Advanced 3D imaging and CT-based navigation have emerged as valuable tools to use in total knee arthroplasty (TKA), for both preoperative planning and the intraoperative execution of different philosophies of alignment. Preoperative planning using CT-based 3D imaging enables more accurate prediction of the size of components, enhancing surgical workflow and optimizing the precision of the positioning of components. Surgeons can assess alignment, osteophytes, and arthritic changes better. These scans provide improved insights into the patellofemoral joint and facilitate tibial sizing and the evaluation of implant-bone contact area in cementless TKA. Preoperative CT imaging is also required for the development of patient-specific instrumentation cutting guides, aiming to reduce intraoperative blood loss and improve the surgical technique in complex cases. Intraoperative CT-based navigation and haptic guidance facilitates precise execution of the preoperative plan, aiming for optimal positioning of the components and accurate alignment, as determined by the surgeon’s philosophy. It also helps reduce iatrogenic injury to the periarticular soft-tissue structures with subsequent reduction in the local and systemic inflammatory response, enhancing early outcomes. Despite the increased costs and radiation exposure associated with CT-based navigation, these many benefits have facilitated the adoption of imaged based robotic surgery into routine practice. Further research on ultra-low-dose CT scans and exploration of the possible translation of the use of 3D imaging into improved clinical outcomes are required to justify its broader implementation. Cite this article:
The aim of mechanical alignment in total knee arthroplasty is to align all knees into a fixed neutral position, even though not all knees are the same. As a result, mechanical alignment often alters a patient’s constitutional alignment and joint line obliquity, resulting in soft-tissue imbalance. This annotation provides an overview of how the Coronal Plane Alignment of the Knee (CPAK) classification can be used to predict imbalance with mechanical alignment, and then offers practical guidance for bone balancing, minimizing the need for soft-tissue releases. Cite this article:
This prospective study reports longitudinal, within-patient, patient-reported outcome measures (PROMs) over a 15-year period following cemented single radius total knee arthroplasty (TKA). Secondary aims included reporting PROMs trajectory, 15-year implant survival, and patient attrition from follow-up. From 2006 to 2007, 462 consecutive cemented cruciate-retaining Triathlon TKAs were implanted in 426 patients (mean age 69 years (21 to 89); 290 (62.7%) female). PROMs (12-item Short Form Survey (SF-12), Oxford Knee Score (OKS), and satisfaction) were assessed preoperatively and at one, five, ten, and 15 years. Kaplan-Meier survival and univariate analysis were performed.Aims
Methods
Abstract. Introduction.
Mid-level constraint designs for total knee arthroplasty (TKA) are intended to reduce coronal plane laxity. Our aims were to compare kinematics and ligament forces of the Zimmer Biomet Persona posterior-stabilized (PS) and mid-level designs in the coronal, sagittal, and axial planes under loads simulating clinical exams of the knee in a cadaver model. We performed TKA on eight cadaveric knees and loaded them using a robotic manipulator. We tested both PS and mid-level designs under loads simulating clinical exams via applied varus and valgus moments, internal-external (IE) rotation moments, and anteroposterior forces at 0°, 30°, and 90° of flexion. We measured the resulting tibiofemoral angulations and translations. We also quantified the forces carried by the medial and lateral collateral ligaments (MCL/LCL) via serial sectioning of these structures and use of the principle of superposition.Aims
Methods
The June 2023 Knee Roundup. 360. looks at: Cementless total knee arthroplasty is associated with early aseptic loosening in a large national database; Is cementless total knee arthroplasty safe in females aged over 75 years?; Could novel radiological findings help identify aseptic tibial loosening?; The Attune cementless versus LCS arthroplasty at introduction; Return to work following total knee arthroplasty and unicompartmental knee arthroplasty; Complications and downsides of the robotic total knee arthroplasty;
Orthopaedic surgeons are currently faced with an overwhelming number of choices surrounding total knee arthroplasty (TKA), not only with the latest technologies and prostheses, but also fundamental decisions on alignment philosophies. From ‘mechanical’ to ‘adjusted mechanical’ to ‘restricted kinematic’ to ‘unrestricted kinematic’ — and how constitutional alignment relates to these — there is potential for ambiguity when thinking about and discussing such concepts. This annotation summarizes the various alignment strategies currently employed in TKA. It provides a clear framework and consistent language that will assist surgeons to compare confidently and contrast the concepts, while also discussing the latest opinions about alignment in TKA. Finally, it provides suggestions for applying consistent nomenclature to future research, especially as we explore the implications of 3D alignment patterns on patient outcomes. Cite this article:
