Advertisement for orthosearch.org.uk
Results 1 - 20 of 62
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity.

Cite this article: Bone Joint J 2024;106-B(4):312–318.


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 9 - 9
1 Feb 2021
Soltanihafshejani N Bitter T Janssen D Verdonschot N
Full Access

Introduction. The fixation of press-fit orthopaedic devices depends on the mechanical properties of the bone that is in contact with the implants. During the press-fit implantation, bone is compacted and permanently deformed, finally resulting in the mechanical interlock between implant and bone. For the development and design of new devices, it is imperative to understand these non-linear interactions. One way to investigate primary fixation is by using computational models based on Finite Element (FE) analysis. However, for a successful simulation, a proper material model is necessary that accurately captures the non-linear response of the bone. In the current study, we combined experimental testing with FE modeling to establish a Crushable Foam model (CFM) to represent the non-linear bone biomechanics that influences implant fixation. Methods. Mechanical testing of human tibial trabecular bone was done under uniaxial and confined compression configurations. We examined 62 human trabecular bone samples taken from 8 different cadaveric tibiae to obtain all the required parameters defining the CFM, dependent on local bone mineral density (BMD). The derived constitutive rule was subsequently applied using an in-house subroutine to the FE models of the bone specimens, to compare the model predictions against the experimental results. Results. The crushable foam model provided an accurate simulation of the experimental compression test, and was able to replicate the ultimate compression strength measured in the experiments [Figure 1]. The CFM was able to simulate the post-failure behavior that was observed in the experimental specimens up to strain levels of 50% [Figure 2]. Also, the distribution of yield strains and permanent displacement was qualitatively very similar to the experimental deformation of the bone specimens [Figure 3]. Conclusion. The crushable foam model developed in the current study was able to accurately replicate the mechanical behavior of the human trabecular bone under compression loading beyond the yield point. This advanced bone model enables realistic simulations of the primary fixation of orthopaedic devices, allowing for the analysis of the influence of interference fit and frictional properties on implant stability. In addition, the model is suitable for failure analysis of reconstructions, such as the tibial collapse of total knee arthroplasty. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 103-B, Issue SUPP_1 | Pages 50 - 50
1 Feb 2021
Sanchez E Schilling C Grupp T Giurea A Verdonschot N Janssen D
Full Access

Introduction. Cementless total knee arthroplasty (TKA) implants use an interference fit to achieve fixation, which depends on the difference between the inner dimensions of the implant and outer dimensions of the bone. However, the most optimal interference fit is still unclear. A higher interference fit could lead to a superior fixation, but it could also cause bone abrasion and permanent deformation during implantation. Therefore, this study aims to investigate the effect of increasing the interference fit from 350 µm to 700 µm on the primary stability of cementless tibial implants by measuring micromotions and gaps at the bone-implant interface when subjected to two loading conditions. Methods. Two cementless e.motion® tibial components (Total Knee System, B. Braun) with different interference fit and surface coating were implanted in six pairs of relatively young human cadaver tibias (47–60 years). The Orthoload peak loads of gait (1960N) and squat (1935N) were applied to the specimens with a custom made load applicator (Figure 1A). The micromotions (shear displacement) and opening/closing gaps (normal displacement) were measured with Digital Image Correlation (DIC) in 6 different regions of interest (ROIs - Figure 1B). Two General Linear Mixed Models (GLMMs) were created with micromotions and interfacial gaps as dependent variables, bone quality, loading conditions, ROIs, and interference fit implants as independent variables, and the cadaver specimens as subject variables. Results. No significant difference was found for the micromotions between the two interference fit implants (gait p=0.755, squat p=0.232), nor for interfacial gaps (gait p=0.474, squat p=0.269). In contrast, significant differences were found for the ROIs in the two dependent variables (p < 0.001). The micromotions in the anterior ROIs (AM and AL) showed fewer micromotions for the low interference fit implant (Figure 2). More closing gaps (negative values) were seen for all ROIs (Figure 3), except in AM ROI during squat, which showed opening gaps (positive values). The posterior ROIs (PM and PL) showed more closing than seen in the anterior ROIs (AM and AL) for both loading configurations. Discussion. The results presented here demonstrate that increasing the interference fit from 350 µm to 700 µm does not affect the micromotions at the implant-bone interface of tibial TKA. While micromotions values were all below the threshold for bone ingrowth (40 µm), closing gaps were quite substantial (∼−150 µm). Since cementless e.motion® TKA components with an interference fit of 350 µm had shown a survival rate of 96.2% after 8.3 years postoperatively, interfacial gaps can be expected to be within a threshold value that can guarantee good primary stability. Moreover, increasing the interference fit to 700 µm can be considered a good range for an interference fit. For any figures or tables, please contact the authors directly


