Advertisement for orthosearch.org.uk
Results 1 - 20 of over 10000
Results per page:
Bone & Joint Open
Vol. 5, Issue 11 | Pages 1037 - 1040
15 Nov 2024
Wu DY Lam EKF

Aims

The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its assessment relies mostly on 3D standing CT scans. Two radiological signs, the first metatarsal round head (RH) and inferior tuberosity position (ITP), have been described, but are seldom used to aid in diagnosis. This study was undertaken to determine the reliability and validity of these two signs for a more convenient and affordable preoperative assessment and postoperative comparison.

Methods

A total of 200 feet were randomly selected from the radiograph archives of a foot and ankle clinic. An anteroposterior view of both feet was taken while standing on the same x-ray platform. The intermetatarsal angle (IMA), metatarsophalangeal angle (MPA), medial sesamoid position, RH, and ITP signs were assessed for statistical analysis.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 25 - 25
14 Nov 2024
Taylan O Louwagie T Bialy M Peersman G Scheys L
Full Access

Introduction. This study aimed to evaluate the effectiveness of a novel intraoperative navigation platform for total knee arthroplasty (TKA) in restoring native knee joint kinematics and strains in the medial collateral ligament (MCL) and lateral collateral ligament (LCL) during squatting motions. Method. Six cadaver lower limbs underwent computed tomography scans to design patient-specific guides. Using these scans, bony landmarks and virtual single-line collateral ligaments were identified to provide intraoperative real-time feedback, aided in bone resection, implant alignment, tibiofemoral kinematics, and collateral ligament elongations, using the navigation platform. The specimens were subjected to squatting (35°-100°) motions on a physiological ex vivo knee simulator, maintaining a constant 110N vertical ankle load regulated by active quadriceps and bilateral hamstring actuators. Subsequently, each knee underwent a medially-stabilized TKA using the mechanical alignment technique, followed by a retest under the same conditions used preoperatively. Using a dedicated wand, MCL and LCL insertions—anterior, middle, and posterior bundles—were identified in relation to bone-pin markers. The knee kinematics and collateral ligament strains were analyzed from 3D marker trajectories captured by a six-camera optical system. Result. Both native and TKA conditions demonstrated similar patterns in tibial valgus orientation (Root Mean Square Error (RMSE=1.7°), patellar flexion (RMSE=1.2°), abduction (RMSE=0.5°), and rotation (RMSE=0.4°) during squatting (p>0.13). However, a significant difference was found in tibial internal rotation between 35° and 61° (p<0.045, RMSE=3.3°). MCL strains in anterior (RMSE=1.5%), middle (RMSE=0.8%), and posterior (RMSE=0.8%) bundles closely matched in both conditions, showing no statistical differences (p>0.05). Conversely, LCL strain across all bundles (RMSE<4.6%) exhibited significant differences from mid to deep flexion (p<0.048). Conclusion. The novel intraoperative navigation platform not only aims to achieve planned knee alignment but also assists in restoring native knee kinematics and collateral ligament behavior through real-time feedback. Acknowledgment. This study was funded by Medacta International (Castel San Pietro, Switzerland)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 54 - 54
14 Nov 2024
Pann P Taheri S Schilling AF Graessel S
Full Access

Introduction. Osteoarthritis (OA) causes pain, stiffness, and loss of function due to degenerative changes in joint cartilage and bone. In some forms of OA, exercise can alleviate symptoms by improving joint mobility and stability. However, excessive training after joint injury may have negative consequences for OA development. Sensory nerve fibers in joints release neuropeptides like alpha-calcitonin gene-related peptide (alpha-CGRP), potentially affecting OA progression. This study investigates the role of alpha-CGRP in OA pathogenesis under different exercise regimen in mice. Method. OA was induced in C57Bl/6J WT mice and alpha-CGRP KO mice via surgical destabilization of the medial meniscus (DMM) at 12 weeks of age (N=6). Treadmill exercise began 2 weeks post-surgery and was performed for 30 minutes, 5 days a week, for 2 or 6 weeks at intense (16 m/min, 15° incline) or moderate (10 m/min, 5° incline) levels. Histomorphometric assessment of cartilage degradation (OARSI scoring), serum cytokine analysis, immunohistochemistry, and nanoCT analysis were conducted. Result. OARSI scoring confirmed OA induction 4 weeks post-DMM surgery, with forced exercise exacerbating cartilage degradation regardless of intensity. No significant genotype-dependent differences were observed. Serum analysis revealed elevated cytokine levels associated with OA and inflammation in KO mice compared to WT mice 4 and 8 weeks post-surgery (VEGF-A, MCP-1, CXCL10, RANTES, MIP1-alpha, MIP1-beta, and RANKL). The observed effects were often exacerbated by intense exercise but rarely by DMM surgery. NanoCT analysis demonstrated increased sclerotic bone changes after 6 weeks of forced exercise in KO mice compared to WT mice. Conclusion. Our results suggest an OA promoting effect of exercise in early disease stages of posttraumatic OA. Intense exercise induced inflammatory processes correlated to increased cytokine levels in the serum that might exacerbate OA pathogenesis in later stages. The neuropeptide alpha-CGRP might play a role in protecting against these adverse effects


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 103 - 103
14 Nov 2024
Dhaliwal J Harris S Logishetty K Brkljač M Cobb J
Full Access

Introduction. The current methods for measuring femoral torsion have limitations, including variability and inaccuracies. Existing 3D methods are not reliable for abnormal femoral anteversion measurement. A new 3D method is needed for accurate measurement and planning of proximal femoral osteotomies. Currently available software for viewing and modelling CT data lacks measurement capabilities. The MSK Hip planner aims to address these limitations by combining measurement, planning, and analysis functionalities into one tool. We aim to answer 5 key questions: Is there a difference between 2D measurement methods? Is there a difference between 3D measurement methods? Is there a difference between 2D and 3D measurement methods? Are any of the measurement methods affected by the presence of osteoarthritis or a CAM deformity?. Method. After segmentation was carried out on 42 femoral CT scans using Osirix, 3D bone models were landmarked in the MSK lab hip planning software. Murphy's, Reikeras’, McBryde, and the novel MSK lab method were used to measure femoral anteversion. Result. Murphy's method had the lowest mean femoral neck anteversion (FNA) at 24.98°, while the MSK method had the highest at 28.55°. Bland-Altman plots showed systematic errors between 2D (1.201°) and 3D (1.074°) methods. All methods demonstrated good intra- and inter-user reliability. Significant differences were found between measurement methods and between patient groups. Conclusion. The MSK Hip Planner software proved useful and convenient to measure FNA. Statistically significant differences in FNA were observed between the measurement methods, as well as between patient groups when split by presence of osteoarthritis and cam deformity. Complex joint pathology and altered femoral morphology should be considered by clinicians when deciding which method to use when measuring FNA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 72 - 72
14 Nov 2024
Uvebrant K Andersen C Lim HC Vonk L Åkerlund EL
Full Access

Introduction. Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits. Method. The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic iron oxide nanoparticles conjugated with Rhodamine B-labeled human integrin a10-MSCs in rabbits with experimental osteochondral defects. MSC distribution in the joint was followed by MRI and fluorescence microscopy. Result. The production of the immunomodulatory factors indoleamine 2,3-dioxygenase and prostaglandin E2 was increased after inflammatory licensing integrin a10-MSCs. Co-cultures with integrin a10-MSCs suppressed T-cell proliferation and increased the frequency of M2 macrophages. In vivo injected integrin a10-MSCs homed to osteochondral defects and were detected in the repair tissue of the defects up to 10 days after injection, colocalized with aggrecan and type II collagen. Conclusion. This study showed that human integrin a10-MSCs have immunomodulatory capacities and in vivo can home to the site of osteochondral damage and directly participate in cartilage regeneration. This suggests that human integrin α10β1-selected MSCs may be a promising therapy for osteoarthritis with dual mechanisms of action consisting of immunomodulation and homing to damage followed by early engraftment and differentiation into chondrocyte-like cells that deposit hyaline cartilage matrix molecules


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 75 - 75
14 Nov 2024
Khalid T Shlomo YB Bertram W Culliford L enderson E Jepson M Johnson E Palmer S Whitehouse M Wylde V
Full Access

Introduction

Approximately 20-25% of patients having joint replacement in the UK have moderate-severe frailty. Frailty is associated with poorer outcomes after joint replacement. Targeting frailty pre-operatively with exercise and protein supplementation could improve post-operative outcomes. Prior to conducting a randomised controlled trial (RCT), a feasibility study was necessary to inform trial design and delivery.

Method

We conducted a randomised feasibility study with embedded qualitative work. Patients aged ≥65 years, frail and undergoing THR or TKR were recruited from three UK hospitals. Participants were randomly allocated on a 1:1 ratio to the intervention or usual care group. The intervention group had a 1:1 appointment with a physiotherapist and were provided with a home-based, tailored daily exercise programme and a daily protein supplement for 12 weeks before their operation, supported by six telephone calls from a physiotherapist. Questionnaires were administered at baseline and 12 weeks after randomisation. Interviews were conducted with 19 patients. Feasibility outcomes were eligibility and recruitment rates, intervention adherence, and acceptability of the trial and the intervention.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 7 - 7
14 Nov 2024
Cullen D Thompson P Johnson D Lindner C
Full Access

Introduction. Accurate assessment of alignment in pre-operative and post-operative knee radiographs is important for planning and evaluating knee replacement surgery. Existing methods predominantly rely on manual measurements using long-leg radiographs, which are time-consuming to perform and are prone to reliability errors. In this study, we propose a machine-learning-based approach to automatically measure anatomical varus/valgus alignment in pre-operative and post-operative standard AP knee radiographs. Method. We collected a training dataset of 816 pre-operative and 457 one-year post-operative AP knee radiographs of patients who underwent knee replacement surgery. Further, we have collected a separate distinct test dataset with both pre-operative and one-year post-operative radiographs for 376 patients. We manually outlined the distal femur and the proximal tibia/fibula with points to capture the knee joint (including implants in the post-operative images). This included point positions used to permit calculation of the anatomical tibiofemoral angle. We defined varus/valgus as negative/positive deviations from zero. Ground truth measurements were obtained from the manually placed points. We used the training dataset to develop a machine-learning-based automatic system to locate the point positions and derive the automatic measurements. Agreement between the automatic and manual measurements for the test dataset was assessed by intra-class correlation coefficient (ICC), mean absolute difference (MAD) and Bland-Altman analysis. Result. Analysing the agreement between the manual and automated measurements, ICC values were excellent pre-/post-operatively (0.96, CI: 0.94-0.96) / (0.95, CI: 0.95-0.96). Pre-/post-operative MAD values were 1.3°±1.4°SD / 0.7°±0.6°SD. The Bland-Altman analysis showed a pre-/post-operative mean difference (bias) of 0.3°±1.9°SD/-0.02°±0.9°SD, with pre-/post-operative 95% limits of agreement of ±3.7°/±1.8°, respectively. Conclusion. The developed machine-learning-based system demonstrates high accuracy and reliability in automatically measuring anatomical varus/valgus alignment in pre-operative and post-operative knee radiographs. It provides a promising approach for automating the measurement of anatomical alignment without the need for long-leg radiographs. Acknowledgements. This research was funded by the Wellcome Trust [223267/Z/21/Z]


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 33 - 33
14 Nov 2024
Fallahy M Shaker F Ghanbari F Aslani MA Mohammadi S Behrouzieh S
Full Access

Introduction. Knee Osteoarthritis (KOA) is a prevalent joint disease requiring accurate diagnosis and prompt management. The condition occurs due to cartilage deterioration and bone remodeling. Ultrasonography has emerged as a promising modality for diagnosing KOA. Medial meniscus extrusion (MME), characterized by displacement of medial meniscus beyond the joint line has been recognized as a significant marker of KOA progression. This study aimed to explore potentials Ultrasound findings in timely detection of MME and compare it to magnetic resonance imaging (MRI) as a reference standard. Method. A comprehensive literature search was performed in 4 databases from inception to May 1 2024. Two independent reviewers, initiated screening protocols and selected the articles based on inclusion and exclusion criteria and then extracted the data. Meta-analysis was conducted using R 4.3.2 packages mada and metafor. Result. A total of 2500 articles from 4 databases was retrieved; however, following the application of inclusion and exclusion criteria 23 articles were finally extracted. These studies collectively encompassed a total of 777 patients with mean age of 53.2±7.4. The mean BMI calculated for patients was 28.31 ± 2.45. All patients underwent non-weight bearing knee ultrasonography in supine position with 0° flexion. The reported medial meniscus extrusion was 2.58 mm for articles using MRI and 2.65 mm for those using Ultrasound (MD: 0.05 ± 0.12, P= 0.65, I. 2. : 54%). Our meta-analysis revealed insignificant difference between US and MRI. (SMD: 0.03, 95% CI: -0.18 _0.23, P= 0.77, I. 2. : 56%) Meta analysis for diagnostic accuracy measures yielded a pooled sensitivity and specificity of 90.8% and 77% (95% CI: 84.2% – 94.8%, 35.5% – 95.3%, respectively, I. 2. : 44%). Conclusion. Our results indicate a close alignment in the accuracy of measurements obtained using Ultrasound modality. The narrow range suggests a minimal discrepancy in MME values between MRI and ultrasound, highlighting their comparable precision in diagnostic assessments


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 45 - 45
14 Nov 2024
Kjeldsen T Thorgaard Skou S Dalgas U Tønning L Birch S Frydendal T Varnum C Garval M G Ingwersen K Mechlenburg I
Full Access

Introduction. Exercise is recommended as first-line treatment for patients with hip osteoarthritis (OA). Interestingly, content and dose of exercise interventions seem to be important for the effect of exercise interventions, but the optimal content and dose is unknown. This warrants randomized controlled trials providing evidence for the optimal exercise program in Hip OA. The aim of this trial was to investigate whether progressive resistance training (PRT) is superior to neuromuscular exercise (NEMEX) for improving functional performance, hip pain and hip-related quality of life in patients with hip OA. Method. This was a multicenter, cluster-randomized, controlled, parallel-group, assessor-blinded, superiority trial. 160 participants with clinically diagnosed hip OA were recruited from hospitals and physiotherapy clinics and randomly assigned to twelve weeks of PRT or NEMEX. The PRT intervention consisted of 5 high-intensity resistance training exercises targeting muscles at the hip and knee joints. The NEMEX intervention included 10 exercises and emphasized sensorimotor control and functional stability. The primary outcome was change in the 30-second chair stand test (30s-CST). Key secondary outcomes were changes in scores on the pain and hip-related quality of life (QoL) subscales of the Hip Disability and Osteoarthritis Outcome Score (HOOS). Result. The mean changes from baseline to 12-week follow-up in the 30s-CST were 1.5 (95% CI, 0.9 to 2.1) chair stands with PRT and 1.5 (CI, 0.9 to 2.1) chair stands with NEMEX (difference, 0.0 [CI, 0.8 to 0.8] chair stands). For the HOOS pain subscale, mean changes were 8.6 (CI, 5.3 to 11.8) points with PRT and 9.3 (CI, 5.9 to 12.6) points with NEMEX. For the HOOS QoL subscale, mean changes were 8.0 (CI, 4.3 to 11.7) points with PRT and 5.7 (CI, 1.9 to 9.5) points with NEMEX. Conclusion. In patients with hip OA, PRT is not superior to NEMEX for improving functional performance, hip pain, or hip-related QoL


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 69 - 69
14 Nov 2024
Sawant S Borotikar B Raghu V Audenaert E Khanduja V
Full Access

Introduction. Three-dimensional (3D) morphological understanding of the hip joint, specifically the joint space and surrounding anatomy, including the proximal femur and the pelvis bone, is crucial for a range of orthopedic diagnoses and surgical planning. While deep learning algorithms can provide higher accuracy for segmenting bony structures, delineating hip joint space formed by cartilage layers is often left for subjective manual evaluation. This study compared the performance of two state-of-the-art 3D deep learning architectures (3D UNET and 3D UNETR) for automated segmentation of proximal femur bone, pelvis bone, and hip joint space with single and multi-class label segmentation strategies. Method. A dataset of 56 3D CT images covering the hip joint was used for the study. Two bones and hip joint space were manually segmented for training and evaluation. Deep learning models were trained and evaluated for a single-class approach for each label (proximal femur, pelvis, and the joint space) separately, and for a multi-class approach to segment all three labels simultaneously. A consistent training configuration of hyperparameters was used across all models by implementing the AdamW optimizer and Dice Loss as the primary loss function. Dice score, Root Mean Squared Error, and Mean Absolute Error were utilized as evaluation metrics. Results. Both the models performed at excellent levels for single-label segmentations in bones (dice > 0.95), but single-label joint space performance remained considerably lower (dice < 0.87). Multi-class segmentations remained at lower performance (dice < 0.88) for both models. Combining bone and joint space labels may have introduced a class imbalance problem in multi-class models, leading to lower performance. Conclusion. It is not clear if 3D UNETR provides better performance as the selection of hyperparameters was the same across the models and was not optimized. Further evaluations will be needed with baseline UNET and nnUNET modeling architectures


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 64 - 64
14 Nov 2024
Hudson P Federer S Dunne M Pring C Smith N
Full Access

Introduction. Weight is a modifiable risk factor for osteoarthritis (OA) progression. Despite the emphasis on weight loss, data quantifying the changes seen in joint biomechanics are limited. Bariatric surgery patients experience rapid weight loss. This provides a suitable population to study changes in joint forces and function as weight changes. Method. 10 female patients undergoing gastric bypass or sleeve gastrectomy completed 3D walking gait analysis at a self-selected pace, pre- and 6 months post-surgery. Lower limb and torso kinematic data for 10 walking trials were collected using a Vicon motion capture system and kinetics using a Kistler force plate. An inverse kinematic model in Visual 3D allowed for no translation of the hip joint centre. 6 degrees of freedom were allowed at other joints. Data were analysed using JASP with a paired samples t-test. Result. On average participants lost 28.8±7.60kg. No significant changes were observed in standing knee and hip joint angles. Walking velocity increased from 1.10±0.11 ms. -1. to 1.23±0.17 ms. -1. (t(9)=-3.060, p = 0.014) with no change in step time but a mean increase in stride length of 0.12m (SE: 0.026m; t(9)=-4.476, p = 0.002). A significant decrease of 21.5±4.2% in peak vertical ground reaction forces was observed (t(9)=12.863, p <0.001). Stride width significantly decreased by 0.04m (SE: 0.010m; t(9)=4.316, p = 0.002) along with a decrease in lateral impulse of 21.2Ns (SE: 6.977Ns; t(7), p = 0.019), but no significant difference in knee joint angles were observed. Double limb support time also significantly reduced by 0.02s (SE: 0.006s; t(9) = 3.639, p=0.005). Conclusion. The reduction in stance width and lateral impulse suggests a more sagittal compass-gait walk is being achieved. This would reduce valgus moments on the knee reducing loading in the medial compartment. The reduction in peak ground reaction force would reduce knee contact forces and again potentially slow OA progression


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 104 - 104
14 Nov 2024
Amirouche F Kim S Mzeihem M Nyaaba W Mungalpara N Mejia A Gonzalez M
Full Access

Introduction. The human wrist is a highly complex joint, offering extensive motion across various planes. This study investigates scapholunate ligament (SLL) injuries’ impact on wrist stability and arthritis risks using cadaveric experiments and the finite element (FE) method. It aims to validate experimental findings with FE analysis results. Method. The study utilized eight wrist specimens on a custom rig to investigate Scapho-Lunate dissociation. Contact pressure and flexion were measured using sensors. A CT-based 3D geometry reconstruction approach was used to create the geometries needed for the FE analysis. The study used the Friedman test with pairwise comparisons to assess if differences between testing conditions were statistically significant. Result. The study found significant variations in scaphoid and lunate bone movement based on ligament condition. Full tears increased scapholunate distance in the distal-proximal direction and decreased in the medial-lateral direction. Lunate angles shifted from flexion to extension with fully torn ligaments. Conversely, the scaphoid shifted significantly from extension to flexion with full tears. A proximal movement was observed in the distal-proximal direction in all groups, with significant differences in the partial tear group. Lateral deviation of the scaphoid and lunate occurred with ligament damage, being more pronounced in the partial tear group. All groups exhibited statistically significant movement in the volar direction, with the full tear group showing the least movement. Also, radiocarpal joint and finger contact pressure and contact area were studied. Whereas the differences in contact area were not significant, scapholunate ligament tears resulted in significantly decreased finger contact pressures. FEA confirmed these findings, showing notable peak radiocarpal contact pressure differences between intact and fully torn ligaments. Conclusion. Our study found that SLL damage alters wrist stability, potentially leading to early arthritis. The FEA model confirmed these findings, indicating the potential for the clinical use of computer models from CT scans for treatment planning


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 76 - 76
14 Nov 2024
Yasuda T Ota S Mitsuzawa S Yamashita S Tsukamoto Y Takeuchi H Onishi E
Full Access

Introduction. A recent study to identify clinically meaningful benchmarks for gait improvement after total hip replacement (THA) has shown that the minimum clinically important improvement (MCII) in gait speed after THA is 0.32 m/sec. Currently, it remains to be investigated what preoperative factors link to suboptimal recovery of gait function after THA. This study aimed to identify preoperative lower-limb muscle predictors for gait speed improvement after THA for hip osteoarthritis. Method. This study enrolled 58 patients who underwent unilateral primary THA. Gait speed improvement was evaluated as the subtraction of preoperative speed from postoperative speed at 6 months after THA. Preoperative muscle composition of the glutei medius and minimus (Gmed+min) and the gluteus maximus (Gmax) was evaluated on a single axial computed tomography slice at the bottom end of the sacroiliac joint. Cross-sectional area ratio of individual composition to the total muscle was calculated. Result. The females (n=45) showed smaller total cross-sectional areas of the gluteal muscles than the males (n=13). Gmax in the females showed lower lean muscle mass area (LMM) and higher ratios of the intramuscular fat area and the intramuscular adipose tissue area to the total muscle area (TM) than that in the males. Regression analysis revealed that LMM/TM of Gmed+min may correlate negatively with postoperative improvement in gait speed. Receiver operating characteristic curve analysis for prediction of MCII in gait speed at ≥ 0.32 m/sec resulted in the highest area under the curve for Gmax TM with negative correlation. The explanatory variables of hip abductor muscle composition predicted gait speed improvement after THA more precisely in the females compared with the total group of both sexes. Conclusion. Preoperative Gmax TM could predict gait speed MCII after THA. Preoperative muscle composition should be evaluated separately based on sexes for achievement of clinically important improvement in gait speed after THA


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 40 - 40
14 Nov 2024
Siverino C Sun Q Yang D Solomon B Moriarty F Atkins G
Full Access

Introduction. Bone and joint infection (BJI) is often characterized by severe inflammation and progressive bone destruction. Osteocytes are the most numerous and long-lived bone cell type, and therefore represent a potentially important long-term reservoir of bacterial infection. Staphylococcus aureus is known to establish stable intracellular osteocytic infections, however, little is known about the less virulent yet second most prevalent BJI pathogen, S. epidermidis, associated with late-diagnosed, chronic BJI. Thus, this study sought to establish an in vitro model to study the infection characteristics of S. epidermidis in human osteocyte-like cells. Methods. SaOS2 cells (1 ×10. 4. cells/cm. 2. ) were grown to confluence either without differentiation, representing an osteoblast-like (OB) state (SaOS2-OB) or differentiated to an osteocyte-like stage (SaOS2-OY), using established methods. Four S. epidermidis strains used (ATCC-12228, ATCC-14990, ATCC-35984 and a clinical osteomyelitis strain RAH-SE1) were tested to be Lysostaphin-resistant, necessitating antibiotic (Levofloxacin) control of extracellular bacteria. Infection of host cells (OB or OY) was tested at three multiplicities of infection (MOI: 10, 100 and 1000). Extracellular bacteria were controlled by overnight incubation at a 10X minimum inhibitory concentration (MIC) of Levofloxacin and thereafter at 1XMIC. At each time point (days 1, 3, 5) viable intra- and extracellular bacteria were quantified. Result. All strains displayed similar intracellular infection and persistence capabilities in SaOS2-OB and SaOS2-OY. Independent of MOI, intracellular bacteria in SaOS2-OB decreased over time, becoming non-culturable by day 5. In contrast, SaOs2-OY displayed enhanced intracellular bacterial persistence at each time point. In the presence of increased Levofloxacin concentration (10XMIC), S. epidermidis could persist intracellularly for at least 14 days. Conclusion. This study showed for the first time that S. epidermidis can infect human osteocytes and persist intracellularly. Additionally, even a 10xMIC antibiotic concentration failed to eradicate intracellular bacteria, suggesting that persistence within osteocytes could contribute to treatment failure and establishment of chronic BJI


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 94 - 94
14 Nov 2024
Koh J Mungalpara N Chang N Devi IMP Hutchinson M Amirouche F
Full Access

Introduction. Understanding knee joint biomechanics is crucial, but studying Anterior cruciate ligament (ACL) biomechanics in human adolescents is challenging due to limited availability cadaveric specimens. This study aims to validate the adolescent porcine stifle joint as a model for ACL studies by examining the ACL's behavior under axial and torsion loads and assessing its deformation rate, stiffness, and load-to-failure. Methods. Human knee load during high-intensity sports can reach 5-6 times body weight. Based on these benchmarks, the study applied a force equivalent to 5-times body weight of juvenile porcine samples (90 pounds), estimating a force of 520N. Experiments involved 30 fresh porcine stifle joints (Yorkshire breed, Avg 90 lbs, 2-4 months old) stored at -22°C, then thawed and prepared. Joints were divided into three groups: control (load-to-failure test), axially loaded, and 30-degree torsion loaded. Using a servo-hydraulic material testing machine, the tibia's longitudinal axis was aligned with the load sensor, and specimens underwent unidirectional tensile loading at 1 mm/sec until rupture. Data on load and displacement were captured at 100 Hz. Results. One-way ANOVA showed statistically significant differences in maximum failure force among loading conditions (p = 0.0039). Post hoc analysis indicated significant differences between the control and 500N (non-twisted) groups (p = 0.014) and between the control and 500N (twisted) groups (p = 0.003). However, no significant difference was found between 500N (non-twisted) and 500N (twisted) groups (p = 0.2645). Two samples broke from the distal femur growth plates, indicating potential growth plate vulnerability in adolescent porcines. Conclusions. The study validates the adolescent porcine stifle joint as a suitable model for ACL biomechanical research, demonstrating that torsional loads are as damaging to the ACL's integrity as equivalent axial loads. It also highlights the potential vulnerability of growth plates in younger populations, reflected in the porcine model


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 29 - 29
14 Nov 2024
Dhillon M Klos K Lenz M Zderic I Gueorguiev B
Full Access