The mid-term results of kinematic alignment (KA) for total knee arthroplasty (TKA) using image derived instrumentation (IDI) have not been reported in detail, and questions remain regarding ligamentous stability and revisions. This paper aims to address the following: 1) what is the distribution of alignment of KA TKAs using IDI; 2) is a TKA alignment category associated with increased risk of failure or poor patient outcomes; 3) does extending limb alignment lead to changes in soft-tissue laxity; and 4) what is the five-year survivorship and outcomes of KA TKA using IDI? A prospective, multicentre, trial enrolled 100 patients undergoing KA TKA using IDI, with follow-up to five years. Alignment measures were conducted pre- and postoperatively to assess constitutional alignment and final implant position. Patient-reported outcome measures (PROMs) of pain and function were also included. The Australian Orthopaedic Association National Joint Arthroplasty Registry was used to assess survivorship.Aims
Methods
Limb alignment in total knee arthroplasty (TKA) influences periarticular soft-tissue tension, biomechanics through knee flexion, and implant survival. Despite this, there is no uniform consensus on the optimal alignment technique for TKA. Neutral mechanical alignment facilitates knee flexion and symmetrical component wear but forces the limb into an unnatural position that alters native knee kinematics through the arc of knee flexion. Kinematic alignment aims to restore native limb alignment, but the safe ranges with this technique remain uncertain and the effects of this alignment technique on component survivorship remain unknown. Anatomical alignment aims to restore predisease limb alignment and knee geometry, but existing studies using this technique are based on cadaveric specimens or clinical trials with limited follow-up times. Functional alignment aims to restore the native plane and obliquity of the joint by manipulating implant positioning while limiting soft tissue releases, but the results of high-quality studies with long-term outcomes are still awaited. The drawbacks of existing studies on alignment include the use of surgical techniques with limited accuracy and reproducibility of achieving the planned alignment, poor correlation of intraoperative data to long-term functional outcomes and implant survivorship, and a paucity of studies on the safe ranges of limb alignment. Further studies on alignment in TKA should use surgical adjuncts (e.g. robotic technology) to help execute the planned alignment with improved accuracy, include intraoperative assessments of knee biomechanics and periarticular soft-tissue tension, and correlate alignment to long-term functional outcomes and survivorship.
Aims. Surgeons commonly resect additional distal femur during primary total knee arthroplasty (TKA) to correct a flexion contracture, which leads to femoral joint line elevation. There is a paucity of data describing the effect of joint line elevation on mid-flexion stability and knee kinematics. Thus, the goal of this study was to quantify the effect of joint line elevation on mid-flexion laxity. Methods. Six computational knee models with cadaver-specific capsular and collateral ligament properties were implanted with a posterior-stabilized (PS) TKA. A 10° flexion contracture was created in each model to simulate a capsular contracture. Distal femoral resections of + 2 mm and + 4 mm were then simulated for each knee. The knee models were then extended under a standard moment. Subsequently, varus and valgus moments of 10 Nm were applied as the knee was flexed from 0° to 90° at baseline and repeated after each of the two distal resections. Coronal laxity (the sum of varus and valgus angulation with respective maximum moments) was measured throughout flexion. Results. With + 2 mm resection at 30° and 45° of flexion, mean coronal laxity increased by a mean of 3.1° (SD 0.18°) (p < 0.001) and 2.7° (SD 0.30°) (p < 0.001), respectively. With + 4 mm resection at 30° and 45° of flexion, mean coronal laxity increased by 6.5° (SD 0.56°) (p < 0.001) and 5.5° (SD 0.72°) (p < 0.001), respectively. Maximum increased coronal laxity for a + 4 mm resection occurred at a mean 15.7° (11° to 33°) of flexion with a mean increase of 7.8° (SD 0.2°) from baseline. Conclusion. With joint line elevation in primary PS TKA, coronal laxity peaks early (about 16°) with a maximum laxity of 8°. Surgeons should restore the joint line if possible; however, if joint line elevation is necessary, we recommend assessment of coronal laxity at 15° to 30° of knee flexion to assess for
