The aim of this study was to investigate the safety and efficacy of 3D-printed modular prostheses in patients who underwent joint-sparing limb salvage surgery (JSLSS) for malignant femoral diaphyseal bone tumours. We retrospectively reviewed 17 patients (13 males and four females) with femoral diaphyseal tumours who underwent JSLSS in our hospital.Aims
Methods
Aims. The risk of mechanical failure of modular revision hip stems is frequently mentioned in the literature, but little is currently known about the actual clinical failure rates of this type of prosthesis. The current retrospective long-term analysis examines the distal and modular failure patterns of the Prevision hip stem from 18 years of clinical use. A design improvement of the modular taper was introduced in 2008, and the data could also be used to compare the original and the current design of the
Aims. Dual mobility implants in total hip arthroplasty are designed to increase the functional head size, thus decreasing the potential for dislocation. Modular dual mobility (MDM) implants incorporate a metal liner (e.g. cobalt-chromium alloy) in a metal shell (e.g. titanium alloy), raising concern for mechanically assisted crevice corrosion at the
We evaluated a large database with mechanical failure of a single uncemented modular femoral component, used in revision hip arthroplasty, as the end point and compared them to a control group treated with the same implant. Patient- and implant-specific risk factors for implant failure were analyzed. All cases of a fractured uncemented modular revision femoral component from one manufacturer until April 2017 were identified and the total number of implants sold until April 2017 was used to calculate the fracture rate. The manufacturer provided data on patient demographics, time to failure, and implant details for all notified fractured devices. Patient- and implant-specific risk factors were evaluated using a logistic regression model with multiple imputations and compared to data from a previously published reference group, where no fractures had been observed. The results of a retrieval analysis of the fractured implants, performed by the manufacturer, were available for evaluation.Aims
Methods
Introduction. Total Elbow Arthroplasty (TEA) is recognized as an effective treatment solution for patients with rheumatoid arthritis or for traumatic conditions. Current total elbow devices can be divided into linked or unlinked design. The first design usually presents a linking element (i.e. an axle) to link together the ulnar and humeral components to stabilize the joint; the second one does not present any linkage and the stability is provided by both intrinsic design constraints and the soft tissues. Convertible modular solutions allow for an intraoperative decision to link or unlink the prosthesis; the
Background. Distal femoral replacements (DFR) are used in children for limb-salvage procedures after bone tumor surgery. These are typically modular devices involving a hinged knee axle that has peripheral metal-on-polyethylene (MoP) and central metal-on-metal (M-M) articulations. While
Introduction. Fretting corrosion at the taper interface of
Patients with neuromuscular disease and imbalance present a particularly challenging clinical situation for the orthopaedic hip surgeon. The cause of the neuromuscular imbalance may be intrinsic or extrinsic. Intrinsic disorders include those in which the hip is in development, such as cerebral palsy, polio, CVA, and other spinal cord injuries and disease. This can result in subluxation and dislocation of the hip in growing children, and subsequent pain, and difficulty in sitting and perineal care. Extrinsic factors involve previously stable hips and play a secondary role in the development of osteoarthritis and contractures in later life. Examples of extrinsic factors are Parkinson's disease, dyskinesis, athetosis, and multiple sclerosis. Goals of treatment in adults with pain and dysfunction in the setting of neuromuscular imbalance are to treat contractures and to perform salvage procedures to improve function and eliminate pain. Treatment of patients with neuromuscular imbalance may include resection arthroplasty (Girdlestone), arthrodesis, or total hip arthroplasty. Resection arthroplasty is typically reserved for patients that are non-ambulatory, or hips that are felt to be so unstable that arthroplasty would definitely fail due to instability. In modern times arthrodesis has limited use as it negatively impacts function and self-care in patients with neuromuscular disorders. Total hip arthroplasty has the ability to treat pain, relieve contractures, and provide improved function. Due to the increased risk of instability, special considerations must be made during primary total hip arthroplasty in this patient cohort. Risk of instability may be addressed by surgical approach, head size, or use of alternative bearing constructs. Posterior approach may have increased risk of posterior dislocation in this patient group, particularly if a posterior capsular repair is not possible due to the flexion contractures and sitting position in many patients. Surgeons familiar with the approaches may utilise the anterolateral or direct anterior approach judicially. Release of the adductors may be performed in conjunction with primary total hip arthroplasty to help with post-operative range of motion and to decrease risk of instability. In a standard bearing, the selected head size should be the largest that can be utilised for the particular cup size. Rigorous testing of intra-operative impingement, component rotation, and instability is required. If instability cannot be adequately addressed by a standard bearing, the next option is a dual mobility bearing. Multiple studies have shown improved stability with the use of these bearings, but they are also at risk for instability, intraprosthetic dislocation, and fretting and corrosion of the
Objectives. Taper junctions between modular hip arthroplasty femoral heads and stems fail by wear or corrosion which can be caused by relative motion at their interface. Increasing the assembly force can reduce relative motion and corrosion but may also damage surrounding tissues. The purpose of this study was to determine the effects of increasing the impaction energy and the stiffness of the impactor tool on the stability of the taper junction and on the forces transmitted through the patient’s surrounding tissues. Methods. A commercially available impaction tool was modified to assemble components in the laboratory using impactor tips with varying stiffness at different applied energy levels. Springs were mounted below the modular components to represent the patient. The pull-off force of the head from the stem was measured to assess stability, and the displacement of the springs was measured to assess the force transmitted to the patient’s tissues. Results. The pull-off force of the head increased as the stiffness of the impactor tip increased but without increasing the force transmitted through the springs (patient). Increasing the impaction energy increased the pull-off force but also increased the force transmitted through the springs. Conclusions. To limit wear and corrosion, manufacturers should maximize the stiffness of the impactor tool but without damaging the surface of the head. This strategy will maximize the stability of the head on the stem for a given applied energy, without influencing the force transmitted through the patient’s tissues. Current impactor designs already appear to approach this limit. Increasing the applied energy (which is dependent on the mass of the hammer and square of the contact speed) increases the stability of the
Metal-on-metal bearing surfaces were reintroduced to take advantage of the reduction in volumetric wear afforded by these bearings and reduce the complications of osteolysis and aseptic loosening. In addition, metal-on-metal hip resurfacing and many metal-on-metal total hip replacement systems employed large diameter femoral heads, thereby reducing the risk of dislocations. Unfortunately, many metal-on-metal systems demonstrated poor survivorship and were associated with adverse local tissue reactions (ALTRs) related to metal debris generated from the bearings and/or
Distal neck modularity places a
Purpose. Total shoulder arthroplasty (TSA) has become a successful treatment option for degenerative shoulder disease. With the increasing incidence in primary TSA procedures during the last decades, strategies to improve implant longevity become more relevant. Implant failure is mainly associated with mechanical or biological causes. Chronic inflammation as a response to wear particle exposure is regarded as a main biological mechanism leading to implant failure. Metal ions released by fretting and corrosion at
Introduction. During primary total knee arthroplasty (TKA), surgeons occasionally encounter compromised bone and fixation cannot be achieved using a primary femoral component. Revision knee replacement components incorporate additional features to improve fixation, such as
Objectives. Modularity in total knee arthroplasty, particularly in revisions, is a common method to fit the implants to a patient's anatomy when additional stability or fixation is needed. In such cases, it may be necessary to employ multiple points of modularity to better match the anatomy. Taper junction strength at each of these levels is critical to maintain the mechanical stability of the implant and minimize micromotion. This effect of distributed assembly loads through multiple tapers and the resulting strength of the construct have not been previously evaluated on this revision tibial implant. The purpose of this study was to evaluate the possible dissipation of impaction force through multiple taper connections as compared to a single connection. Methods. Two different constructs representative of modular implants were studied: a construct with a single axial taper connection (Group A; representing implant-stem) was compared to a construct with an adaptor that included two, offset,
Corrosion at metal/metal modular interfaces in total hip arthroplasty was first described in the early 1990s, and the susceptibility of modular tapers to mechanically assisted crevice corrosion (MACC), a combination of fretting and crevice corrosion, was subsequently introduced. Since that time, there have been numerous reports of corrosion at this taper interface, documented primarily in retrieval studies or in rare cases of catastrophic failure. We have reported that fretting corrosion at the modular taper may produce soluble and particulate debris that can migrate locally or systemically, and more recently reported that this process can cause an adverse local tissue reaction (ALTR). Based on the type of tissue reaction and the presence of elevated serum metal ion levels, this process appears quite similar to ALTRs secondary to metal on metal bearing surfaces. While modularity in total hip replacement has demonstrable clinical benefits, modular junctions increase the risk of tribocorrosion and the types of ALTRs seen in patients with accelerated metal release from metal-on-metal bearing total hip replacements. The use of
Distal neck modularity places a
Objectives. Modular junctions are ubiquitous in contemporary hip arthroplasty. The head-trunnion junction is implicated in the failure of large diameter metal-on-metal (MoM) hips which are the currently the topic of one the largest legal actions in the history of orthopaedics (estimated costs are stated to exceed $4 billion). Several factors are known to influence the strength of these press-fit
Introduction. Taper corrosion has been identified to be major problem in total hip replacement during the past years. Patients may suffer from adverse local tissue reactions (ALTR) due to corrosion products that are released from
There is increasing global awareness of adverse
reactions to metal debris and elevated serum metal ion concentrations
following the use of second generation metal-on-metal total hip
arthroplasties. The high incidence of these complications can be
largely attributed to corrosion at the head-neck interface. Severe
corrosion of the taper is identified most commonly in association
with larger diameter femoral heads. However, there is emerging evidence
of varying levels of corrosion observed in retrieved components
with smaller diameter femoral heads. This same mechanism of galvanic
and mechanically-assisted crevice corrosion has been observed in
metal-on-polyethylene and ceramic components, suggesting an inherent
biomechanical problem with current designs of the head-neck interface. We provide a review of the fundamental questions and answers
clinicians and researchers must understand regarding corrosion of
the taper, and its relevance to current orthopaedic practice. Cite this article:
The histopathology of periprosthetic tissues has been important to understanding the relationship between wear debris and arthroplasty outcome. In a landmark 1977paper, Willert and Semlitsch (1) used a semiquantitative rating to show that tissue reactions largely reflected the extent of particulate debris. Notably, small amounts of debris, including metal, could be eliminated without “overstraining the tissues” but excess debris led to deleterious changes. Currently, a plethora of terms is used to describe tissues from metal-on-metal (M-M) hips and corroded