Advertisement for orthosearch.org.uk
Results 1 - 20 of 6814
Results per page:
Bone & Joint Research
Vol. 13, Issue 11 | Pages 659 - 672
20 Nov 2024
Mo H Sun K Hou Y Ruan Z He Z Liu H Li L Wang Z Guo F

Aims. Osteoarthritis (OA) is a common degenerative disease. PA28γ is a member of the 11S proteasome activator and is involved in the regulation of several important cellular processes, including cell proliferation, apoptosis, and inflammation. This study aimed to explore the role of PA28γ in the occurrence and development of OA and its potential mechanism. Methods. A total of 120 newborn male mice were employed for the isolation and culture of primary chondrocytes. OA-related indicators such as anabolism, catabolism, inflammation, and apoptosis were detected. Effects and related mechanisms of PA28γ in chondrocyte endoplasmic reticulum (ER) stress were studied using western blotting, real-time polymerase chain reaction (PCR), and immunofluorescence. The OA mouse model was established by destabilized medial meniscus (DMM) surgery, and adenovirus was injected into the knee cavity of 15 12-week-old male mice to reduce the expression of PA28γ. The degree of cartilage destruction was evaluated by haematoxylin and eosin (HE) staining, safranin O/fast green staining, toluidine blue staining, and immunohistochemistry. Results. We found that PA28γ knockdown in chondrocytes can effectively improve anabolism and catabolism and inhibit inflammation, apoptosis, and ER stress. Moreover, PA28γ knockdown affected the phosphorylation of IRE1α and the expression of TRAF2, thereby affecting the mitogen-activated protein kinase (MAPK) and nuclear factor-κB (NF-κB) signalling pathways, and finally affecting the inflammatory response of chondrocytes. In addition, we found that PA28γ knockdown can promote the phosphorylation of signal transducer and activator of transcription 3 (STAT3), thereby inhibiting ER stress in chondrocytes. The use of Stattic (an inhibitor of STAT3 phosphorylation) enhanced ER stress. In vivo, we found that PA28γ knockdown effectively reduced cartilage destruction in a mouse model of OA induced by the DMM surgery. Conclusion. PA28γ knockdown in chondrocytes can inhibit anabolic and catabolic dysregulation, inflammatory response, and apoptosis in OA. Moreover, PA28γ knockdown in chondrocytes can inhibit ER stress by promoting STAT3 phosphorylation. Cite this article: Bone Joint Res 2024;13(11):659–672


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1037 - 1040
15 Nov 2024
Wu DY Lam EKF

Aims. The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its assessment relies mostly on 3D standing CT scans. Two radiological signs, the first metatarsal round head (RH) and inferior tuberosity position (ITP), have been described, but are seldom used to aid in diagnosis. This study was undertaken to determine the reliability and validity of these two signs for a more convenient and affordable preoperative assessment and postoperative comparison. Methods. A total of 200 feet were randomly selected from the radiograph archives of a foot and ankle clinic. An anteroposterior view of both feet was taken while standing on the same x-ray platform. The intermetatarsal angle (IMA), metatarsophalangeal angle (MPA), medial sesamoid position, RH, and ITP signs were assessed for statistical analysis. Results. There were 127 feet with an IMA > 9°. Both RH and ITP severities correlated significantly with IMA severity. RH and ITP were also significantly associated with each other, and the pronation deformities of these feet are probably related to extrinsic factors. There were also feet with discrepancies between their RH and ITP severities, possibly due to intrinsic torsion of the first metatarsal. Conclusion. Both RH and ITP are reliable first metatarsal pronation signs correlating to the metatarsus primus varus deformity of hallux valgus feet. They should be used more for preoperative and postoperative assessment. Cite this article: Bone Jt Open 2024;5(11):1037–1040


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 25 - 25
14 Nov 2024
Taylan O Louwagie T Bialy M Peersman G Scheys L
Full Access

Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee joint kinematics and strains in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) during squatting motions. Method. Six cadaver lower limbs underwent computed tomography scans to design patient-specific guides. Using these scans, bony landmarks and virtual single-line collateral ligaments were identified to provide intraoperative real-time feedback, aided in bone resection, implant alignment, tibiofemoral kinematics, and collateral ligament elongations, using the navigation platform. The specimens were subjected to squatting (35°-100°) motions on a physiological ex vivo knee simulator, maintaining a constant 110N vertical ankle load regulated by active quadriceps and bilateral hamstring actuators. Subsequently, each knee underwent a medially-stabilized TKA using the mechanical alignment technique, followed by a retest under the same conditions used preoperatively. Using a dedicated wand, MCL and LCL insertions—anterior, middle, and posterior bundles—were identified in relation to bone-pin markers. The knee kinematics and collateral ligament strains were analyzed from 3D marker trajectories captured by a six-camera optical system. Result. Both native and TKA conditions demonstrated similar patterns in tibial valgus orientation (Root Mean Square Error (RMSE=1.7°), patellar flexion (RMSE=1.2°), abduction (RMSE=0.5°), and rotation (RMSE=0.4°) during squatting (p>0.13). However, a significant difference was found in tibial internal rotation between 35° and 61° (p<0.045, RMSE=3.3°). MCL strains in anterior (RMSE=1.5%), middle (RMSE=0.8%), and posterior (RMSE=0.8%) bundles closely matched in both conditions, showing no statistical differences (p>0.05). Conversely, LCL strain across all bundles (RMSE<4.6%) exhibited significant differences from mid to deep flexion (p<0.048). Conclusion. The novel intraoperative navigation platform not only aims to achieve planned knee alignment but also assists in restoring native knee kinematics and collateral ligament behavior through real-time feedback. Acknowledgment. This study was funded by Medacta International (Castel San Pietro, Switzerland)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 54 - 54
14 Nov 2024
Pann P Taheri S Schilling AF Graessel S
Full Access

Introduction. Osteoarthritis (OA) causes pain, stiffness, and loss of function due to degenerative changes in joint cartilage and bone. In some forms of OA, exercise can alleviate symptoms by improving joint mobility and stability. However, excessive training after joint injury may have negative consequences for OA development. Sensory nerve fibers in joints release neuropeptides like alpha-calcitonin gene-related peptide (alpha-CGRP), potentially affecting OA progression. This study investigates the role of alpha-CGRP in OA pathogenesis under different exercise regimen in mice. Method. OA was induced in C57Bl/6J WT mice and alpha-CGRP KO mice via surgical destabilization of the medial meniscus (DMM) at 12 weeks of age (N=6). Treadmill exercise began 2 weeks post-surgery and was performed for 30 minutes, 5 days a week, for 2 or 6 weeks at intense (16 m/min, 15° incline) or moderate (10 m/min, 5° incline) levels. Histomorphometric assessment of cartilage degradation (OARSI scoring), serum cytokine analysis, immunohistochemistry, and nanoCT analysis were conducted. Result. OARSI scoring confirmed OA induction 4 weeks post-DMM surgery, with forced exercise exacerbating cartilage degradation regardless of intensity. No significant genotype-dependent differences were observed. Serum analysis revealed elevated cytokine levels associated with OA and inflammation in KO mice compared to WT mice 4 and 8 weeks post-surgery (VEGF-A, MCP-1, CXCL10, RANTES, MIP1-alpha, MIP1-beta, and RANKL). The observed effects were often exacerbated by intense exercise but rarely by DMM surgery. NanoCT analysis demonstrated increased sclerotic bone changes after 6 weeks of forced exercise in KO mice compared to WT mice. Conclusion. Our results suggest an OA promoting effect of exercise in early disease stages of posttraumatic OA. Intense exercise induced inflammatory processes correlated to increased cytokine levels in the serum that might exacerbate OA pathogenesis in later stages. The neuropeptide alpha-CGRP might play a role in protecting against these adverse effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 64 - 64
14 Nov 2024
Hudson P Federer S Dunne M Pring C Smith N
Full Access

