Advertisement for orthosearch.org.uk
Results 1 - 20 of 41
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 46 - 46
14 Nov 2024
Teixeira SPB Pardo A Taboada P Wolleb M Snedeker J Reis RL Gomes MME Domingues RMA
Full Access

Introduction

PIEZO mechanoreceptors are increasingly recognized to play critical roles in fundamental physiological processes like proprioception, touch, or tendon biomechanics. However, their gating mechanisms and downstream signaling are still not completely understood, mainly due to the lack of effective tools to probe these processes. Here, we developed new tailor-made nanoswitches enabling wireless targeted actuation on PIEZO1 by combining molecular imprinting concepts with magnetic systems.

Method

Two epitopes from functionally relevant domains of PIEZO1 were rationally selected in silico and used as templates for synthesizing molecularly imprinted nanoparticles (MINPs). Highly-responsive superparamagnetic zinc-doped iron oxide nanoparticles were incorporated into MINPs to grant them magnetic responsiveness. Endothelial cells (ECs) and adipose tissue-derived stem cells (ASCs) incubated with each type of MINP were cultured under or without the application of cyclical magnetomechanical stimulation. Downstream effects of PIEZO1 actuation on cell mechanotransduction signaling and stem cell fate were screened by analyzing gene expression profiles.


Bone & Joint 360
Vol. 13, Issue 4 | Pages 13 - 16
2 Aug 2024

The August 2024 Hip & Pelvis Roundup. 360. looks at: Understanding perceived leg length discrepancy post-total hip arthroplasty: the role of pelvic obliquity; Influence of femoral stem design on revision rates in total hip arthroplasty; Outcomes of arthroscopic labral treatment of femoroacetabular impingement in adolescents; Characteristics and quality of online searches for direct anterior versus posterior approach for total hip arthroplasty; Rapid return to braking after anterior and posterior approach total hip arthroplasty; How much protection does a collar provide?; Timing matters: reducing infection risk in total hip arthroplasty with corticosteroid injection intervals; Identifying pain recovery patterns in total hip arthroplasty using PROMIS data


The Bone & Joint Journal
Vol. 106-B, Issue 5 | Pages 515 - 515
1 May 2024
Kayani B D. Luo T S. Haddad F


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 130 - 136
1 Mar 2024
Morlock M Perka C Melsheimer O Kirschbaum SM

Aims

Despite higher rates of revision after total hip arthroplasty (THA) being reported for uncemented stems in patients aged > 75 years, they are frequently used in this age group. Increased mortality after cemented fixation is often used as a justification, but recent data do not confirm this association. The aim of this study was to investigate the influence of the design of the stem and the type of fixation on the rate of revision and immediate postoperative mortality, focusing on the age and sex of the patients.

Methods

A total of 333,144 patients with primary osteoarthritis (OA) of the hip who underwent elective THA between November 2012 and September 2022, using uncemented acetabular components without reconstruction shells, from the German arthroplasty registry were included in the study. The revision rates three years postoperatively for four types of stem (uncemented, uncemented with collar, uncemented short, and cemented) were compared within four age groups: < 60 years (Young), between 61 and 70 years (Mid-I), between 71 and 80 years (Mid-II), and aged > 80 years (Old). A noninferiority analysis was performed on the most frequently used designs of stem.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_12 | Pages 18 - 18
23 Jun 2023
Morlock M Melsheimer O
Full Access

The early revision rate in elective Total Hip Arthroplasty (THA) three years after surgery in elderly patients over 80 years is significantly lower for cemented stems in the German Arthroplasty Register (EPRD): cemented 3,1% (3.0 – 3.2) vs. uncemented 4.2% (4.1 – 4.3; p < 0.001). However, the mortality rate in elderly patients is elevated for cemented fixation. This study presents a detailed analysis of the influence of stem type and fixation on revision and mortality rate in this patient cohort. Elective primary THA cases for primary Coxarthrosis using uncemented cups from the EPRD data base were analysed (n. 0. = 37,183). Four stem type groups were compared: cementless, cementless with collar, cementless short, and cemented. Stems with at least 300 cases at risk three years after surgery were analysed individually. The reference stem was determined as the stem with the lowest revision rate and at least 1000 cases under surveillance 3 years after surgery (n. 3. = 28,637). The revision rate for cemented stems (2.5% [2.2–1.81] was lower than for uncemented (4.5% [4.2–4.9]; p<0.001) and uncemented short stems (4.2% [3.1–5.7]; p=0.002). The revision rate of uncemented collared stems (2.3% [1.5–3.6]) was similar to cemented stems (p=0.89) and lower than for uncemented stems (p=0.02). One year mortality showed no sig. differences between the groups (p>0.17): cemented 3.2% [2.9–3.6], uncemented 3.4% [3.1–3.7], uncemented short 3.5% [2.5–4.9], uncemented collar 2.0% [1.2–3.2]. “Cementless” and “cementless short” stems should not be used in patients over 80 years due to the higher revision risk. If cementing should be avoided, “cementless collared” stems seem to be a good alternative combined with a tendency for a lower one year mortality rate


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 13 - 13
1 Dec 2022
Reeves J Spangenberg G Elwell J Stewart B Vanasse T Roche C Faber KJ Langohr GD
Full Access

Shoulder arthroplasty humeral stem design has evolved to accommodate patient anatomy characteristics. As a result, stems are available in numerous shapes, coatings, lengths, sizes, and vary by fixation method. This abundance of stem options creates a surgical paradox of choice. Metrics describing stem stability, including a stem's resistance to subsidence and micromotion, are important factors that should influence stem selection, but have yet to be assessed in response to the diametral (i.e., thickness) sizing of short stem humeral implants. Eight paired cadaveric humeri (age = 75±15 years) were reconstructed with surgeon selected ‘standard’ sized short-stemmed humeral implants, as well as 2mm ‘oversized’ implants. Stem sizing conditions were randomized to left and right humeral pairs. Following implantation, an anteroposterior radiograph was taken of each stem and the metaphyseal and diaphyseal fill ratios were quantified. Each humerus was then potted in polymethyl methacrylate bone cement and subjected to 2000 cycles of 90º forward flexion loading. At regular intervals during loading, stem subsidence and micromotion were assessed using a validated system of two optical markers attached to the stem and humeral pot (accuracy of <15µm). The metaphyseal fill ratio did not differ significantly between the oversized and standard stems (0.50±0.06 vs 0.50±0.10; P = 0.997, Power = 0.05); however, the diaphyseal fill ratio did (0.52±0.06 vs 0.45±0.07; P < 0.001, Power = 1.0). Neither fill ratio correlated significantly with stem subsidence or micromotion. Stem subsidence and micromotion were found to plateau following 400 cycles of loading. Oversizing stem thickness prevented implant head-back contact in all but one specimen with the least dense metaphyseal bone, while standard sizing only yielded incomplete head-back contact in the two subjects with the densest bone. Oversized stems subsided significantly less than their standard counterparts (standard: 1.4±0.6mm, oversized: 0.5±0.5mm; P = 0.018, Power = 0.748;), and resulted in slightly more micromotion (standard: 169±59µm, oversized: 187±52µm, P = 0.506, Power = 0.094,). Short stem diametral sizing (i.e., thickness) has an impact on stem subsidence and micromotion following humeral arthroplasty. In both cases, the resulting three-dimensional stem micromotion exceeded, the 150µm limit suggested for bone ingrowth, although that limit was derived from a uniaxial assessment. Though not statistically significant, the increased stem micromotion associated with stem oversizing may in-part be attributed to over-compacting the cancellous bed during broaching, which creates a denser, potentially smoother, interface, though this influence requires further assessment. The findings of the present investigation highlight the importance of proper short stem diametral sizing, as even a relatively small, 2mm, increase can negatively impact the subsidence and micromotion of the stem-bone construct. Future work should focus on developing tools and methods to support surgeons in what is currently a subjective process of stem selection


The Bone & Joint Journal
Vol. 103-B, Issue 2 | Pages 309 - 320
1 Feb 2021
Powell-Bowns MFR Oag E Ng N Pandit H Moran M Patton JT Clement ND Scott CEH

Aims

The aim of this study was to determine whether fixation, as opposed to revision arthroplasty, can be safely used to treat reducible Vancouver B type fractures in association with a cemented collarless polished tapered femoral stem (the Exeter).

Methods

This retrospective cohort study assessed 152 operatively managed consecutive unilateral Vancouver B fractures involving Exeter stems; 130 were managed with open reduction and internal fixation (ORIF) and 22 with revision arthroplasty. Mean follow-up was 6.5 years (SD 2.6; 3.2 to 12.1). The primary outcome measure was revision of at least one component. Kaplan–Meier survival analysis was performed. Regression analysis was used to identify risk factors for revision following ORIF. Secondary outcomes included any reoperation, complications, blood transfusion, length of hospital stay, and mortality.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_9 | Pages 55 - 55
1 Oct 2020
Mahan C Blackburn B Anderson LA Peters CL Pelt CE Gililland JM
Full Access

Introduction. Porous metaphyseal cones are increasingly used for fixation in revision total knee arthroplasty (RTKA). Both cemented shorter length stems and longer diaphyseal engaging stems are currently utilized with metaphyseal cones with no clear evidence of superiority. The purpose of this study was to evaluate our experience with 3D printed titanium metaphyseal cones with both short cemented and longer cementless stems from a clinical and radiographic perspective. Methods. In total 136 3D printed titanium metaphyseal cones were implanted. The mean patient age was 63 and 48% were female. The mean BMI was 33 and the mean ASA class was 2.5. There were 42 femoral cones in which 28 cemented and 14 cementless stems were utilized. There were 94 tibial cones in which 67 cemented and 27 cementless stems were utilized. The choice for stem fixation was surgeon dependent and in general cones were utilized for AORI type 2 and 3 bone defects on the femur and tibia. The most common fixation scenario was short cemented stems on both the femur and tibia followed by cemented stem fixation on the tibia and cementless fixation on the femur. Clinical data such as revision, complication, and PRO was collected at last follow-up (minimum follow-up 1 year). Radiographic analysis included cone bony ingrowth and coronal and sagittal alignment on long-standing radiographs. Descriptive statistics were used to compare demographics between patients who had malalignment (HKA beyond +/− 3 degrees and flexion/extension beyond +/− 3 degrees). Adjusted logistic regression models were run to assess malalignment risk by stem type. Results. Patient reported outcomes demonstrated modest improvements with Pre-op KOOS improving from 44 pre-op to 59 post -op and PF-CAT improving from 33 to 37 post-op. PROMIS pain scores decreased significantly from 54 to 44 post-op. 36% of patients had malalignment in either the coronal or sagittal plane. Patients with malalignment were more likely to be female (66.7% vs 40.4%, p-value=0.02). After adjusting for age, sex and BMI, there was a significantly increased risk for coronal plane malalignment when both the femur and tibia had cementless compared to cemented stems (odds ratio=5.54, 95%CI=1.15, 26.80). There was no significantly increased risk when comparing patients with mixed stems to patients with cemented stems. Sagittal plane malalignment was more common with short cemented stems although both coronal plane and sagittal plane malalignment with either stem type was not associated with inferior clinical outcome. Overall cone survivorship was excellent with only two cones removed for infection. Conclusion. Metaphyseal titanium cones provide reliable fixation in revision TKA. However, PROs in this complex patient population show only modest improvement consistent with other variables such as co-morbidities and poor baseline physical function. Small cone inner diameter may adversely influence cementless stem position leading to coronal plane malalignment. Short cemented stems are subject to greater sagittal plane malalignment with no apparent influence on clinical outcome


Bone & Joint 360
Vol. 9, Issue 4 | Pages 15 - 17
1 Aug 2020


Orthopaedic Proceedings
Vol. 101-B, Issue SUPP_6 | Pages 28 - 28
1 May 2019
Pryce G Al-Hajjar M Wilcox R Thompson J Board T Williams S
Full Access

Impingement of total hip replacements (THRs) can cause rim damage of polyethylene liners, and lead to dislocation and/or mechanical failure of liner locking mechanisms[1]. Previous work has focussed on the influence of femoral neck profile on impingement without consideration of neck-shaft angle. This study assessed the occurrence of impingement with two different stem designs (Corail standard [135°] and coxa vara [125°]) under different activities with varying acetabular cup orientation (30° to 70° inclination; 0° to 50° anteversion) using a geometric modelling tool. The tool was created in a computer aided design software programme, and incorporated an individual's hemi-pelvis and femur geometry[3] with a THR (DePuy Synthes Pinnacle. ®. shell and neutral liner; size 12 Corail. ®. standard or coxa vara and 32mm head). Kinematic data of activities associated with dislocation[2], such as stooping to pick an object from the floor was applied and incidences of impingement were recorded. Predicted implant impingement was influenced by stem design. The coxa vara stem was predicted to cause implant impingement less frequently across the range of activities and cup orientations investigated, compared to the standard stem [Fig. 1]. The cup orientations predicted to cause impingement the least frequently were at lower inclination and anteversion angles, relative to the standard stem [Fig. 1]. The coxa vara stem included a collar, while the standard stem was collarless; additional analysis indicated that differences were due to neck angle and not the presence of a collar. This study demonstrated that stem neck-shaft angle is an important variable in prosthetic impingement in THR and surgeons should be aware of this when choosing implants. Future work will consider further implant design and bone geometry variables. This tool has the potential for use in optimising stem design and position and could assist with patient specific stem selection based on an individual's activity profile. For any figures or tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 100-B, Issue SUPP_15 | Pages 1 - 1
1 Nov 2018
Docheva D
Full Access

Tendon and ligament tissues are fascinating in their simplistic appearance of tissue architecture coupled with outstanding biomechanical properties. In the last decade, the mechanisms governing their development, degenerative disease progression and step-wise repair process are becoming better understood. In this talk, I will present an overview of our basic research work on these following points. (i) Tendon generation: I will discuss our finding on the role of growth and biomechanical factors influencing tendon stem/progenitor cells; (ii) Tendon degeneration: I will provide evidences how disturbed cell-cell and cell-matrix contacts are involved in loss of tissue integrity; (iii) Tendon regeneration: I will present in vivo data on the application and performance of various cell populations in tendon repair


Bone & Joint 360
Vol. 7, Issue 2 | Pages 12 - 15
1 Apr 2018


The Bone & Joint Journal
Vol. 99-B, Issue 1_Supple_A | Pages 50 - 59
1 Jan 2017
Carli AV Negus JJ Haddad FS

Aims

Periprosthetic femoral fractures (PFF) following total hip arthroplasty (THA) are devastating complications that are associated with functional limitations and increased overall mortality. Although cementless implants have been associated with an increased risk of PFF, the precise contribution of implant geometry and design on the risk of both intra-operative and post-operative PFF remains poorly investigated. A systematic review was performed to aggregate all of the PFF literature with specific attention to the femoral implant used.

Patients and Methods

A systematic search strategy of several journal databases and recent proceedings from the American Academy of Orthopaedic Surgeons was performed. Clinical articles were included for analysis if sufficient implant description was provided. All articles were reviewed by two reviewers. A review of fundamental investigations of implant load-to-failure was performed, with the intent of identifying similar conclusions from the clinical and fundamental literature.


The Bone & Joint Journal
Vol. 98-B, Issue 10 | Pages 1347 - 1354
1 Oct 2016
Palan J Smith MC Gregg P Mellon S Kulkarni A Tucker K Blom AW Murray DW Pandit H

Aims. Periprosthetic fracture (PF) after primary total hip arthroplasty (THA) is an uncommon but potentially devastating complication. This study aims to investigate the influence of cemented stem designs on the risk of needing a revision for a PF. Patients and Methods. We analysed data on 257 202 primary THAs with cemented stems and 390 linked first revisions for PF recorded in the National Joint Registry (NJR) of England, Wales and Northern Ireland to determine if a cemented femoral stem brand was associated with the risk of having revision for a PF after primary THA. All cemented femoral stem brands with more than 10 000 primary operations recorded in the NJR were identified. The four most commonly used cemented femoral stems were the Exeter V40 (n = 146 409), CPT (n = 24 300), C-Stem (n = 15 113) and Charnley (n = 20 182). We compared the revision risk ratios due to PF amongst the stems using a Poisson regression model adjusting for patient factors. Compared with the Exeter V40, the age, gender and ASA grade adjusted revision rate ratio was 3.89 for the cemented CPT stem (95% confidence interval (CI) 3.07 to 4.93), 0.89 for the C-Stem (95% CI 0.57 to 1.41) and 0.41 for the Charnley stem (95% CI 0.24 to 0.70). Conclusions. The limitations of the study include incomplete data capture, analysis of only PF requiring revision and that observation does not imply causality. Nevertheless, this study demonstrates that the choice of a cemented stem may influence the risk of revision for PF. Cite this article: Bone Joint J 2016;98-B:1347–54