Introduction. Tibiocalcaneal arthrodesis with a retrograde intramedullary nail is an established procedure considered as a salvage in case of severe arthritis and deformity of the ankle and subtalar joints [1]. Recently, a significant development in hindfoot arthrodesis with plates has been indicated. Therefore, the aim of this study was to compare a plate specifically developed for arthrodesis of the hindfoot with an already established nail system [2]. Method. Sixteen paired human cadaveric lower legs with removed forefoot and cut at mid-tibia were assigned to two groups for tibiocalcaneal arthrodesis using either a hindfoot arthrodesis nail or an arthrodesis plate. The specimens were tested under progressively increasing cyclic loading in dorsiflexion and plantar flexion to failure, with monitoring via motion tracking. Initial stiffness was calculated together with range of motion in dorsiflexion and plantar flexion after 200, 400, 600, 800, and 1000 cycles. Cycles to failure were evaluated based on 5° dorsiflexion failure criterion. Result. Initial stiffness in dorsiflexion, plantar flexion, varus, valgus, internal rotation and external rotation did not differ significantly between the two arthrodesis techniques (p ≥ 0.118). Range of motion in dorsiflexion and plantar flexion increased significantly between 200 and 1000 cycles (p < 0.001) and remained not significantly different between the groups (p ≥ 0.120). Cycles to failure did not differ significantly between the two techniques (p = 0.764). Conclusion. From biomechanical point of view, both tested techniques for tibiocalcaneal arthrodesis appear to be applicable. However, clinical trials and other factors, such as extent of the deformity, choice of the approach and preference of the surgeon play the main role for implant choice. Acknowledgements. This study was performed with the assistance of the AO Foundation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 42 - 42
14 Nov 2024
Kato K Hayashi S
Full Access

Purpose. To compare postoperative clinical outcomes between posterior cruciate ligament (PCL) retaining and resecting total knee arthroplasty (TKA) using same cruciate-substituting (CS) inserts, and to elucidate the clinical relevance of the residual PCL in cruciate-retaining TKA, considering intraoperative influence factors, such as the posterior tibial slope, posterior condylar offset, joint gap, joint balance, and joint laxity. Methods. A total of 64 consecutive knees (44 patients) were enrolled in this study and divided into following two groups: 39 knees underwent PCL-retaining TKA group (CR group), and 25 underwent PCL-resecting TKA group (CS group). Preoperative patients’ demographic data and one-year postoperative clinical outcomes including range of motion, the Knee Injury and Osteoarthritis Outcome Score (KOOS), the Japanese Orthopaedic Association (JOA) score, and Forgotten Joint Score-12 (FJS-12) were compared between two groups. Results. Regarding range of motion, the average preoperative ROM was -14.3/120.0 degrees in the CR group and improved to -2.4/118.9 degrees postoperatively. In the CS group, the average preoperative ROM was -7.5/130 degrees and changed to -2.2/122.4 degrees postoperatively. There was no significant difference in the postoperative ROM between the groups (P=0.16). The KOOS (from 47.1 to 69.5 in CR group; from 41.1 to 70.8 in CS group) and JOA scores (from 59.2 to 76.9 in CR group; from 55.6 to 80.8 in CS group) were significantly improved postoperatively in both groups (P < 0.01). However, there was no significance in these postoperative scores between two groups (P = 0.09). There was also no significance in FJS-12 between two groups (70.3 in CR group and 66.9 in CS group; P=0.53). Conclusions. Residual PCL in TKA with a CS insert would not impact one-year postoperative clinical outcomes including KOOS, JOA, and FJS-12


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 31 - 31
14 Nov 2024
Bal Z Takakura N
Full Access