Introduction. Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes. Method. 10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test. Result. On average participants lost 28.8±7.60kg. No significant changes were observed in standing knee and hip joint angles. Walking velocity increased from 1.10±0.11 ms. -1. to 1.23±0.17 ms. -1. (t(9)=-3.060, p = 0.014) with no change in step time but a mean increase in stride length of 0.12m (SE: 0.026m; t(9)=-4.476, p = 0.002). A significant decrease of 21.5±4.2% in peak vertical ground reaction forces was observed (t(9)=12.863, p <0.001). Stride width significantly decreased by 0.04m (SE: 0.010m; t(9)=4.316, p = 0.002) along with a decrease in lateral impulse of 21.2Ns (SE: 6.977Ns; t(7), p = 0.019), but no significant difference in knee joint angles were observed. Double limb support time also significantly reduced by 0.02s (SE: 0.006s; t(9) = 3.639, p=0.005). Conclusion. The reduction in stance width and lateral impulse suggests a more sagittal compass-gait walk is being achieved. This would reduce valgus moments on the knee reducing loading in the medial compartment. The reduction in peak ground reaction force would reduce knee contact forces and again potentially slow OA progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 33 - 33
14 Nov 2024
Fallahy M Shaker F Ghanbari F Aslani MA Mohammadi S Behrouzieh S
Full Access

Introduction. Knee Osteoarthritis (KOA) is a prevalent joint disease requiring accurate diagnosis and prompt management. The condition occurs due to cartilage deterioration and bone remodeling. Ultrasonography has emerged as a promising modality for diagnosing KOA. Medial meniscus extrusion (MME), characterized by displacement of medial meniscus beyond the joint line has been recognized as a significant marker of KOA progression. This study aimed to explore potentials Ultrasound findings in timely detection of MME and compare it to magnetic resonance imaging (MRI) as a reference standard. Method. A comprehensive literature search was performed in 4 databases from inception to May 1 2024. Two independent reviewers, initiated screening protocols and selected the articles based on inclusion and exclusion criteria and then extracted the data. Meta-analysis was conducted using R 4.3.2 packages mada and metafor. Result. A total of 2500 articles from 4 databases was retrieved; however, following the application of inclusion and exclusion criteria 23 articles were finally extracted. These studies collectively encompassed a total of 777 patients with mean age of 53.2±7.4. The mean BMI calculated for patients was 28.31 ± 2.45. All patients underwent non-weight bearing knee ultrasonography in supine position with 0° flexion. The reported medial meniscus extrusion was 2.58 mm for articles using MRI and 2.65 mm for those using Ultrasound (MD: 0.05 ± 0.12, P= 0.65, I. 2. : 54%). Our meta-analysis revealed insignificant difference between US and MRI. (SMD: 0.03, 95% CI: -0.18 _0.23, P= 0.77, I. 2. : 56%) Meta analysis for diagnostic accuracy measures yielded a pooled sensitivity and specificity of 90.8% and 77% (95% CI: 84.2% – 94.8%, 35.5% – 95.3%, respectively, I. 2. : 44%). Conclusion. Our results indicate a close alignment in the accuracy of measurements obtained using Ultrasound modality. The narrow range suggests a minimal discrepancy in MME values between MRI and ultrasound, highlighting their comparable precision in diagnostic assessments


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 3 - 3
14 Nov 2024
Chalak A Singh S Kale S
Full Access

Introduction. The non-union of long bones poses a substantial challenge to clinicians and patients alike. The Ilizarov fixation system and Limb Reconstruction System (LRS), renowned for their versatility in managing complex non-unions. The purpose of this retrospective study was to assess the outcomes of acute docking with the bone peg-in-bone technique for the management of non-unions of long bones. The study seeks to evaluate its effectiveness in achieving complete bony union, preserving limb length and alignment, correcting existing deformities, and preventing the onset of new ones. Method. A retrospective analysis of 42 patients was done with infected and non-infected non-unions of long bones who received treatment at a tertiary care hospital between April 2016 to April 2022. We utilized the Association for the Study and Application of Methods of the Ilizarov (ASAMI) scoring system to assess both bone and functional outcomes and measured mechanical lateral distal femoral angle (mLDFA) for the femur and the medial proximal tibial angle (MPTA) for the tibia. Result. In our retrospective study involving 42 patients, a total of 30 patients had post debridement gap of >2 cm and average gap of 4.54 cm (range 1 – 13 cm) and therefore underwent corticotomy and lengthening. The average external fixation time was 6.52 (range 4 – 11 months) and average external fixation index of 2.08 (range 0.4 – 4.5 months/cm). The ASAMI scoring system showed bone result of 38 excellent, 3 good and 1 fair. Functional result of 40 excellent and 2 good outcomes. The post op mLDFA and MPTA were in normal range except in 3 patients which not statistically significant. Conclusion. In conclusion, the use of acute docking provides several advantages such as promoting early fracture healing, increasing stability, shortening treatment time, reducing the number of surgical procedures and reduced number of complications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 123 - 123
14 Nov 2024
D’Arrigo D Conte P Anzillotti G Giancamillo AD Girolamo LD Peretti G Crovace A Kon E
Full Access

