The aim of this study was to screen the entire genome for genetic markers associated with risk for anterior cruciate ligament (ACL) and posterior cruciate ligament (PCL) injury. Genome-wide association (GWA) analyses were performed using data from the Kaiser Permanente Research Board (KPRB) and the UK Biobank. ACL and PCL injury cases were identified based on electronic health records from KPRB and the UK Biobank. GWA analyses from both cohorts were tested for ACL and PCL injury using a logistic regression model adjusting for sex, height, weight, age at enrolment, and race/ethnicity using allele counts for single nucleotide polymorphisms (SNPs). The data from the two GWA studies were combined in a meta-analysis. Candidate genes previously reported to show an association with ACL injury in athletes were also tested for association from the meta-analysis data from the KPRB and the UK Biobank GWA studies.Aims
Methods
Introduction. The biological pathways responsible for adverse reactions to metal debris (ARMD) are unknown. Necrotic and inflammatory changes in response to Co-Cr nanoparticles in periprosthetic tissues may involve both a cytotoxic response and a type IV delayed hypersensitivity response. Our aim was to establish whether differences in biological cascade activation exists in tissues of patients with end-stage OA compared to those with aseptic loosening of a metal on polyethylene (MoP) THR and those with ARMD from metal-on-metal (MoM) THR. Patients & Methods. A microarray experiment (Illumina HT12-v4) was performed to identify the range of differential gene expression between 24 patients across 3 phenotypes: Primary OA (n=8), revision for aseptic loosening of MoP THR (n=8) and ARMD associated with MoM THR (n=8). Results were validated using Taqman Low Density Array (TLDA) selecting the top 36 genes in terms of fold-change (FC)>2 and a significant difference (p<0.05) on ANOVA. Pathways of cellular interaction were explored using Ingenuity IPA software. Results. There is a similar pattern of gene expression between MoP and MoM phenotypes versus primary OA across 33,777 genes. One hundred and thirty significantly differentially expressed genes across 3 phenotypes were identified. Fifteen pathways were associated with differentially expressed genes between MoP and MoM phenotypes. TLDA demonstrated qualitative mirroring of the expression pattern observed in the microarray and consistency in the direction of change for individual genes. Discussion. There were no signature pathways in which multiple genes are differentially expressed such that inferences between the contributions of innate macrophage and adaptive T-cell responses can be made. TIMP3 &
Objectives. The aim of this study was to examine whether asymmetric loading
influences macrophage elastase (MMP12) expression in different parts
of a rat tail intervertebral disc and growth plate and if MMP12
expression is correlated with the severity of the deformity. Methods. A wedge deformity between the ninth and tenth tail vertebrae
was produced with an Ilizarov-type mini external fixator in 45 female
Wistar rats, matched for their age and weight. Three groups were
created according to the degree of deformity (10°, 30° and 50°).
A total of 30 discs and vertebrae were evaluated immunohistochemically
for immunolocalisation of
The incidence of acute and chronic conditions
of the tendo Achillis appear to be increasing. Causation is multifactorial
but the role of inherited genetic elements and the influence of
environmental factors altering gene expression are increasingly
being recognised. Certain individuals’ tendons carry specific variations
of genetic sequence that may make them more susceptible to injury.
Alterations in the structure or relative amounts of the components
of tendon and fine control of activity within the extracellular
matrix affect the response of the tendon to loading with failure
in certain cases. This review summarises present knowledge of the influence of
genetic patterns on the pathology of the tendo Achillis, with a
focus on the possible biological mechanisms by which genetic factors
are involved in the aetiology of tendon pathology. Finally, we assess
potential future developments with both the opportunities and risks
that they may carry. Cite this article: