,1) and Bland–Altman analyses to evaluate the agreement and error between radiography and the other measurements.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 16 - 16
17 Apr 2023
Hornestam J Miller B Carsen S Benoit D
Full Access

To investigate differences in the drop vertical jump height in female adolescents with an ACL injury and healthy controls and the contribution of each limb in this task. Forty female adolescents with an ACL injury (ACLi, 15.2 ± 1.4 yrs, 164.6 ± 6.0 cm, 63.1 ± 10.0 kg) and thirty-nine uninjured (CON, 13.2 ± 1.7 yrs, 161.7 ± 8.0 cm, 50.6 ± 11.0 kg) were included in this study. A 10-camera infrared motion analysis system (Vicon, Nexus, Oxford, UK) tracked pelvis, thigh, shank, and foot kinematics at 200Hz, while the participants performed 3 trials of double-legged drop vertical jumps (DVJ) on two force plates (Bertec Corp., Columbus, USA) sampled at 2000Hz.The maximum jump height normalised by dominant leg length was compared between groups using independent samples t-test. The maximum vertical ground reaction force (GRFz) and sagittal ankle, knee and hip velocities before take-off were compared between limbs in both groups, using paired samples t-test. The normalised jump height was 11% lower in the ACLi than in the CON (MD=0.04 cm, p=0.020). In the ACLi, the maximum GRFz (MD=46.17N) and the maximum velocities of ankle plantar flexion (MD=79.83°/s), knee extension (MD=85.80°/s), and hip extension (MD=36.08°/s) were greater in the non-injured limb, compared to the injured limb. No differences between limbs were found in the CON. ACL injured female adolescents jump lower than the healthy controls and have greater contribution of their non-injured limb, compared to their injured limb, in the DVJ task. Clinicians should investigate differences in the contribution between limbs during double-legged drop vertical jump when assessing patients with an ACL injury, as this could help identify asymmetries, and potentially improve treatment, criteria used to clear athletes to sport, and re-injury prevention


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_9 | Pages 17 - 17
17 Apr 2023
Hornestam J Miller B Del Bel M Romanchuk N Carsen S Benoit D
Full Access

To investigate if the countermovement jump height differs between ACL injured and uninjured female adolescents and to explore kinematic differences between limbs. Additionally, the association between isometric knee extension strength and jump height was investigated. Thirty-one ACL injured female adolescents (ACLi, 15.3 ± 1.4yrs, 163.9 ± 6.6cm, 63.0 ± 9.3kg) and thirty-eight uninjured (CON, 13.2±1.7yrs, 161.7 ± 8.1cm, 50.6 ± 11.1kg) participated in this study. All participants performed a countermovement jump task, with 3D kinematics collected using a motion analysis system (Vicon, Nexus, Oxford, UK) at 200Hz, and a maximum isometric knee extension task on an isokinetic dynamometer (Biodex Medical Systems, New York, USA) for three trials. The peak torque was extracted from the isometric trials. Independent samples t-test compared the maximum jump height normalised by the dominant leg length between groups, paired samples t-test compared the maximum hip and knee extension and ankle plantar flexion velocities before take-off between limbs in both groups, and a Pearson's correlation test investigated the association between the isometric knee extension strength and jump height. The ACLi jumped 13% lower compared to the CON (p=0.022). In the ACLi, the maximum hip and knee extension and ankle plantar flexion velocities were greater in the non-injured limb, compared to the injured limb; however, no differences between limbs were found in the CON. The isometric knee extension strength of both limbs was positively correlated with jump height (limb 1: r=0.329; p=0.006, and limb 2: r=0.386; p=0.001; whereas limb 1 corresponds to the ACLi injured limb and CON non-dominant limb, and limb 2 to the ACLi non-injured limb and CON dominant limb). ACL injured female adolescents present lower jump height than controls and greater contribution of their non-injured limb, compared to their injured limb, during a countermovement jump task. Also, current results indicate that jump height is positively related to isometric knee extension strength measure


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 143 - 143
4 Apr 2023
Kröger I Pätzold R Brand A Wackerle H Klöpfer-Krämer I Augat P
Full Access

Tibial shaft fractures require surgical stabilization preferably by intramedullary nailing. However, patients often report functional limitations even years after the injury. This study investigates the influence of the surgical approach (transpatellar vs. parapatellar) on gait performance and patient reported outcome six months after surgery. Twenty-two patients with tibial shaft fractures treated by intramedullary nailing through a transpatellar approach (TP: n=15, age 41±15, BMI 24±3) or a parapatellar approach (PP: n=7, age 34±15, BMI 23±2) and healthy, matched controls (n=22, age 39±13, BMI 24±2) were assessed by instrumented motion analysis six months after intramedullary nailing. Short musculoskeletal function assessment questionnaire (SMFA) as well as kinematic and kinetic gait data were collected during level walking. Comparisons among approach methods and control group were performed by analysis of variance and Mann-Whitney test. Six months after surgery, knee kinetics in both groups differed significantly compared to controls (p <.04). The approach method affected gait speed (TP: p = .002; PP: p = .08) and knee kinematics in the early stance phase (TP: p = .011; PP: p = .082), with the parapatellar approach showing a more favorable outcome. However, the difference between patient groups was not significant for any of the assessed gait parameters (p > .2). Also, no differences could be found in the bother index (BI) or function index (FI) of SMFA between surgical approach methods (BI: TP: Mdn = 7.2, PP: Mdn = 9.4; FI: TP: Mdn = 10.3, PP: Mdn = 9.2, p > .7). Our study demonstrates, that six months after surgery for tibial shaft fractures functional limitations remain. These limitations appear not to be different for either a trans- or a parapatellar approach for the insertion of the intramedullary nail. The findings of this study are limited by the relatively short follow up time period and small number of patients. Future studies should investigate the source of the functional limitation after intramedullary nailing of tibial shaft fractures


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 12 - 12
4 Apr 2023
Thewlis D Bahl J Grace T Smitham P Solomon B
Full Access

This study aimed to quantify self-reported outcomes and walking gait biomechanics in patients following primary and revision THA. The specific goals of this study were to investigate: (i) if primary and revision THA patients have comparable preoperative outcomes; and (2) if revision THA patients have worse postoperative outcomes than primary THA patients. Forty-three patients undergoing primary THA for osteoarthritis and 23 patients undergoing revision THA were recruited and followed longitudinally for their first 12 postoperative months. Reasons for revision were loosening (73%), dislocation (9%), and infection (18%). Patients completed the Hip dysfunction and Osteoarthritis Outcome Score (HOOS), and underwent gait analysis preoperatively, and at 3 and 12 months postoperatively. A 10 camera motion analysis system (V5 Vantage, Vicon, UK) recorded marker trajectories (100 Hz) during walking at self- selected speeds. A generic lower-body musculoskeletal model (Gait2392) was scaled using principal component analysis [1] and the inverse kinematics tool in Opensim 3.3 was used to compute joint angles for the lower limbs in the sagittal plane. Independent samples t-test were used to compare patient reported outcomes between the primary and revision groups at each timepoint. Statistical parametric mapping was used to compare gait patterns between the two groups at each timepoint. Preoperatively, patients undergoing primary THA reported significantly worse pain (p<0.001), symptoms (p<0.001), function (p<0.001), and quality of life (p=0.004). No differences were observed at 3 and 12 months postoperatively between patients who had received a primary or revision THA. The only observed difference in gait pattern was that patients with a revision THA had reduced hip extension at 3 months, but no differences were observed preoperatively and 12 months. Despite the suggestions in the literature that revision THA is bound to have worse outcomes compared to primary THA, we found no differences in in patient-reported outcomes and gait patterns at 12 months postoperatively. This suggests that it may be possible, in some circumstances, for patients following revision THA to achieve similar outcomes to their peers undergoing primary THA


Bone & Joint 360
Vol. 12, Issue 1 | Pages 42 - 45
1 Feb 2023

The February 2023 Children’s orthopaedics Roundup360 looks at: Trends in management of paediatric distal radius buckle fractures; Pelvic osteotomy in patients with previous sacral-alar-iliac fixation; Sacral-alar-iliac fixation in patients with previous pelvic osteotomy; Idiopathic toe walking: an update on natural history, diagnosis, and treatment; A prediction model for treatment decisions in distal radial physeal injuries: a multicentre retrospective study; Angular deformities after percutaneous epiphysiodesis for leg length discrepancy; MRI assessment of anterior coverage is predictive of future radiological coverage; Predictive scoring for recurrent patellar instability after a first-time patellar dislocation.


Bone & Joint Research
Vol. 12, Issue 1 | Pages 22 - 32
11 Jan 2023
Boschung A Faulhaber S Kiapour A Kim Y Novais EN Steppacher SD Tannast M Lerch TD

Aims

Femoroacetabular impingement (FAI) patients report exacerbation of hip pain in deep flexion. However, the exact impingement location in deep flexion is unknown. The aim was to investigate impingement-free maximal flexion, impingement location, and if cam deformity causes hip impingement in flexion in FAI patients.

Methods

A retrospective study involving 24 patients (37 hips) with FAI and femoral retroversion (femoral version (FV) < 5° per Murphy method) was performed. All patients were symptomatic (mean age 28 years (SD 9)) and had anterior hip/groin pain and a positive anterior impingement test. Cam- and pincer-type subgroups were analyzed. Patients were compared to an asymptomatic control group (26 hips). All patients underwent pelvic CT scans to generate personalized CT-based 3D models and validated software for patient-specific impingement simulation (equidistant method).


Bone & Joint Research
Vol. 11, Issue 10 | Pages 739 - 750
4 Oct 2022
Shu L Abe N Li S Sugita N

Aims

To fully quantify the effect of posterior tibial slope (PTS) angles on joint kinematics and contact mechanics of intact and anterior cruciate ligament-deficient (ACLD) knees during the gait cycle.

Methods

In this controlled laboratory study, we developed an original multiscale subject-specific finite element musculoskeletal framework model and integrated it with the tibiofemoral and patellofemoral joints with high-fidelity joint motion representations, to investigate the effects of 2.5° increases in PTS angles on joint dynamics and contact mechanics during the gait cycle.


The Bone & Joint Journal
Vol. 104-B, Issue 10 | Pages 1104 - 1109
1 Oct 2022
Hansjee S Giebaly DE Shaarani SR Haddad FS

We aim to explore the potential technologies for monitoring and assessment of patients undergoing arthroplasty by examining selected literature focusing on the technology currently available and reflecting on possible future development and application. The reviewed literature indicates a large variety of different hardware and software, widely available and used in a limited manner, to assess patients’ performance. There are extensive opportunities to enhance and integrate the systems which are already in existence to develop patient-specific pathways for rehabilitation.

Cite this article: Bone Joint J 2022;104-B(10):1104–1109.


Bone & Joint Research
Vol. 11, Issue 4 | Pages 229 - 238
11 Apr 2022
Jaeger S Eissler M Schwarze M Schonhoff M Kretzer JP Bitsch RG

Aims

One of the main causes of tibial revision surgery for total knee arthroplasty is aseptic loosening. Therefore, stable fixation between the tibial component and the cement, and between the tibial component and the bone, is essential. A factor that could influence the implant stability is the implant design, with its different variations. In an existing implant system, the tibial component was modified by adding cement pockets. The aim of this experimental in vitro study was to investigate whether additional cement pockets on the underside of the tibial component could improve implant stability. The relative motion between implant and bone, the maximum pull-out force, the tibial cement mantle, and a possible path from the bone marrow to the metal-cement interface were determined.

Methods

A tibial component with (group S: Attune S+) and without (group A: Attune) additional cement pockets was implanted in 15 fresh-frozen human leg pairs. The relative motion was determined under dynamic loading (extension-flexion 20° to 50°, load-level 1,200 to 2,100 N) with subsequent determination of the maximum pull-out force. In addition, the cement mantle was analyzed radiologically for possible defects, the tibia base cement adhesion, and preoperative bone mineral density (BMD).


Bone & Joint Open
Vol. 3, Issue 1 | Pages 98 - 106
27 Jan 2022
Gelfer Y Leo DG Russell A Bridgens A Perry DC Eastwood DM

Aims

To identify the minimum set of outcomes that should be collected in clinical practice and reported in research related to the care of children with idiopathic congenital talipes equinovarus (CTEV).

Methods

A list of outcome measurement tools (OMTs) was obtained from the literature through a systematic review. Further outcomes were collected from patients and families through a questionnaire and interview process. The combined list, as well as the appropriate follow-up timepoint, was rated for importance in a two-round Delphi process that included an international group of orthopaedic surgeons, physiotherapists, nurse practitioners, patients, and families. Outcomes that reached no consensus during the Delphi process were further discussed and scored for inclusion/exclusion in a final consensus meeting involving international stakeholder representatives of practitioners, families, and patient charities.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_16 | Pages 68 - 68
1 Dec 2021
Bowd J Williams D de Vecchis M Wilson C Elson D Whatling G Holt C
Full Access

Abstract. Objectives. Principal Component Analysis (PCA) is a useful method for analysing human motion data. The objective of this study was to use PCA to quantify the biggest variance in knee kinematics waveforms between a Non-Pathological (NP) group and individuals awaiting High Tibial Osteotomy (HTO) surgery. Methods. Thirty knees (29 participants) who were scheduled for HTO surgery were included in this study. Twenty-eight NP volunteers were recruited into the study. Human motion analysis was performed during level gait using a modified Cleveland marker set. Subjects walked at their self-selected speed for a minimum of 6 successful trials. Knee kinematics were calculated within Visual3D (C-Motion). The first three Principal Components (PCs) of each input variable were selected. Single-component reconstruction was performed alongside representative extremes of each PC to aid interpretation of the biomechanical feature reconstructed by each component. Results. Pre-operatively patient demographics included (age: 50.70 (8.71) years; height: 1.75 (.11) m; body mass: 90.57 (20.17) kg; mTFA: 7.75 (3.72) degrees varus; gait speed: 1.06 (0.23) m/s). The HTO cohort was significantly older and had a higher mass than the NP control participants. For knee kinematics the first three PCs explained 88%, 95% and 89% of the sagittal, frontal, and transverse planes, respectively. The main variances can be explained by sagittal plane magnitude differences, peak swing is associated with toe-off, a reduced knee flexion angle is associated with a longer time spent in stance, pre-HTO remain adducted during stance and pre-HTO patients remain more externally rotated during stance and latter part of swing. Conclusions. This study has introduced PCA in trying to better understand the biomechanical differences between a control group and a cohort with medial knee osteoarthritis varus deformity awaiting HTO. Further analysis will be undertaken using PCA comparing pre- and post-surgery which will be of importance in clinical decision making