Introduction. Degenerative meniscal tears are the most common meniscal lesions, representing huge clinical and socio-economic burdens. Their role in knee osteoarthritis (OA) onset and progression is well established and demonstrated by several retrospective studies. Effective preventive measures and non-surgical treatments for degenerative meniscal lesions are still lacking, also because of the lack of specific and accurate animal models in which test them. Thus, we aim to develop and validate an accurate animal model of meniscus degeneration. Method. Three different surgical techniques to induce medial meniscus degenerative changes in ovine model were performed and compared. A total of 32 sheep (stifle joints) were subjected to either one of the following surgical procedures: a) direct arthroscopic mechanical meniscal injury; b) peripheral devascularization and denervation of medial meniscus; c) full thickness medial femoral condyle cartilage lesion. In all the 3 groups, the contralateral joint served as a control. Result. From a visual examination of the knee joint emerged a clear difference between control and operated groups, in the menisci but also in the cartilage, indicating the onset of OA-related cartilage degeneration. The meniscal and cartilaginous lesions were characterized by different severity and location in the different groups. For instance, a direct meniscal injury caused cartilaginous lesions especially in the medial part of the condyles, and the other approaches presented specific signature. Evaluation of scoring scales (e.g. ICRS score) allowed the quantification of the damage and the identification of differences among the four groups. Conclusion. We were effectively able to develop and validate a sheep model of meniscal degeneration which led to the onset of OA. This innovative model will allow to test in a pre-clinical relevant setting innovative approaches to prevent meniscal-related OA. Funding. Project PNRR-MAD-2022-12375978 funded by Italian Ministry of Health


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 119 - 119
14 Nov 2024
Rösch G Rapp AE Tsai PL Kohler H Taheri S Schilling AF Zaucke F Slattery D Lanzl ZJ
Full Access

Introduction. Osteoarthritis (OA) is a chronic degenerative disease of the entire joint leading to joint stiffness and pain (PMID:33571663). Recent evidence suggests that the sympathetic nervous system (SNS) plays a role in the pathogenesis of OA (PMID:34864169). A typical cause for long-term hyperactivity of the SNS is chronic stress. To study the contribution of increased sympathetic activity, we analyzed the progression of OA in chronically stressed mice. Method. We induced OA in male C57BL/6J mice by destabilizing the medial meniscus (DMM)(PMID:17470400) and exposed half of these mice to chronic unpredictable mild stress (CUMS)(PMID:28808696). Control groups consisted of sham-operated mice with and without CUMS exposure. After 12 weeks, CUMS efficacy was determined by assessing changes in body weight gain and activity of mice, measuring splenic norepinephrine and serum corticosterone levels. OA progression was studied by histological analysis of cartilage degeneration and synovitis, and by μCT to evaluate changes in calcified cartilage and subchondral bone microarchitecture. A dynamic weight-bearing system was used to assess OA-related pain. Result. CUMS resulted in significantly decreased body weight gain and activity, as well as increased splenic norepinephrine and serum corticosterone concentrations compared to the respective controls. Surprisingly, already DMM alone resulted in elevated stress hormone levels. CUMS significantly exacerbated cartilage degeneration and synovial inflammation and increased OA pain in DMM mice. The underlying cellular and molecular mechanisms are currently being analyzed using FACS, single cell RNAseq, and spatial proteomics. Conclusion. Overall, chronic stress exacerbates OA severity and pain. Moreover, increased levels of stress hormones were observed in OA mice without CUMS induction, suggesting a complex bi-directional interaction between the SNS and OA. Targeting the autonomic nervous system, such as attenuating the SNS but also stimulating the activity of the parasympathetic nervous system, as a counterpart of the SNS, may therefore be promising for novel preventive or causal treatments of OA


Introduction. Orthopedics is experiencing a significant transformation with the introduction of technologies such as robotics and apps. These, integrated into the post-operative rehabilitation process, promise to improve clinical outcomes, patient satisfaction, and the overall efficiency of the healthcare system. This study examines the impact of an app called Mymobility and intra-operative data collected via the ROSA® robotic system on the functional recovery of patients undergoing robot-assisted knee arthroplasty. Method. The study was conducted at a single center from 2020 to 2023. Data from 436 patients were included, divided into “active” patients (active users of Mymobility) and “non-active” patients. Clinical analyses and satisfaction surveys were carried out on active patients. The intra-operative parameters recorded by ROSA® were correlated with the Patient-Reported Outcome Measures (PROMs) collected via Mymobility. Result. Intra-operative data showed significant correlations with PROMs for the 48 active patients, highlighting the importance of parameters such as medial joint space and ligament laxity. No significant differences were observed between the sexes, but a positive correlation was detected between age and PROMs. The data analysis indicated that an increased medial joint space and reduced ligament laxity are associated with better PROMs. The adoption of Mymobility remained limited, with only 10% of patients fully utilizing the app. Critical factors have been identified to improve recruitment, engagement, and overall experience with the platform. Conclusion. The integration of technologies such as Mymobility and ROSA® in post-operative rehabilitation offers numerous advantages, including the objectification of data, active patient involvement, and personalized care. Challenges remain related to costs, patient compliance, and demographic limitations. Nevertheless, these technologies represent a milestone in modern peri-operative management, being able to improve clinical outcomes and the quality of care


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 107 - 107
14 Nov 2024
Thakur A Harris S Brkljač M Cobb J Logishetty K
Full Access

Introduction. Bernese periacetabular osteotomy (PAO) repositions the acetabulum to increase femoral head coverage (FHC) in hip dysplasia. Currently, there is a paucity of objective peri-operative metrics to plan for optimal acetabular fragment repositioning. The MSk Lab Hip 3D Planner (MSkL-HP) measures acetabular morphology and simulates PAO cuts to achieve optimal FHC. We evaluated how adjusting location and orientation of cutting planes can alter FHC. Method. MSkL-HP simulated 274 feasible PAOs on four dysplastic hips. Femoroacetabular anatomy was landmarked to simulate cutting planes. Posterior column and ischial cuts were standardised, whilst iliac and pubic cut combinations varied. The slope of the iliac cut was either neutral (aligned to pelvis), exit point 5mm above the entry point (+5), or 5mm below (-5). The slope of the pubic cut was either 90°, 50°, or 70° (medial-to-lateral). Iliac and pubic cuts were simulated 0, 5 and 15mm - distal and medial – to a classic cut. Outcome measures were achieved LCEA, Tönnis, FHC and % bone overlap at the pubic cut. Targets were LCEA >30°, Tönnis angle <10°, and FHC >70% and minimum bone overlap ≥10%. Results. All feasible PAOs resulted in improvement from pre-operative metrics. Personalised cutting planes provided greater benefit than standard planes. Kruskal Wallis tests showed that the iliac cut at 5mm or 15mm resulted in a greater LCEA and lower Tönnis compared to the classic cut (p<0.05). Changing location of the pubic cut, and slope of the iliac and pubic cuts did not significantly affect LCEA and Tönnis in all hips (p<0.05). Cut combinations optimising metrics were associated with a lower % pubic cut overlap. Conclusion. MSkL-HP feasibly and reliably planned personalised PAO, measuring pre-operative and simulated post-operative objective metrics. Patient-specific pubic and iliac cuts enable greater correction whilst maintaining bone overlap. Further simulations on patients with varying morphology may improve standard techniques


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1013 - 1019
11 Nov 2024
Clark SC Pan X Saris DBF Taunton MJ Krych AJ Hevesi M

Aims

Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group.

Methods

The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1003 - 1012
8 Nov 2024
Gabr A Fontalis A Robinson J Hage W O'Leary S Spalding T Haddad FS

Aims. The aim of this study was to compare patient-reported outcomes (PROMs) following isolated anterior cruciate ligament reconstruction (ACLR), with those following ACLR and concomitant meniscal resection or repair. Methods. We reviewed prospectively collected data from the UK National Ligament Registry for patients who underwent primary ACLR between January 2013 and December 2022. Patients were categorized into five groups: isolated ACLR, ACLR with medial meniscus (MM) repair, ACLR with MM resection, ACLR with lateral meniscus (LM) repair, and ACLR with LM resection. Linear regression analysis, with isolated ACLR as the reference, was performed after adjusting for confounders. Results. From 14,895 ACLR patients, 4,400 had two- or five-year Knee injury and Osteoarthritis Outcome Scores (KOOS) available. At two years postoperatively, the MM repair group demonstrated inferior scores in KOOS pain (β = −3.63, p < 0.001), symptoms (β = − 4.88, p < 0.001), ADL (β = − 2.43, p = 0.002), sport and recreation (β = − 5.23, p < 0.001), quality of life (QoL) (β = − 5.73, p < 0.001), and International Knee Documentation Committee (β = − 4.1, p < 0.001) compared with the isolated ACLR group. The LM repair group was associated with worse KOOS sports and recreation scores at two years (β = − 4.264, p < 0.001). At five years, PROMs were comparable between the groups. At five years, PROMs were comparable between the groups. Participants undergoing ACLR surgery within 12 weeks from index injury demonstrated superior PROMs at two and five years. Conclusion. Our study showed that MM repair, and to a lesser extent LM repairs in combination with ACLR, were associated with inferior patient-reported outcome measures (PROMs) compared to isolated ACLR at two years postoperatively, while meniscal resection groups exhibited comparable outcomes. However, by five years postoperation, no significant differences in PROMs were evident. Further longer-term, cross-sectional studies are warranted to investigate the outcomes of ACLR and concomitant meniscal surgery


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims. While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes. Methods. This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected. Results. Overall, the median preoperative navigated (NAV) FFD measured 6.0° (IQR 3.1 to 8), while the median postoperative NAV FFD was 3.0° (IQR 1° to 4.4°), representing a mean correction of 49.2%. The median preoperative clinical FFD was 5° (IQR 0° to 9.75°) for the entire cohort, which decreased to 3.0° (IQR 0° to 5°) and 2° (IQR 0° to 3°) at six weeks and one year postoperatively, respectively. A statistically significant improvement in PROMs compared with baseline was evident in all groups (p < 0.001). Regression analyses showed that participants who experienced a larger FFD correction, showed greater improvement in PROMs (β = 0.609, p = 0.049; 95% CI 0.002 to 1.216). Conclusion. This study found that UKA was associated with an approximately 50% improvement in preoperative FFD across all three examined groups. Participants with greater correction of FFD also demonstrated larger OKS gains. These findings could prove a useful augment to clinical decision-making regarding candidacy for UKA and anticipated improvements in FFD


Bone & Joint Open
Vol. 5, Issue 11 | Pages 962 - 970
4 Nov 2024
Suter C Mattila H Ibounig T Sumrein BO Launonen A Järvinen TLN Lähdeoja T Rämö L

Aims

Though most humeral shaft fractures heal nonoperatively, up to one-third may lead to nonunion with inferior outcomes. The Radiographic Union Score for HUmeral Fractures (RUSHU) was created to identify high-risk patients for nonunion. Our study evaluated the RUSHU’s prognostic performance at six and 12 weeks in discriminating nonunion within a significantly larger cohort than before.

Methods

Our study included 226 nonoperatively treated humeral shaft fractures. We evaluated the interobserver reliability and intraobserver reproducibility of RUSHU scoring using intraclass correlation coefficients (ICCs). Additionally, we determined the optimal cut-off thresholds for predicting nonunion using the receiver operating characteristic (ROC) method.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1301 - 1305
1 Nov 2024
Prajapati A Thakur RPS Gulia A Puri A

Aims

Reconstruction after osteoarticular resection of the proximal ulna for tumours is technically difficult and little has been written about the options that are available. We report a series of four patients who underwent radial neck to humeral trochlea transposition arthroplasty following proximal ulnar osteoarticular resection.

Methods

Between July 2020 and July 2022, four patients with primary bone tumours of the ulna underwent radial neck to humeral trochlea transposition arthroplasty. Their mean age was 28 years (12 to 41). The functional outcome was assessed using the range of motion (ROM) of the elbow, rotation of the forearm and stability of the elbow, the Musculoskeletal Tumor Society score (MSTS), and the nine-item abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH-9) score.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1293 - 1300
1 Nov 2024
O’Malley O Craven J Davies A Sabharwal S Reilly P

Aims

Reverse shoulder arthroplasty (RSA) has become the most common type of shoulder arthroplasty used in the UK, and a better understanding of the outcomes after revision of a failed RSA is needed. The aim of this study was to review the current evidence systematically to determine patient-reported outcome measures and the rates of re-revision and complications for patients undergoing revision of a RSA.

Methods

MEDLINE, Embase, CENTRAL, and the Cochrane Database of Systematic Reviews were searched. Studies involving adult patients who underwent revision of a primary RSA for any indication were included. Those who underwent a RSA for failure of a total shoulder arthroplasty or hemiarthroplasty were excluded. Pre- and postoperative shoulder scores were evaluated in a random effects meta-analysis to determine the mean difference. The rates of re-revision and complications were also calculated.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1327 - 1332
1 Nov 2024
Ameztoy Gallego J Diez Sanchez B Vaquero-Picado A Antuña S Barco R

Aims

In patients with a failed radial head arthroplasty (RHA), simple removal of the implant is an option. However, there is little information in the literature about the outcome of this procedure. The aim of this study was to review the mid-term clinical and radiological results, and the rate of complications and removal of the implant, in patients whose initial RHA was undertaken acutely for trauma involving the elbow.

Methods

A total of 11 patients in whom removal of a RHA without reimplantation was undertaken as a revision procedure were reviewed at a mean follow-up of 8.4 years (6 to 11). The range of motion (ROM) and stability of the elbow were recorded. Pain was assessed using a visual analogue scale (VAS). The functional outcome was assessed using the Mayo Elbow Performance Score (MEPS), the Oxford Elbow Score (OES), and the Disabilities of the Arm, Shoulder and Hand questionnaire (DASH). Radiological examination included the assessment of heterotopic ossification (HO), implant loosening, capitellar erosion, overlengthening, and osteoarthritis. Complications and the rate of further surgery were also recorded.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1284 - 1292
1 Nov 2024
Moroder P Poltaretskyi S Raiss P Denard PJ Werner BC Erickson BJ Griffin JW Metcalfe N Siegert P

Aims

The objective of this study was to compare simulated range of motion (ROM) for reverse total shoulder arthroplasty (rTSA) with and without adjustment for scapulothoracic orientation in a global reference system. We hypothesized that values for simulated ROM in preoperative planning software with and without adjustment for scapulothoracic orientation would be significantly different.

Methods

A statistical shape model of the entire humerus and scapula was fitted into ten shoulder CT scans randomly selected from 162 patients who underwent rTSA. Six shoulder surgeons independently planned a rTSA in each model using prototype development software with the ability to adjust for scapulothoracic orientation, the starting position of the humerus, as well as kinematic planes in a global reference system simulating previously described posture types A, B, and C. ROM with and without posture adjustment was calculated and compared in all movement planes.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1348 - 1360
1 Nov 2024
Spek RWA Smith WJ Sverdlov M Broos S Zhao Y Liao Z Verjans JW Prijs J To M Åberg H Chiri W IJpma FFA Jadav B White J Bain GI Jutte PC van den Bekerom MPJ Jaarsma RL Doornberg JN

Aims

The purpose of this study was to develop a convolutional neural network (CNN) for fracture detection, classification, and identification of greater tuberosity displacement ≥ 1 cm, neck-shaft angle (NSA) ≤ 100°, shaft translation, and articular fracture involvement, on plain radiographs.

Methods

The CNN was trained and tested on radiographs sourced from 11 hospitals in Australia and externally validated on radiographs from the Netherlands. Each radiograph was paired with corresponding CT scans to serve as the reference standard based on dual independent evaluation by trained researchers and attending orthopaedic surgeons. Presence of a fracture, classification (non- to minimally displaced; two-part, multipart, and glenohumeral dislocation), and four characteristics were determined on 2D and 3D CT scans and subsequently allocated to each series of radiographs. Fracture characteristics included greater tuberosity displacement ≥ 1 cm, NSA ≤ 100°, shaft translation (0% to < 75%, 75% to 95%, > 95%), and the extent of articular involvement (0% to < 15%, 15% to 35%, or > 35%).