Bone & Joint Research
Vol. 9, Issue 7 | Pages 402 - 411
1 Aug 2020
Sanghani-Kerai A Coathup M Brown R Lodge G Osagie-Clouard L Graney I Skinner J Gikas P Blunn G

Aims. For cementless implants, stability is initially attained by an interference fit into the bone and osteo-integration may be encouraged by coating the implant with bioactive substances. Blood based autologous glue provides an easy, cost-effective way of obtaining high concentrations of growth factors for tissue healing and regeneration with the intention of spraying it onto the implant surface during surgery. The aim of this study was to incorporate nucleated cells from autologous bone marrow (BM) aspirate into gels made from the patient’s own blood, and to investigate the effects of incorporating three different concentrations of platelet rich plasma (PRP) on the proliferation and viability of the cells in the gel. Methods. The autologous blood glue (ABG) that constituted 1.25, 2.5, and 5 times concentration PRP were made with and without equal volumes of BM nucleated cells. Proliferation, morphology, and viability of the cells in the glue was measured at days 7 and 14 and compared to cells seeded in fibrin glue. Results. Overall, 2.5 times concentration of PRP in ABG was capable of supporting the maximum growth of cells isolated from the BM aspirate and maintain their characteristics. Irrespective of PRP concentration, cells in ABG had statistically significantly higher viability compared to cells in fibrin glue. Conclusion. In vitro this novel autologous gel is more capable of supporting the growth of cells in its structure for up to 14 days, compared to commercially available fibrin-based sealants, and this difference was statistically significant. Cite this article: Bone Joint Res 2020;9(7):402–411


The Bone & Joint Journal
Vol. 102-B, Issue 7 | Pages 861 - 867
1 Jul 2020
Hiranaka T Yoshikawa R Yoshida K Michishita K Nishimura T Nitta S Takashiba K Murray D

Aims

Cementless unicompartmental knee arthroplasty (UKA) has advantages over cemented UKA, including improved fixation, but has a higher risk of tibial plateau fracture, particularly in Japanese patients. The aim of this multicentre study was to determine when cementless tibial components could safely be used in Japanese patients based on the size and shape of the tibia.

Methods

The study involved 212 cementless Oxford UKAs which were undertaken in 174 patients in six hospitals. The medial eminence line (MEL), which is a line parallel to the tibial axis passing through the tip of medial intercondylar eminence, was drawn on preoperative radiographs. Knees were classified as having a very overhanging medial tibial condyle if this line passed medial to the medial tibial cortex. They were also classified as very small if a size A/AA tibial component was used.


Bone & Joint Research
Vol. 9, Issue 7 | Pages 386 - 393
1 Jul 2020
Doyle R van Arkel RJ Muirhead-Allwood S Jeffers JRT

Aims

Cementless acetabular components rely on press-fit fixation for initial stability. In certain cases, initial stability is more difficult to obtain (such as during revision). No current study evaluates how a surgeon’s impaction technique (mallet mass, mallet velocity, and number of strikes) may affect component fixation. This study seeks to answer the following research questions: 1) how does impaction technique affect a) bone strain generation and deterioration (and hence implant stability) and b) seating in different density bones?; and 2) can an impaction technique be recommended to minimize risk of implant loosening while ensuring seating of the acetabular component?

Methods

A custom drop tower was used to simulate surgical strikes seating acetabular components into synthetic bone. Strike velocity and drop mass were varied. Synthetic bone strain was measured using strain gauges and stability was assessed via push-out tests. Polar gap was measured using optical trackers.


