Advertisement for orthosearch.org.uk
Results 1 - 20 of 46
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 56 - 56
2 Jan 2024
Zderic I Warner S Stoffel K Woodburn W Castle R Penman J Saura-Sanchez E Helfet D Gueorguiev B Sommer C
Full Access

Treatment of both simple and complex patella fractures is a challenging clinical problem. The aim of this study was to investigate the biomechanical performance of recently developed lateral rim variable angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures.

Twelve pairs of human anatomical knees were used to simulate either two-part transverse simple AO/OTA 34C1 or five-part complex AO/OTA 34C3 patella fractures by means of osteotomies, with each fracture model created in six pairs. The complex fracture pattern was characterized by a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral, and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or a lateral rim variable angle locking plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or a lateral rim variable angle locking plate.

Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range of 90° flexion to full knee extension. Interfragmentary movements were captured via motion tracking.

For both fracture types, the longitudinal and shear articular displacements measured between the proximal and distal fragments at the central patella aspect between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the lateral rim variable angle locked plating compared with tension band wiring, p<0.01.

Lateral rim locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring under dynamic loading.


Bone & Joint 360
Vol. 12, Issue 5 | Pages 36 - 39
1 Oct 2023

The October 2023 Trauma Roundup. 360. looks at: Intramedullary nailing versus sliding hip screw in trochanteric fracture management: the INSITE randomized clinical trial; Five-year outcomes for patients with a displaced fracture of the distal tibia; Direct anterior versus anterolateral approach in hip joint hemiarthroplasty; Proximal humerus fractures: treat them all nonoperatively?; Tranexamic acid administration by prehospital personnel; Locked plating versus nailing for proximal tibia fractures: a multicentre randomized controlled trial; A retrospective review of the rate of septic knee arthritis after retrograde femoral nailing for traumatic femoral fractures at a single academic institution


Bone & Joint 360
Vol. 12, Issue 4 | Pages 32 - 35
1 Aug 2023

The August 2023 Trauma Roundup. 360. looks at: A comparison of functional cast and volar-flexion ulnar deviation for dorsally displaced distal radius fractures; Give your stable ankle fractures some AIR!; Early stabilization of rib fractures – an effective thing to do?; Locked plating versus nailing for proximal tibia fractures: A multicentre randomized controlled trial; Time to flap coverage in open tibia fractures; Does tranexamic acid affect the incidence of heterotropic ossification around the elbow?; High BMI – good or bad in surgical fixation of hip fractures?


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 23 - 23
4 Apr 2023
Stoffel K Zderic I Pastor T Woodburn W Castle R Penman J Saura-Sanchez E Gueorguiev B Sommer C
Full Access

Treatment of simple and complex patella fractures represents a challenging clinical problem. Controversy exists regarding the most appropriate fixation method. Tension band wiring, aiming to convert the pulling forces on the anterior aspect of the patella into compression forces across the fracture site, is the standard of care, however, it is associated with high complication rates. Recently, anterior variable-angle locking plates have been developed for treatment of simple and comminuted patella fractures. The aim of this study was to investigate the biomechanical performance of the novel anterior variable-angle locking plates versus tension band wiring used for fixation of simple and complex patella fractures.

Sixteen pairs of human cadaveric knees were used to simulate either two-part transverse simple AO/OTA 34-C1 or five-part complex AO/OTA 34-C3 patella fractures by means of osteotomies, with each fracture model created in eight pairs. The complex fracture pattern was characterized with a medial and a lateral proximal fragment, together with an inferomedial, an inferolateral and an inferior fragment mimicking comminution around the distal patellar pole. The specimens with simple fractures were pairwise assigned for fixation with either tension band wiring through two parallel cannulated screws, or an anterior variable-angle locking core plate. The knees with complex fractures were pairwise treated with either tension band wiring through two parallel cannulated screws plus circumferential cerclage wiring, or an anterior variable-angle locking three-hole plate. Each specimen was tested over 5000 cycles by pulling on the quadriceps tendon, simulating active knee extension and passive knee flexion within the range from 90° flexion to full knee extension. Interfragmentary movements were captured by motion tracking.