Introduction. Femoral head osteonecrosis (FHO) is a condition in which the inadequate blood supply disrupts osteogenic-angiogenic coupling that results in diminishment of femoral perfusion and ends up with FHO. The insufficient knowledge on molecular background and progression pattern of FHO and the restrictions in obtaining human samples bring out the need for a small animal trauma model to research FHO aetiology. Hence, this study aims to develop a mouse trauma model to elucidate the molecular mechanisms behind FHO. Method. Left femoral head was dislocated from the hip joint, ligamentum teres was cut, and a slight circular incision was done around the femoral neck of 8-week-old male C57BL/6J mice to disrupt the blood supply to femoral head. Right hip joint was left unoperated as control. Animals (n=5 per time point) were sacrificed on 2-3-4-6-8-10-12 weeks, and ex-vivo µCT was taken to assess bone structural parameters. Haematoxylin/eosin (HE)- and immunohistochemical-staining (IHCS) for CD31 and EMCN were done to observe histology and marrow-specific H-type vascular structures, respectively. Result. μCT assessment showed trabecular bone loss and decreased BV/TV from 2 to 8 weeks in FHO side. HE staining displayed the increased number of empty lacunae was observed in FHO side as early as 24h after operation. By 4. th. week, IHCS results displayed the invasion of the epiphyseal plate by H-type blood vessels in FHO side, while the epiphyseal plate was observed intact in control side. Also, by 6. th. week the HE-staining showed the presence of bone marrow necrosis and bone fat accumulation in FHO side. Conclusion. Trabecular bone loss, increased number of empty lacunae, bone fat imbalance and bone marrow necrosis are reported as the signs of osteonecrosis. Thus, our results are coherent with the literature and indicated that we were able to effectively generate a trauma model for FHO in mice for the first time in literature


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 47 - 47
14 Nov 2024
Daneshvarhashjin N Debeer P Andersen MS Verhaegen F Scheys L
Full Access

Introduction. Assessment of the humeral head translation with respect to the glenoid joint, termed humeral head migration (HHM), is crucial in total shoulder arthroplasty pre-operative planning. Its assessment informs current classification systems for shoulder osteoarthritis as well as the evaluation of surgical correction. In current clinical practice, HHM assessment relies on computed-tomography (CT) imaging. However, the associated supine position might undermine its functional relevance as it does not reflect the weight-bearing condition with active muscle engagement associated with the upright standing position of most daily activities. Therefore, we assessed to what extent HHM in a supine position is associated with HHM in a range of functional arm positions. Method. 26 shoulder osteoarthritis patients and 12 healthy volunteers were recruited. 3D shapes of the humerus and scapula were reconstructed from their respective CT scans using an image processing software. 3. , and their CT-scan-based HHMs were measured. Furthermore, all subjects underwent low-dose biplanar radiography . 4. in four quasi-static functional arm positions while standing: relaxed standing, followed by 45 degrees of shoulder extension, flexion, and abduction. Using a previously validated method implemented in the programming platforms. 5. , 3D shapes were registered to the pairs of biplanar images for each arm position and the corresponding functional HHM was measured. Bivariate correlations were assessed between the CT-based HHM and each functional arm position. Result. HHM in 45 degrees of flexion and extension both showed significant and strong correlations (r>0.66 and P<0.01) with HHM assessed in the supine position. However, such a high correlation was not found for relaxed standing and 45 abduction. Conclusion. Although HHM in a supine position correlates with HHM in 45-degree extension and flexion, it is poorly associated with the HHM in abduction and relaxed standing. These results may suggest the inclusion of more functionally-relevant patient positioning toward better-informed shoulder arthroplasty planning. Acknowledgement. Funding from PRosPERos-II Project


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 123 - 123
14 Nov 2024
D’Arrigo D Conte P Anzillotti G Giancamillo AD Girolamo LD Peretti G Crovace A Kon E
Full Access

Introduction. Degenerative meniscal tears are the most common meniscal lesions, representing huge clinical and socio-economic burdens. Their role in knee osteoarthritis (OA) onset and progression is well established and demonstrated by several retrospective studies. Effective preventive measures and non-surgical treatments for degenerative meniscal lesions are still lacking, also because of the lack of specific and accurate animal models in which test them. Thus, we aim to develop and validate an accurate animal model of meniscus degeneration. Method. Three different surgical techniques to induce medial meniscus degenerative changes in ovine model were performed and compared. A total of 32 sheep (stifle joints) were subjected to either one of the following surgical procedures: a) direct arthroscopic mechanical meniscal injury; b) peripheral devascularization and denervation of medial meniscus; c) full thickness medial femoral condyle cartilage lesion. In all the 3 groups, the contralateral joint served as a control. Result. From a visual examination of the knee joint emerged a clear difference between control and operated groups, in the menisci but also in the cartilage, indicating the onset of OA-related cartilage degeneration. The meniscal and cartilaginous lesions were characterized by different severity and location in the different groups. For instance, a direct meniscal injury caused cartilaginous lesions especially in the medial part of the condyles, and the other approaches presented specific signature. Evaluation of scoring scales (e.g. ICRS score) allowed the quantification of the damage and the identification of differences among the four groups. Conclusion. We were effectively able to develop and validate a sheep model of meniscal degeneration which led to the onset of OA. This innovative model will allow to test in a pre-clinical relevant setting innovative approaches to prevent meniscal-related OA. Funding. Project PNRR-MAD-2022-12375978 funded by Italian Ministry of Health