Bone & Joint Research
Vol. 9, Issue 1 | Pages 15 - 22
1 Jan 2020
Clement ND Bell A Simpson P Macpherson G Patton JT Hamilton DF

Aims

The primary aim of the study was to compare the knee-specific functional outcome of robotic unicompartmental knee arthroplasty (rUKA) with manual total knee arthroplasty (mTKA) for the management of isolated medial compartment osteoarthritis. Secondary aims were to compare length of hospital stay, general health improvement, and satisfaction between rUKA and mTKA.

Methods

A powered (1:3 ratio) cohort study was performed. A total of 30 patients undergoing rUKA were propensity score matched to 90 patients undergoing mTKA for isolated medial compartment arthritis. Patients were matched for age, sex, body mass index (BMI), and preoperative function. The Oxford Knee Score (OKS) and EuroQol five-dimension questionnaire (EQ-5D) were collected preoperatively and six months postoperatively. The Forgotten Joint Score (FJS) and patient satisfaction were collected six months postoperatively. Length of hospital stay was also recorded.


The Bone & Joint Journal
Vol. 101-B, Issue 6_Supple_B | Pages 62 - 67
1 Jun 2019
Tanzer M Chuang PJ Ngo CG Song L TenHuisen KS

Aims

The purpose of this study was to evaluate the biological fixation of a 3D printed porous implant, with and without different hydroxyapatite (HA) coatings, in a canine model.

Materials and Methods

A canine transcortical model was used to evaluate the characteristics of bone ingrowth of Ti6Al4V cylindrical implants fabricated using laser rapid manufacturing (LRM). At four and 12 weeks post-implantation, we performed histological analysis and mechanical push-out testing on three groups of implants: a HA-free control (LRM), LRM with precipitated HA (LRM-PA), and LRM with plasma-sprayed HA (LRM-PSHA).


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_8 | Pages 49 - 49
1 May 2019
Rajgopal A
Full Access

Management of severe bone loss in total knee arthroplasty presents a formidable challenge. This situation may arise in neglected primary knee arthroplasty with large deformities and attritional bone loss, in revision situations where osteolysis and loosening have caused large areas of bone loss and in tumor situations. Another area of large bone loss is frequently seen in periprosthetic fractures. Trabecular metal (TM) with its dodecahedron configuration and modulus of elasticity between cortical and cancellous bone offers an excellent bail out option in the management of these very difficult situations. Severe bone loss in the distal femur and proximal tibia lend themselves to receiving the TM cones. The host bone surfaces need to be prepared to receive these cones using a high speed burr. The cones acts as a filler with an interference fit through which the stemmed implant can be introduced and cemented. All areas of bone void is filled with morselised cancellous bone fragments. We present our experience of 64 TM cones (28 femoral, 36 tibial cones) over a 10-year period and our results and outcomes for the same. We have had to revise only one patient for recurrence of the tumor for which the cone was implanted in the first place. We also describe our technique of using two stacked cones for massive distal femoral bone loss and its outcomes. We found excellent osteointegration and new host bone formation around the TM construct. The purported role of possible resistance to infection in situations using the TM cones is also discussed. In summary we believe that the use of the TM cones offers an excellent alternative to massive allografts, custom and/or tumor implants in the management of massive bone loss situations


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_4 | Pages 125 - 125
1 Apr 2019
Sanchez E Schilling C Grupp TM Verdonschot N Janssen D
Full Access