For both fracture types, the articular displacements, measured between the proximal and distal fragments at the central aspect of the patella between 1000 and 5000 cycles, together with the relative rotations of these fragments around the mediolateral axis were all significantly smaller following the anterior variable-angle locked plating compared with the tension band wiring, p < 0.01

From a biomechanical perspective, anterior locked plating of both simple and complex patella fractures provides superior construct stability versus tension band wiring.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_7 | Pages 57 - 57
4 Apr 2023
Tariq M Uddin Q Amin H Ahmed B
Full Access

This study aims to compare the outcomes of Volar locking plating (VLP) versus percutaneous Kirschner wires (K-wire) fixation for surgical management of distal radius fractures.

We systematically searched multiple databases, including MEDLINE for randomized controlled trials (RCTs) comparing outcomes of VLP fixation and K-wire for treatment of distal radius fracture in adults. The methodological quality of each study was assessed by the Cochrane Risk of Bias tool. Patient-reported outcomes, functional outcomes, and complications at 1 year follow up were evaluated. Meta-analysis was performed using random-effects models and results presented as risk ratios (RRs) or mean differences (MDs) with 95% confidence interval (CI).

13 RCTs with 1336 participants met the inclusion criteria. Disabilities of the Arm, Shoulder and Hand (DASH) scores were significantly better for VLP fixation (MD= 2.15; 95% CI, 0.56-3.74; P = 0.01; I2=23%). No significant difference between the two procedures for grip strength measured in kilograms (MD= −3.84; 95% CI,-8.42-0.74; P = 0.10; I2=52%) and Patient-Rated Wrist Evaluation (PRWE) scores (MD= −0.06; 95% CI,-0.87-0.75; P = 0.89; I2=0%). K-wire treatment yielded significantly improved extension (MD= −4.30; P=0.04) but with no differences in flexion, pronation, supination, and radial deviation (P >0.05). The risk of complications and rate of reoperation were similar for the two procedures (P >0.05).

This meta-analysis suggests that VLP fixation improves DASH score at 12 months follow up, however, the difference is small and unlikely to be clinically important. Existing literature does not provide sufficient evidence to demonstrate the superiority of either VLP or K-wire treatment in terms of patient-reported outcomes, functional outcomes, and complications.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_13 | Pages 83 - 83
1 Dec 2022
Van Meirhaeghe J Vicente M Leighton R Backstein D Nousiainen M Sanders DW Dehghan N Cullinan C Stone T Schemitsch C Nauth A
Full Access

The management of periprosthetic distal femur fractures is an issue of increasing importance for orthopaedic surgeons. Because of the expanding indications for total knee arthroplasty (TKA) and an aging population with increasingly active lifestyles there has been a corresponding increase in the prevalence of these injuries. The management of these fractures is often complex because of issues with obtaining fixation around implants and dealing with osteopenic bone or compromised bone stock. In addition, these injuries frequently occur in frail, elderly patients, and the early restoration of function and ambulation is critical in these patients. There remains substantial controversy with respect to the optimal treatment of periprosthetic distal femur fractures, with some advocating for Locked Plating (LP), others Retrograde Intramedullary Nailing (RIMN) and finally those who advocate for Distal Femoral Replacement (DFR). The literature comparing these treatments, has been infrequent, and commonly restricted to single-center studies. The purpose of this study was to retrospectively evaluate a large series of operatively treated periprosthetic distal femur fractures from multiple centers and compare treatment strategies. Patients who were treated operatively for a periprosthetic distal femur fracture at 8 centers across North America between 2003 and 2018 were retrospectively identified. Baseline characteristics, surgical details and post-operative clinical outcomes were collected from patients meeting inclusion criteria. Inclusion criteria were patients aged 18 and older, any displaced operatively treated periprosthetic femur fracture and documented 1 year follow-up. Patients with other major lower extremity trauma or ipsilateral total hip replacement were excluded. Patients were divided into 3 groups depending on the type of fixation received: Locked Plating, Retrograde Intramedullary Nailing and Distal Femoral Replacement. Documented clinical follow-up was reviewed at 2 weeks, 3 months, 6 months and 1 year following surgery. Outcome and covariate measures were assessed using basic descriptive statistics. Categorical variables, including the rate of re-operation, were compared across the three treatment groups using Fisher Exact Test. In total, 121 patients (male: 21% / female: 79%) from 8 centers were included in our analysis. Sixty-seven patients were treated with Locked Plating, 15 with Retrograde Intramedullary Nailing, and 39 were treated with Distal Femoral Replacement. At 1 year, 64% of LP patients showed radiographic union compared to 77% in the RIMN group (p=0.747). Between the 3 groups, we did not find any significant differences in ambulation, return to work and complication rates at 6 months and 1 year (Table 1). Reoperation rates at 1 year were 27% in the LP group (17 reoperations), 16% in the DFR group (6 reoperations) and 0% in the RIMN group. These differences were not statistically significant (p=0.058). We evaluated a large multicenter series of operatively treated periprosthetic distal femur fractures in this study. We did not find any statistically significant differences at 1 year between treatment groups in this study. There was a trend towards a lower rate of reoperation in the Retrograde Intramedullary Nailing group that should be evaluated further with prospective studies. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_4 | Pages 22 - 22
1 Mar 2021
Makelov B Silva J Apivatthakakul T Gueorguiev B Varga P
Full Access

Osteosynthesis of high-energy metaphyseal proximal tibia fractures is still challenging, especially in patients with severe soft tissue injuries and/or short stature. Although the use of external fixators is the traditional treatment of choice for open comminuted fractures, patients' acceptance is low due to the high profile and therefore the physical burden of the devices. Recently, clinical case reports have shown that supercutaneous locked plating used as definite external fixation could be an efficient alternative. Therefore, the aim of this study was to evaluate the effect of implant configuration on stability and interfragmentary motions of unstable proximal tibia fractures fixed by means of externalized locked plating. Based on a right tibia CT scan of a 48 years-old male donor, a finite element model of an unstable proximal tibia fracture was developed to compare the stability of one internal and two different externalized plate fixations. A 2-cm osteotomy gap, located 5 cm distally to the articular surface and replicating an AO/OTA 41-C2.2 fracture, was virtually fixed with a medial stainless steel LISS-DF plate. Three implant configurations (IC) with different plate elevations were modelled and virtually tested biomechanically: IC-1 with 2-mm elevation (internal locked plate fixation), IC-2 with 22-mm elevation (externalized locked plate fixation with thin soft tissue simulation) and IC-3 with 32-mm elevation (externalized locked plate fixation with thick soft tissue simulation). Axial loads of 25 kg (partial weightbearing) and 80 kg (full weightbearing) were applied to the proximal tibia end and distributed at a ratio of 80%/20% on the medial/lateral condyles. A hinge joint was simulated at the distal end of the tibia. Parameters of interest were construct stiffness, as well as interfragmentary motion and longitudinal strain at the most lateral aspect of the fracture. Construct stiffness was 655 N/mm (IC-1), 197 N/mm (IC-2) and 128 N/mm (IC-3). Interfragmentary motions under partial weightbearing were 0.31 mm (IC-1), 1.09 mm (IC-2) and 1.74 mm (IC-3), whereas under full weightbearing they were 0.97 mm (IC-1), 3.50 mm (IC-2) and 5.56 mm (IC-3). The corresponding longitudinal strains at the fracture site under partial weightbearing were 1.55% (IC-1), 5.45% (IC-2) and 8.70% (IC-3).

From virtual biomechanics point of view, externalized locked plating of unstable proximal tibia fractures with simulated thin and thick soft tissue environment seems to ensure favorable conditions for callus formation with longitudinal strains at the fracture site not exceeding 10%, thus providing appropriate relative stability for secondary bone healing under partial weightbearing during the early postoperative phase.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 49 - 49
1 Dec 2020
Makelov B Gueorguiev B Apivatthakakul T
Full Access

Introduction

Being challenging, multifragmentary proximal tibial fractures in patients with severe soft tissue injuries and/or short stature can be treated using externalized locked plating. A recent finite element study, investigating the fixation stability of plated unstable tibial fractures with 2-mm, 22-mm and 32-mm plate elevation under partial and full weight-bearing, reported that from a virtual biomechanical point of view, externalized plating seems to provide appropriate relative stability for secondary bone healing under partial weight-bearing during the early postoperative phase. The aim of the current study was to evaluate the clinical outcomes of using a LISS plate as a definitive external fixator for the treatment of multifragmentary proximal tibial fractures.

Methods

Following appropriate indirect reduction, externalized locked plating was performed and followed up in 12 patients with multifragmentary proximal tibial fractures with simple intraarticular involvement and injured soft tissue envelope.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 75 - 75
1 Dec 2020
Burkhard B Schopper C Ciric D Mischler D Gueorguiev B Varga P
Full Access

Proximal humerus fractures (PHF) are the third most common fractures in the elderly. Treatment of complex PHF has remained challenging with mechanical failure rates ranging up to 35% even when state-of-the-art locked plates are used. Secondary (post-operative) screw perforation through the articular surface of the humeral head is the most frequent mechanical failure mode, with rates up to 23%. Besides other known risk factors, such as non-anatomical reduction and lack of medial cortical support, in-adverse intraoperative perforation of the articular surfaces during pilot hole drilling (overdrilling) may increase the risk of secondary screw perforation. Overdrilling often occurs during surgical treatment of osteoporotic PHF due to minimal tactile feedback; however, the awareness in the surgical community is low and the consequences on the fixation stability have remained unproved. Therefore, the aim of this study was to evaluate biomechanically whether overdrilling would increase the risk of cyclic screw perforation failure in unstable PHF.

A highly unstable malreduced 3-part fracture was simulated by osteotomizing 9 pairs of fresh-frozen human cadaveric proximal humeri from elderly donors (73.7 ± 13.0 ys, f/m: 3/6). The fragments were fixed with a locking plate (PHILOS, DePuy Synthes, Switzerland) using six proximal screws, with their lengths selected to ensure 6 mm tip-to-joint distance. The pairs were randomized into two treatment groups, one with all pilot holes accurately predrilled (APD) and another one with the boreholes of the two calcar screws overdrilled (COD). The constructs were tested under progressively increasing cyclic loading to failure at 4 Hz using a previously developed setup and protocol. Starting from 50 N, the peak load was increased by 0.05 N/cycle. The event of initial screw loosening was defined by the abrupt increase of the displacement at valley load, following its initial linear behavior. Perforation failure was defined by the first screw penetrating the joint surface, touching the artificial glenoid component and stopping the test via electrical contact.

Bone mineral density (range: 63.8 – 196.2 mgHA/cm3) was not significantly different between the groups. Initial screw loosening occurred at a significantly lower number of cycles in the COD group (10,310 ± 3,575) compared to the APD group (12,409 ± 4,569), p = 0.006. Number of cycles to screw perforation was significantly lower for the COD versus APD specimens (20,173 ± 5,851 and 24,311 ± 6,318, respectively), p = 0.019. Failure mode was varus collapse combined with lateral-inferior translation of the humeral head. The first screw perforating the articular surface was one of the calcar screws in all but one specimen.

Besides risk factors such as fracture complexity and osteoporosis, inadequate surgical technique is a crucial contributor to high failure rates in locked plating of complex PHF. This study shows for the first time that overdrilling of pilot holes can significantly increase the risk of secondary screw perforation. Study limitations include the fracture model and loading method. While the findings require clinical corroboration, raising the awareness of the surgical community towards this largely neglected risk source, together with development of devices to avoid overdrilling, are expected to help improve the treatment outcomes.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 85 - 85
1 Dec 2020
Stefanov A Ivanov S Zderic I Baltov A Rashkov M Gehweiler D Richards G Gueorguiev B Enchev D
Full Access

Treatment of comminuted intraarticular calcaneal fractures remains controversial and challenging. Anatomic reduction with stable fixation has demonstrated better outcomes than nonoperative treatment of displaced intraarticular fractures involving the posterior facet and anterior calcaneocuboid joint (CCJ) articulating surface of the calcaneus. The aim of this study was to investigate the biomechanical performance of three different methods for fixation of comminuted intraarticular calcaneal fractures.

Comminuted calcaneal fractures, including Sanders III-AB fracture of the posterior facet and Kinner II-B fracture of the CCJ articulating calcaneal surface, were simulated in 18 fresh-frozen human cadaveric lower legs by means of osteotomies. The ankle joint, medial soft tissues and midtarsal bones along with the ligaments were preserved. The specimens were randomized according to their bone mineral density to 3 groups for fixation with either (1) 2.7 mm variable-angle locking anterolateral calcaneal plate in combination with one 4.5 mm and one 6.5 mm cannulated screw (Group 1), (2) 2.7 mm variable-angle locking lateral calcaneal plate (Group 2), or (3) interlocking calcaneal nail with 3.5 mm screws in combination with 3 separate 4.0 mm cannulated screws (Group 3). All specimens were biomechanically tested until failure under axial loading with the foot in simulated midstance position. Each test commenced with an initial quasi-static compression ramp from 50 N to 200 N, followed by progressively increasing cyclic loading at 2Hz. Starting from 200 N, the peak load of each cycle increased at a rate of 0.2 N/cycle. Interfragmentary movements were captured by means of optical motion tracking. In addition, mediolateral X-rays were taken every 250 cycles with a triggered C-arm. Varus deformation between the tuber calcanei and lateral calcaneal fragments, plantar gapping between the anterior process and tuber fragments, displacement at the plantar aspect of the CCJ articular calcaneal surface, and Böhler angle were evaluated.

Varus deformation of 10° was reached at significantly lower number of cycles in Group 2 compared to Group 1 and Group 3 (P ≤ 0.017). Both cycles to 10° plantar gapping and 2 mm displacement at the CCJ articular calcaneal surface revealed no significant differences between the groups (P ≥ 0.773). Böhler angle after 5000 cycles (1200 N peak load) had significantly bigger decrease in Group 2 compared to both other groups (P ≤ 0.020).

From biomechanical perspective, treatment of comminuted intraarticular calcaneal fractures using variable-angle locked plate with additional longitudinal screws or interlocked nail in combination with separate transversal screws seems to provide superior stability as opposed to variable-angle locked plating only.


The Bone & Joint Journal
Vol. 102-B, Issue 12 | Pages 1697 - 1702
1 Dec 2020
Schormans PMJ Kooijman MA Ten Bosch JA Poeze M Hannemann PFW

Aims. Fixation of scaphoid nonunion with a volar locking plate and cancellous bone grafting has been shown to be a successful technique in small series. Few mid- or long-term follow-up studies have been reported. The aim of this study was to report the mid-term radiological and functional outcome of plate fixation for scaphoid nonunion. Methods. Patients with a scaphoid nonunion were prospectively enrolled and treated with open reduction using a volar approach, debridement of the nonunion, and fixation using a locking plate and cancellous bone grafting, from the ipsilateral iliac crest. Follow-up included examination, functional assessment using the patient-rated wrist/hand evaluation (PRWHE), and multiplanar reformation CT scans at three-month intervals until union was confirmed. Results. A total of 49 patients with a mean age of 31 years (16 to 74) and a mean duration of nonunion of 3.6 years (0.4 to 16) were included. Postoperatively, the nonunion healed in 47 patients (96%) as shown on CT scans. The mean time to union was 4.2 months (3 to 12). Due to impingement of the plate on the volar rim of the radius and functional limitation, the hardware was removed in 18 patients. At a median follow-up of 38 months in 34 patients, the mean active range of motion (ROM) improved significantly from 89° to 124° (SD 44°; p = 0.003). The mean grip strength improved significantly from 52% to 79% (SD 28%; p < 0.001) of the contralateral side. The mean PRWHE score improved significantly from 66 to 17 points (SD 25; p < 0.001). Conclusion. Locking plate fixation supplemented with autologous cancellous bone grafting is a successful form of treatment for scaphoid nonunion. Functional outcomes improve with the passage of time, and mid-term results are excellent with a significant improvement in ROM, grip strength, and functional outcome as measured by the PRWHE. Cite this article: Bone Joint J 2020;102-B(12):1697–1702


Bone & Joint Research
Vol. 9, Issue 9 | Pages 534 - 542
1 Sep 2020
Varga P Inzana JA Fletcher JWA Hofmann-Fliri L Runer A Südkamp NP Windolf M

Aims

Fixation of osteoporotic proximal humerus fractures remains challenging even with state-of-the-art locking plates. Despite the demonstrated biomechanical benefit of screw tip augmentation with bone cement, the clinical findings have remained unclear, potentially as the optimal augmentation combinations are unknown. The aim of this study was to systematically evaluate the biomechanical benefits of the augmentation options in a humeral locking plate using finite element analysis (FEA).

Methods

A total of 64 cement augmentation configurations were analyzed using six screws of a locking plate to virtually fix unstable three-part fractures in 24 low-density proximal humerus models under three physiological loading cases (4,608 simulations). The biomechanical benefit of augmentation was evaluated through an established FEA methodology using the average peri-screw bone strain as a validated predictor of cyclic cut-out failure.


The Bone & Joint Journal
Vol. 102-B, Issue 4 | Pages 539 - 544
1 Apr 2020
Cirino CM Chan JJ Patterson DC Jia R Poeran J Parsons BO Cagle PJ

Aims

Heterotopic ossification (HO) is a potentially devastating complication of the surgical treatment of a proximal humeral fracture. The literature on the rate and risk factors for the development of HO under these circumstances is lacking. The aim of this study was to determine the incidence and risk factors for the development of HO in these patients.

Methods

A retrospective analysis of 170 patients who underwent operative treatment for a proximal humeral fracture between 2005 and 2016, in a single institution, was undertaken. The mean follow-up was 18.2 months (1.5 to 140). The presence of HO was identified on follow-up radiographs.


The Bone & Joint Journal
Vol. 101-B, Issue 12 | Pages 1550 - 1556
1 Dec 2019
Mc Colgan R Dalton DM Cassar-Gheiti AJ Fox CM O’Sullivan ME

Aims

The aim of this study was to examine trends in the management of fractures of the distal radius in Ireland over a ten-year period, and to determine if there were any changes in response to the English Distal Radius Acute Fracture Fixation Trial (DRAFFT).

Patients and Methods

Data was grouped into annual intervals from 2008 to 2017. All adult inpatient episodes that involved emergency surgery for fractures of the distal radius were included


Bone & Joint 360
Vol. 7, Issue 3 | Pages 27 - 29
1 Jun 2018


The Bone & Joint Journal
Vol. 100-B, Issue 5 | Pages 624 - 633
1 May 2018
Maredza M Petrou S Dritsaki M Achten J Griffin J Lamb SE Parsons NR Costa ML

Aim

The aim of this study was to compare the cost-effectiveness of intramedullary nail fixation and ‘locking’ plate fixation in the treatment of extra-articular fractures of the distal tibia.

Patients and Methods

An economic evaluation was conducted from the perspective of the United Kingdom National Health Service (NHS) and personal social services (PSS), based on evidence from the Fixation of Distal Tibia Fractures (UK FixDT) multicentre parallel trial. Data from 321 patients were available for analysis. Costs were collected prospectively over the 12-month follow-up period using trial case report forms and participant-completed questionnaires. Cost-effectiveness was reported in terms of incremental cost per quality adjusted life year (QALY) gained, and net monetary benefit. Sensitivity analyses were conducted to test the robustness of cost-effectiveness estimates.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_4 | Pages 93 - 93
1 Apr 2018
Todorov D Gueorguiev B Zderic I Stoffel K Richards G Lenz M Enchev D Baltov A
Full Access

Introduction

The incidence of distal femoral fractures in the geriatric population is growing and represents the second most common insufficiency fracture of the femur following fractures around the hip joint. Fixation of fractures in patients with poor bone stock and early mobilisation in feeble and polymorbide patients is challenging. Development of a fixation approach for augmentation of conventional LISS (less invasive stabilization system) plating may result in superior long-term clinical outcomes and enhance safe weight bearing.