Total knee arthroplasty (TKA) using functional alignment aims to implant the components with minimal compromise of the soft-tissue envelope by restoring the plane and obliquity of the non-arthritic joint. The objective of this study was to determine the effect of TKA with functional alignment on mediolateral soft-tissue balance as assessed using intraoperative sensor-guided technology. This prospective study included 30 consecutive patients undergoing robotic-assisted TKA using the Stryker PS Triathlon implant with functional alignment. Intraoperative soft-tissue balance was assessed using sensor-guided technology after definitive component implantation; soft-tissue balance was defined as intercompartmental pressure difference (ICPD) of < 15 psi. Medial and lateral compartment pressures were recorded at 10°, 45°, and 90° of knee flexion. This study included 18 females (60%) and 12 males (40%) with a mean age of 65.2 years (SD 9.3). Mean preoperative hip-knee-ankle deformity was 6.3° varus (SD 2.7°).Aims
Methods
The primary aim of this study was to compare the postoperative systemic inflammatory response in conventional jig-based total knee arthroplasty (conventional TKA) versus robotic-arm assisted total knee arthroplasty (robotic TKA). Secondary aims were to compare the macroscopic soft tissue injury, femoral and tibial bone trauma, localized thermal response, and the accuracy of component positioning between the two treatment groups. This prospective randomized controlled trial included 30 patients with osteoarthritis of the knee undergoing conventional TKA versus robotic TKA. Predefined serum markers of inflammation and localized knee temperature were collected preoperatively and postoperatively at six hours, day 1, day 2, day 7, and day 28 following TKA. Blinded observers used the Macroscopic Soft Tissue Injury (MASTI) classification system to grade intraoperative periarticular soft tissue injury and bone trauma. Plain radiographs were used to assess the accuracy of achieving the planned postioning of the components in both groups.Aims
Methods
The use of technology to assess balance and alignment during total knee surgery can provide an overload of numerical data to the surgeon. Meanwhile, this quantification holds the potential to clarify and guide the surgeon through the surgical decision process when selecting the appropriate bone recut or soft tissue adjustment when balancing a total knee. Therefore, this paper evaluates the potential of deploying supervised machine learning (ML) models to select a surgical correction based on patient-specific intra-operative assessments. Based on a clinical series of 479 primary total knees and 1,305 associated surgical decisions, various ML models were developed. These models identified the indicated surgical decision based on available, intra-operative alignment, and tibiofemoral load data.Aims
Methods
Dissatisfaction following total knee arthroplasty is a well-documented phenomenon. Although many factors have been implicated, including modifiable and nonmodifiable patient factors, emphasis over the past decade has been on implant alignment and stability as both a cause of, and a solution to, this problem. Several alignment targets have evolved with a proliferation of techniques following the introduction of computer and robotic-assisted surgery. Mechanical alignment targets may achieve mechanically-sound alignment while ignoring the soft tissue envelope; kinematic alignment respects the soft tissue envelope while ignoring the mechanical environment. Functional alignment is proposed as a hybrid technique to allow mechanically-sound, soft tissue-friendly alignment targets to be identified and achieved. Cite this article:
Introduction/Aim.
We report on the 5 year results of a randomized study comparing TKR performed using conventional instrumentation versus electromagnetic computer-assisted surgery. This study analysed patient reported outcome measures (PROMs) at 5 years utilising the American Knee Society Score (AKSS), Oxford Knee Score (OKS), the Short Form 36 score and range of motion (ROM). Of the 200 patients enrolled 125 completed 5 year follow up, 62 in the navigated group and 63 in the conventional group. There were 28 deceased patients, 29 withdrawals and 16 lost to follow-up. There was improvement in clinical function in most PROMs from 1-5 year follow up across both groups. OKS improved from a mean of 26.6 (12–55) to 35.1 (5–48). AKSS increased from 75.3 (0–100) to 78.4 (−10–100), SF36 from 58.9 (2.5–100) to 53.2 (0–100). ROM improved by an average 7 degrees from 110 degrees to 117 degrees (80–135). There was no statistically significant difference in PROMs between the groups at 5 years. Patients undergoing revision surgery were identified from the dataset and global PACS. There were no revisions within 5 years in the navigated group and 3 revisions in the conventional group, two for infection and one for