Introduction. Although cementless press-fit femoral total knee arthroplasty (TKA) components are routinely used in clinical practice, the effect of the interference fit on primary stability is still not well understood. Intuitively, one would expect that a thicker coating and a higher surface roughness lead to a superior fixation. However, during implant insertion, a thicker coating can introduce more damage to the underlying bone, which could adversely influence the primary fixation. Therefore, in the current study, the effect of coating thickness and roughness on primary stability was investigated by measuring the micromotions at the bone-implant interface with experimental testing. Methods. A previous experimental set-up was used to test 6 pairs of human cadaveric femurs (47–60 years, 5 females) implanted with two femoral component designs with either the standard e.motion (Total Knee System, B. Braun, Germany) interference fit of 350 µm (right femurs) or a novel, thicker interference fit of 700 µm (left femurs). The specimens were placed in a MTS machine (Figure 1) and subjected to the peak loads of normal gait (1960N) and squat (1935N), based on the Orthoload dataset for Average 75. Varus/valgus moments were incorporated by applying the loads at an offset relative to the center of the implants, leading to a physiological mediolateral load distribution. Under these loads, micromotions at the implant-bone interface were measured using Digital Image Correlation (DIC) at different regions of interest (ROIs – Figure 1). In addition, DIC was used to measure opening and closing of the implant-bone interface in the same ROIs. Results. After comparing the micromotions and opening of the two implant designs, we found no significant differences between the standard and novel coating. Loading was a significant factor for both opening (P<0.0001) and micromotions (P=0.019), where the squat produced higher micromotions than gait. Opening was seen anteriorly (MA, LA), and was higher during squat. Closing was noticed distally (MD, LD), particularly during gait (Figure 2). During gait (Figure 3), the highest micromotions were found in the posterior condyles (CM, MP), followed by the medial anterior region (MA). For squat, the largest micromotions were in the anterior flange (ANT), followed by the distal regions (LD, MD). Discussion. In the current study, the primary stability of the same implant with two different coating thicknesses was evaluated. The results demonstrate that increasing the coating thickness does not automatically influence the primary stability of a femoral TKA component. This is likely due to abrasion and damage of the underlying trabecular during implant insertion, which also was observed in previous experiments. The exact relation between coating thickness or interference fit and primary implant stability still remains subject to debate. Obviously, the primary implant stability is compromised when the interference fit is too low. However, the current results suggest that there is a threshold beyond which further improvement of the fixation is not possible. The exact magnitude of this threshold is unknown, and may depend on coating characteristics and bone quality, and requires further evaluation, possibly utilizing a hybrid approach of experimental and computational techniques


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_2 | Pages 37 - 37
1 Jan 2019
Taylor MEC Wilcox RK Mengoni M
Full Access

Osteochondral (OC) grafting is one available method currently used to repair full thickness cartilage lesions with good results clinically when grafting occurs in patients with specific positive prognostic factors. However, there is poor understanding of the effect of individual patient and surgical factors. With limited tissue availability, development of Finite Element (FE) models taking into account these variations is essential. The aim of this study was to evaluate the effect of altering the material properties of OC grafts and their host environment through computer simulation. A generic FE model (ABAQUS CAE 2017) of a push-out test was developed as a press-fit bone cylinder (graft) sliding inside a bone ring (host tissue). Press-fit fixation was simulated using an interference fit. Overlap between host and graft (0.01mm–0.05mm) and coefficient of friction (0.3–0.7) were varied sequentially. Bone Young's moduli (YM) were varied individually between graft and host within the range of otherwise derived tissue moduli (46MPa, 82MPa, 123MPa). Increasing both overlap and frictional coefficient increased peak dislodging force independently (overlap: 490% & frictional coefficient: 176% across range tested). Increasing bone modulus also increased dislodging force, with host bone modulus (107%, 128%, and 140% increase across range, when Graft YM = 123MPa, 82 MPa, and 46MPa, respectively) having a greater influence than graft modulus (28%, 19% and 10% increase across range, when Host YM = 123 MPa, 82MPa and 46MPa, respectively). As anticipated increasing overlap and friction caused an increase in force necessary to dislodge the graft. Importantly, differentially changing the graft and host material properties changed the dislodging force indicating that difference between graft and host may be an important factor in the success or failure clinically of osteochondral grafting


The Bone & Joint Journal
Vol. 100-B, Issue 11 | Pages 1424 - 1433
1 Nov 2018
Amstutz HC Le Duff MJ

Aims

This study presents the long-term survivorship, risk factors for prosthesis survival, and an assessment of the long-term effects of changes in surgical technique in a large series of patients treated by metal-on-metal (MoM) hip resurfacing arthroplasty (HRA).

Patients and Methods

Between November 1996 and January 2012, 1074 patients (1321 hips) underwent HRA using the Conserve Plus Hip Resurfacing System. There were 787 men (73%) and 287 women (27%) with a mean age of 51 years (14 to 83). The underlying pathology was osteoarthritis (OA) in 1003 (75.9%), developmental dysplasia of the hip (DDH) in 136 (10.3%), avascular necrosis in 98 (7.4%), and other conditions, including inflammatory arthritis, in 84 (6.4%).


The Bone & Joint Journal
Vol. 100-B, Issue 7 | Pages 903 - 908
1 Jul 2018
Eachempati KK Malhotra R Pichai S Reddy AVG Podhili Subramani AK Gautam D Bollavaram VR Sheth NP

Aims

The advent of trabecular metal (TM) augments has revolutionized the management of severe bone defects during acetabular reconstruction. The purpose of this study was to evaluate patients undergoing revision total hip arthroplasty (THA) with the use of TM augments for reconstruction of Paprosky IIIA and IIIB defects.

Patients and Methods

A retrospective study was conducted at four centres between August 2008 and January 2015. Patients treated with TM augments and TM shell for a Paprosky grade IIIA or IIIB defect, in the absence of pelvic discontinuity, and who underwent revision hip arthroplasty with the use of TM augments were included in the study. A total of 41 patients with minimum follow-up of two years were included and evaluated using intention-to-treat analysis.


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_6 | Pages 6 - 6
1 Apr 2018
Schulze C Vogel D Bader R Kluess D Haas H
Full Access

Introduction. Modern acetabular cups require a convenient bone stock for sufficient cup fixation. Thereby, fixation stability is influenced by the chosen interference fit of the acetabular cup, the cup surface structure, circularity of the reamed acetabulum and by the acetabular bone quality. The ideal implantation situation of the cup is commonly compromised by joint dysplasia and acetabular bone defects. The aim of the present experimental study was to characterise implant fixation of primary acetabular cups in case of definite acetabular cavity defects. Materials and Methods. For the experimental determination bone substitute blocks (100 × 100 × 50 mm) made of polymethacrylimide (PMI) foam with a density of 7 pcf were used. The created acetabular defect situations were derived from the defect classification according to Paprosky. The defect geometries in the PMI foam blocks were realised by a CNC drilling machine. Thereby the defects are described in the dorso-ventral direction by the angle α and in medio-lateral direction by the angle β (given as angle combination α/β) related to the centre of rotation of the reamed cavity. For the lever-out tests the defect types IIb and IIIa (each with different α and β angles) were considered and compared to the intact fixation situation. Therefore, a macrostructured titanium cup (Allofit, Zimmer GmbH, Wintherthur, Switzerland) with an outer diameter of 56 mm were displacement-controlled (v = 20 mm/min) pushed into the 2 mm diametric under reamed PMI-foam cavities. Three cups were inserted until the cup overhang pursuant to surgical technique was reached. Subsequently the cups were displacement-controlled (v = 20 mm/min) levered out via a rod which was screwed into the implant pole by perpendicular displacement (U. axial. ) of the rod in direction of the defect aperture. The lever-out moments were calculated by multiplying the first occurring force maximum (F. max. ) with the effective lever arm length (l. lever. ), whereby moments caused by the deadweight of the rod were considered. Primary stability was defined by the first maximum lever-out moment. Results. The calculated lever-out moments were in a range from 15.5 ± 1.4 Nm to 1.4 ± 0.5 Nm. Defects with a 90° dorso-ventral opening angle showed 57 ± 17% lower lever-out moments. Defects with a 120° dorso-ventral opening angle showed 80 ± 6% lower lever-out moments compared to the cup fixation into intact cavities. Moreover, medio-lateral angles greater than 20° reduced the lever-out moment by 79 ± 12% compared to the intact cavities. Conclusion. The determined lever-out moments underline the reduction of fixation stability of acetabular cup by loss of circumferential rim and absent of superior wall support of the acetabular bone. Thereby, the fixation stability is influenced by the degree of dorso-ventral and medio-lateral defect manifestation. Hence, the fixation stability depends on the cavity surface and in particular the surface of the bone-implant interface in the fixation zone of the acetabular cup Thus, dorso-ventral defect sizes with greater opening angle than 60° and medio-lateral defect sizes greater than 20° are critically for sufficient fixation of primary acetabular cup implants


Bone & Joint Research
Vol. 7, Issue 3 | Pages 226 - 231
1 Mar 2018
Campi S Mellon SJ Ridley D Foulke B Dodd CAF Pandit HG Murray DW

Objectives. The primary stability of the cementless Oxford Unicompartmental Knee Replacement (OUKR) relies on interference fit (or press fit). Insufficient interference may cause implant loosening, whilst excessive interference could cause bone damage and fracture. The aim of this study was to identify the optimal interference fit by measuring the force required to seat the tibial component of the cementless OUKR (push-in force) and the force required to remove the component (pull-out force). Materials and Methods. Six cementless OUKR tibial components were implanted in 12 new slots prepared on blocks of solid polyurethane foam (20 pounds per cubic foot (PCF), Sawbones, Malmo, Sweden) with a range of interference of 0.1 mm to 1.9 mm using a Dartec materials testing machine HC10 (Zwick Ltd, Herefordshire, United Kingdom) . The experiment was repeated with cellular polyurethane foam (15 PCF), which is a more porous analogue for trabecular bone. Results. The push-in force progressively increased with increasing interference. The pull-out force was related in a non-linear fashion to interference, decreasing with higher interference. Compared with the current nominal interference, a lower interference would reduce the push-in forces by up to 45% (p < 0.001 One way ANOVA) ensuring comparable (or improved) pull-out forces (p > 0.05 Bonferroni post hoc test). With the more porous bone analogue, although the forces were lower, the relationship between interference and push-in and pull-out force were similar. Conclusions. This study suggests that decreasing the interference fit of the tibial component of the cementless OUKR reduces the push-in force and can increase the pull-out force. An optimal interference fit may both improve primary fixation and decrease the risk of fracture. Cite this article: S. Campi, S. J. Mellon, D. Ridley, B. Foulke, C. A. F. Dodd, H. G. Pandit, D. W. Murray. Optimal interference of the tibial component of the cementless Oxford Unicompartmental Knee Replacement. Bone Joint Res 2018;7:226–231. DOI: 10.1302/2046-3758.73.BJR-2017-0193.R1


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_15 | Pages 41 - 41
1 Aug 2017
Meneghini R
Full Access

Cementless fixation in TKA has been inconsistently adopted since its early use but is increasing due to a number of factors, predominantly related to a demand for improved survivorship in younger patients. Modern biomaterials have demonstrated optimal bone ingrowth and have also contributed to a renewed confidence by surgeons to utilise cementless fixation in TKA. With a modern design and appropriate surgical technique, optimal mechanical stability of new designs have been demonstrated and can build upon the excellent long-term outcomes that have rivaled traditional cemented TKA. Paramount to obtaining successful long-term osseointegration and clinical survivorship with cementless fixation is an awareness of the past failure mechanisms to improve implant modern implant design, and should also guide meticulous surgical technique. A robust implant design with optimal surgical technique is critical to success when employing cementless fixation in TKA. The tried and true principles of sufficient mechanical stability to minimise micromotion of an osteoconductive implant surface with intimate contact against viable bone are essential to allow osseointegration and long-term survivorship. The surgical techniques and tips for “getting it right” include: 1.) Meticulous planar cuts - Prevention of saw blade deviation (particularly anterior femoral cortex and sclerotic medial tibial plateau), Appropriate tolerances in cutting guides (particularly 4-in-1 femoral cutting guide), Appropriate interference fit for tibial keel/stem, patella planar cut, Perfect planar cut on tibial surface confirmed with “4-corner test”. 2.) Implantation of components to maximise mechanical stability - Intimate implant contact with bone (minimizing gaps), Consider bone slurry to minimise gaps, Prevention of femoral component flexion with impaction, Ensure parallel position of tibial baseplate with tibial cut surface during impaction, Peripheral fixation on tibial baseplate, either screws or pegs, to provide supplemental fixation and stability in titanium tray designs


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 20 - 20
1 Apr 2017
Rosenberg A
Full Access

As the incidence of total hip arthroplasty (THA) rises, an increasing prevalence of peri-prosthetic femur fractures has been reported. This is likely due to the growing population with arthroplasties, increasing patient survival and a more active life-style following arthroplasty. It is the 3rd most common reason for THA reoperation (9.5%) and 5th most common reason for revision (5% with fracture risk after primary THA reported at 0.4%-1.1% and after revision at 2.1%-4%). High quality radiographs are usually sufficient to classify the fracture and plan treatment. Important issues in treatment include stem fixation status and fracture location relative to the stem. Additional comorbidities will also influence treatment choices, of which the most critical is the presence of infection and the quality of bone stock. The most commonly studied, and reported classification system is the Vancouver. Type A are peri-trochanteric fractures with AL at the lesser and AG at the greater trochanter. B fractures are those around the stem with B1 fractures having a well-fixed stem, B2 a loose stem with adequate bone stock, and B3 representing loose stem and inadequate bone stock. C fractures are distal to the stem. Type A) Trochanteric Fractures: These are usually associated with lysis. Displaced fractures can be managed adequately with cerclage fixation and cancellous allograft to fill osteolytic defects. Undisplaced fractures usually heal well with symptomatic treatment. Type B) Fractures Around the Stem: The B1 type has a well-fixed component and is usually treated with extramedullary fixation plus graft. Contemporary plates have been designed specifically for these fractures. Strut allograft may be used to provide a more rigid construct. Spiral and long oblique fractures can be cerclaged while short oblique or transverse fractures require fixation anterior and lateral with cable plates and cortical strut grafts. Screws can be used distal to the implant, and cables used proximally. The B2 type has a loose prosthesis but otherwise good bone stock. In this setting, the fracture line may be extended on the lateral cortex of the femur as an extended osteotomy to provide easy access for cement removal. These fractures can be managed with an extensively coated stem if rotational stability can be obtained in the distal segment. If rotational stability over a 4 cm scratch interference fit of the stem isn't possible, then a fluted tapered modular stem should be used. Strut allografts improve initial stability. The B3 type has both a loose prosthesis and poor bone stock and in the younger patient restoration of bone stock should be a priority. Bulk femoral grafts may be needed. The elderly or low functional demand patient may be treated with a proximal femoral replacement. Because of soft-tissue deficiencies, a constrained acetabular liner may be needed to prevent instability. Type C) Fractures Distal to the Stem: These usually accompany a stable stem and many fixation devices are available. Locking plates have become most popular and should be secured with cerclage wires proximally around the component with screws distally. Retrograde nails may be employed if there is adequate bone distal to the stem tip and above the fracture


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_7 | Pages 60 - 60
1 Apr 2017
Paprosky W
Full Access

Acetabular distraction for the treatment of chronic pelvic discontinuity was first described by Sporer and Paprosky. The authors advocate the posterolateral approach for exposure of the posterior ilium and posterior column, The patient is secured in the lateral decubitus position. Following a systematic approach to surgical exposure, acetabular component removal should be performed with “cup out” osteotomes resulting in minimal iatrogenic bone loss. Following component removal and confirmation of a chronic discontinuity determine the integrity of the remaining AS and PI columns. If porous metal augments are needed for primary stabilization, the augments are placed prior to cup insertion for reconstruction of the AS and/or PI column. Next, Kirschner (K) wires (size 2.4) are placed in the remaining AS and PI bone so that the distractor can be secured in an extra-acetabular position. The distractor is placed over the K-wires allowing for lateral or peripheral acetabular distraction and resultant medial or central compression at the discontinuity. With the distractor in an extra-acetabular position, hemispherical reamers are used until an interference fit is achieved between the native or augmented AS and PI columns. The acetabulum should be reamed on reverse to avoid excessive removal of host bone. When the proper acetabular component size has been reached, the reamer will disengage from the reamer handle and the reamer can be used as a surrogate acetabular shell; when the acetabulum is maximally distracted, the entire construct will move as a unit. Crushed cancellous allograft is used to bone graft the discontinuity and reamed on reverse. A revision tantalum cup is inserted with continual distraction using the distractor. Cement is applied to the augment surface prior to cup insertion in order to utilise the construct. Following cup insertion, the distractor and K-wires are removed. Adjuvant screw fixation is performed, with a minimum of 4 screws, and placing at least one of the screws inferiorly for fixation in the superior public ramus or ischium to prevent abduction failure of the construct. In the setting of severely osteoporotic bone and inadequate screw fixation, an augment placed posterosuperiorly can be used for supplemental fixation. This augment is also unitised to the cup with cement at the same time as the liner is cemented into the cup. Bone wax is placed over the exposed tantalum surface of the posterosuperior augment to minimise soft-tissue ingrowth into the augment


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_6 | Pages 59 - 59
1 Mar 2017
van Arkel R Ghouse S Ray S Nai K Jeffers J
Full Access