Objectives

The aim of this study was to investigate the biomechanical competence of two different techniques of augmented LISS plating for treatment of osteoporotic fractures of the distal femur in comparison to conventional LISS plating.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_30 | Pages 37 - 37
1 Aug 2013
Welsh F Barnes S
Full Access

Displaced proximal Humeral fractures at Inverclyde Royal Hospital prior to 2008 were previously treated with the antegrade Acumed Polaris Proximal Humeral, predominantly in 2 part fractures. The Philos plate was introduced in 2008, initially being used to treat select non unions, and then expanded to acute fractures. The aim of this study was to assess time to union and complications in the lower volume District General setting comparing to published outcomes.

From February 2008 – January 2011, 20 patients were identified. Age range 49–75 (mean 61.2) years, 8 male; 12 female. Left 9, Right 11 Neers 2 part 35%; 3 35%; 4 30%. 16 (80%) were performed in acute fractures with 4 for non-unions, 3 of which were previous polaris nail fixations. 2 patients were lost to follow up after 6/52 but were progressing well. Union was confirmed radiologically and clinically in all but 2 remaining patients (10%), one of whom suffered a significant complication of plate fracture, the second treated with revision for painful non union. 2 other significant complications were observed: transient axillary nerve palsy and deep infection. Both of these patients recovered with delayed union observed in the infection case (52 weeks). Time to union range was 8–52 weeks (mean 17.1).

The literature shows a high failure rate of up to 45% with intramedullary nail fixation and limited predominantly to 2 part fractures with risk of damage to the rotator cuff. This study shows a satisfactory union rate using the Philos of 90% with only 3 (15%) requiring further surgery for non-union, plate fracture and infection. 3 and 4 part fractures composed 65% of case load. Early results indicate satisfactory outcomes compared to current published literature.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_29 | Pages 9 - 9
1 Aug 2013
Koller I Maqungo S
Full Access

Purpose of study:

Up to 30% of distal femur fractures treated with a locked plate have problems with union. Distal femur locked plates have become a very popular means of internal fixation because of their ability to provide stable distal peri-articular fixation. In spite of this enthusiasm however several studies have reported significant problems with healing. In the distal femur it is recognized that locked plate fixation may be too rigid if used in certain configurations preventing the essential micro movement required for biological healing. Implant failure may arise from rigid configurations that cause excessive hardware stress concentrations. In an attempt to address these problems longer plates and an increased working length have been proposed to reduce construct rigidity. The purpose of our study is to investigate whether an increased working length translates into improved healing.

Description of method:

We undertook a retrospective review of 92 consecutive cases performed at our institution from 2007–2010. Case notes and X-rays were reviewed. Working length, plate to fracture zone ratios and working length to fracture zone ratios were calculated. Union was assessed radiographically and clinically. Covariates of smoking, age, sex and fracture severity were included. Outcomes considered were union or established non-union. Delayed union was defined as union after 20 weeks.


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_23 | Pages 9 - 9
1 May 2013
Haque AU Berber R Shoaib A Amin M Abraham A
Full Access

Statement of Purpose

To compare the functional outcome of Distal Tibial Metaphyseal fracture treated with Circular frame compared vs. Locking Plate

Methods and Results

Distal Tibial Metaphyseal fractures were retrospectively identified over an 18 month period. Each fracture was assessed individually using radiographs. All paediatric, compound, tibial plateau and intra-articular fractures were excluded from the study. Other methods of fixation including intramedullary nailing were also excluded. The remaining fractures were assigned to either the circular frame fixation or the locking plate intervention group. Outcomes were assessed using radiographs for union dates and microbiology results for evidence of infection. Patients were followed up by postal questionnaires, which included a modified American Orthopaedic Foot and Ankle Score (AOFAS), the Olerud and Molander Score (O&M) and a custom questionnaire. The custom questionnaire asked about co-morbidities, smoking status and work days lost following surgery. After exclusions, 30 patients (Frame=15, Plate=15), were sent out questionnaires via post. We received completed questionnaires from 21 patients (Frame=11, Plate=10) giving us a response rate of 70%. Results show no difference in infection rates, skin necrosis, non-union or re-operation rates. There was also no significant difference in patient AOFAS and O&M scores at follow up.