INTRODUCTION. Applying the proper amount of tension to knees collateral ligaments during surgery is a prerequisite to achieve optimal performance after TKA. It must be taken into account that lower values of ligament tension could lead to an instable joint while higher values could induce over-tensioning thus leading to problems at later follow-up: a “functional stability” must then be defined and achieved to guarantee the best results. In this study, an experimental cadaveric activity was performed to measure the minimum tension required to achieve functional stability in the knee joint. METHODS. Ten cadaveric knee specimens were investigated; each femur and tibia was fixed with polyurethane foam in specific designed 3D-printed fixtures and clamped to a loading frame. A constant displacement rate of 0.05 mm/s was applied to the femoral clamp in order to achieve joint stability and the relative force was measured by the machine: the lowest force guaranteeing joint stability was then determined to be the one corresponding to the slope change in the force/displacement curve, representing the activation of the elastic region of both collateral ligaments. The force span between the slack region and the found point was considered to be the tension required to reach the functional stability of the joint. This methodology was applied on intact knee, after ACL-resection and after further PCL-resection in order to simulate the knee behavior in CR and PS implants. The test was performed at 0, 30, 60 and 90° of flexion using a specifically designed device. Each configuration was analyzed three times for the sake of repeatability. RESULTS. Results demonstrated that an overall tension of 40–50N is sufficient to reach stability in native knee with intact cruciate ligaments. Similar values appear to be sufficient in an ACL-resected knee, while higher tension is required (up to 60N) for stability after ACL and PCL resection. Moreover, the tension required for stabilization was slightly higher at 60° of flexion compared to the one required at the other angles, reflecting thus the mid-flection instability behavior. DISCUSSION AND CONCLUSIONS. The results are in agreement to other experimental studies. 1,2. and show that the tensions necessary to stabilize a knee joint in different ligament conditions are way lower than the ones usually applied via tensioners nowadays. To reach functional stability, surgeons should consider such results intraoperatively to avoid laxity,
The aim of this study was to establish the results of isolated exchange of the tibial polyethylene insert in revision total knee arthroplasty (RTKA) in patients with well-fixed femoral or tibial components. We report on a series of RTKAs where only the polyethylene was replaced, and the patients were followed for a mean of 13.2 years (10.0 to 19.1). Our study group consisted of 64 non-infected, grossly stable TKA patients revised over an eight-year period (1998 to 2006). The mean age of the patients at time of revision was 72.2 years (48 to 88). There were 36 females (56%) and 28 males (44%) in the cohort. All patients had received the same cemented, cruciate-retaining patella resurfaced primary TKA. All subsequently underwent an isolated polyethylene insert exchange. The mean time from the primary TKA to RTKA was 9.1 years (2.2 to 16.1).Aims
Patients and Methods
The etiology of the flexion contracture is related to recurrent effusions present in a knee with end-stage degenerative joint disease secondary to the associated inflammatory process. These recurrent effusions cause increased pressure in the knee causing pain and discomfort. Patients will always seek a position of comfort, which is slight flexion. Flexion decreases the painful stimulus by reducing pressure in the knee and relaxing the posterior capsule. Unfortunately, this self-perpetuating process leads to a greater degree of contracture as the disease progresses. Furthermore, patients rarely maintain the knee in full extension. Even during the gait cycle the knee is slightly flexed. As their disease progresses, patients limit their ambulation and are more frequently in a seated position. Patients often report sleeping with a pillow under their knee or in the fetal position. All of these activities increase flexion contracture deformity. Patients with excessive deformity >40 degrees should be counseled regarding procedural complexity and that increasing constraint may be required. Patients are seen preoperatively by a physical therapist and given a pre-arthroplasty conditioning program. Patients with excessive flexion contracture are specifically instructed on stretching techniques, as well as quadriceps rehabilitation exercises. The focus in the postoperative physiotherapy rehabilitation program continues toward the goal of full extension. Patients are instructed in appropriate stretching regimes. Patients are immobilised for the first 24 hours in full extension with plaster splints, such as with a modified Robert Jones dressing. This dressing is removed on postoperative day one. The patient is then placed in a knee immobiliser and instructed to wear it at bed rest, during ambulation and in the evening, only removing for ROM exercises. In cases of severe flexion deformity >30 degrees, patients are maintained in full extension for 3–4 weeks until ROM is begun. Patients are encouraged to use a knee immobiliser for at least the first 6 weeks postoperatively. Treating patients with flexion contracture involves a combination of bone resection and soft tissue balance. One must make every effort to preserve both the femoral and tibial joint line. In flexion contracture the common error is to begin by resecting additional distal femur, which may result in joint line elevation and