Implant loosening is one of the primary mechanisms of failure for hip, knee, ankle and shoulder arthroplasty. Many established implant fixation surfaces exist to achieve implant stability and fixation. More recently, additive manufacturing technology has offered exciting new possibilities for implant design such as large, open, porous structures that could encourage bony ingrowth into the implant and improve long-term implant fixation. Indeed, many implant manufacturers are exploiting this technology for their latest hip or knee arthroplasty implants. The purpose of this research is to investigate if the design freedoms offered by additive manufacturing could also be used to improve initial implant stability – a precursor to successful long-term fixation. This would enable fixation equivalent to current technology, but with lower profile fixation features, thus being less invasive, bone conserving and easier to revise. 250 cylindrical specimens with different fixation features were built in Ti6Al4V alloy using a Renishaw AM250 additive manufacturing machine, along with 14 specimens with a surface roughness similar to a conventional titanium fixation surface. Pegs were then pushed into interference fit holes in a synthetic bone material using a dual-axis materials testing machine equipped with a load/torque-cell (figure 1). Specimens were then either pulled-out of the bone, or rotated about their cylindrical axis before being pulled out to quantify their ability to influence initial implant stability. It was found that additively manufactured fixation features could favourably influence push-in/pull-out stability in one of two-ways: firstly the fixation features could be used to increase the amount pull-out force required to remove the peg from the bone. It was found that the optimum fixation feature for maximising pull-out load required a pull-out load of 320 N which was 6× greater than the least optimum design (54 N) and nearly 3× the maximum achieved with the conventional surface (120 N). Secondly, fixation features could also be used to decrease the amount of force required to insert the implant into bone whilst improving fixation (figure 2). Indeed, for some designs the ratio of push-in to pull-out was as high as 2.5, which is a dramatic improvement on current fixation surface technology, which typically achieved a ratio between 0.3–0.6 depending on the level of interference fit. It was also found that the additively manufactured fixation features could influence the level of rotational stability with the optimum design resisting 3× more rotational torque compared to the least optimum design. It is concluded that additive manufacturing technology could be used to improve initial implant stability either by increasing the anchoring force in bone, or by reducing the force required to insert an implant whilst maintaining a fixed level of fixation. This defines a new set of rules for implant fixation using smaller low profile features, which are required for minimally invasive device design


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_3 | Pages 40 - 40
1 Feb 2017
Berahmani S Hendriks M Janssen D Verdonschot N
Full Access

The primary stability of an uncemented femoral total knee replacement component is provided by press-fit forces at the bone-implant interface. This press-fit is achieved by resecting the bone slightly larger than the inner dimensions of the implant, resulting in a so-called interference fit. Previous animal studies have shown that an adequate primary stability is required to minimize micromotions at the bone-implant interface to achieve bone-ingrowth, which provides the secondary (long-term) fixation. It is assumed that during implantation a combination of elastic and plastic deformation and abrasion of the bone will occur, but little is known about what happens at the bone-implant interface and how much interference fit eventually is achieved. Purpose of this study was therefore to assess the actual and effective interference fit and the amount of bone damage during implantation of an uncemented femoral knee component. In this study, five cadaveric distal femora were prepared and femoral knee components were implanted by an experienced surgeon. Micro-CT scans and conventional CT-scans were obtained pre- and post-implantation for geometrical measurements and to measure bone mineral density. In addition, the position of the implant with respect to the bone was determined by optical scanning of the reconstructions (Figure.1). By measuring the differences in surface geometry, assessments were made of the cutting error, the actual interference fit, the amount of bone damage, and the effective interference fit. Our analysis showed an average cutting error of 0.67± 0.17 mm, which pointed mostly towards bone under-resections. We found an average actual AP interference fit of 1.48± 0.27 mm, which was close to the nominal value of 1.5 mm. We observed combinations of bone damage and elastic deformation in all bone specimens (Figure. 2), which showed a trend to be related with bone density. Higher bone density tended to lead to lower bone damage and higher elastic deformation (Figure. 3). The results of the current study indicate different factors that interact while implanting an uncemented femoral knee component. This knowledge can be used to fine-tune design criteria of femoral components and obtain adequate primary stability for all patients in a more predictable way