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_8 | Pages 49 - 49
1 May 2016
Inaba Y Kobayashi N Oba M Ike H Tezuka T Kubota S Saito T
Full Access

Introduction

Resorptive bone remodeling secondary to stress shielding has been a concern associated with cementless total hip arthroplasty (THA). At present, various types of cementless implants are commercially available. The difference in femoral stem design may affect the degree of postoperative stress shielding. In the present study, we aimed to compare the difference in bone mineral density (BMD) change postoperatively in femurs after the use of 1 of the 3 types of cementless stems.

Methods

Ninety hips of 90 patients who underwent primary cementless THA for the treatment of osteoarthritis were included in this study. A fit-and-fill type stem was used for 28 hips, a tapered-rectangular Zweymüller type stem was used for 32 hips, and a tapered-wedge type stem was used for 30 hips. The male/female ratio of the patients was 7/21 in the fit-and-fill type stem group, 6/26 in the tapered-rectangular Zweymüller type stem group, and 6/24 in the tapered-wedge type stem group. The mean age at surgery was 59.9 (39–80) in the fit-and-fill type stem group, 61.7 (48–84) in the tapered-rectangular Zweymüller type stem group and 59.6 (33–89) in the tapered-wedge type stem group. To assess BMD change after THA, we obtained dual-energy X-ray absorptiometry scans preoperatively and at 6, 12, 24, and 36 months postoperatively.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 72 - 72
1 May 2016
Nadorf J Kinkel S Kretzer J
Full Access

INTRODUCTION. Modular knee implants are used to manage large bone defects in revision total knee arthroplasty. These implants are confronted with varying fixation characteristics, changes in load transfer or stiffen the bone. In spite of their current clinical use, the influence of modularity on the biomechanical implant-bone behavior (e.g. implant fixation, flexibility, etc.) still is inadequately investigated. Aim of this study is to analyze, if the modularity of a tibial implant could change the biomechanical implant fixation behavior and the implant-bone flexibility. MATERIAL & METHODS. Nine different stem and sleeve combinations of the clinically used tibial revision system Sigma TC3 (DePuy) were compared, each implanted standardized with n=4 in a total of 36 synthetic tibial bones. Four additional un-implanted bones served as reference. Two different cyclic load situations were applied on the implant: 1. Axial torque of ±7Nm around the longitudinal stem axis to determine the rotational implant stability. 2. Varus-valgus-torque of ±3,5Nm to determine the bending behavior of the stem. A high precision optical 3D measurement system allowed simultaneous measuring of spatial micromotions of implant and bone. Based on these micromotions, relative motions at the implant-bone-interface and implant flexibility could be calculated. RESULTS. Lowest relative micromotions were measured along the tibial base component and the sleeve; however, these motions varied depending on the implant construct used. Maximum relative micromotions were detected at the distal end of the implant for all groups, indicating a more proximal fixation of all modular combinations. Regarding varus-valgus-torque measurement, all groups showed a deviant flexibility behavior compared to the reference group. When referred to the un-implanted bone, implants without stems revealed the highest flexibility, whereas implants with shorter stems had lowest flexibility. DISCUSSION & CONCLUSION. All groups showed a more proximal fixation behavior; moreover, both extent and location of fixation could be influenced by varying the modular combination. Larger stems seemed to support a more distal fixation behavior, whereas the implant fixation moved proximal while extending the sleeve. Here the influence of the sleeve on fixation behavior seemed to be dominant compared to the influence of the stem. Concerning varus-valgus-torque, a strong connection between the used stem and implant-bone flexibility seemed to exist. In addition, the influence of the sleeve on flexibility seemed to be rather low. This study showed, that modularity can influence the biomechanical behavior of tibial implants. If these results can be transferred to other tibial implants still remains to be seen


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 141 - 141
1 May 2016
Yo H Ohashi H Sugama R
Full Access

Introduction

There have been many attempts to reduce the risk of femoral component loosening.

Using a tapered stem having a highly polished stem surface results in stem stabilization subsequent to debonding and stem-cement taper-lock and is consistent with force-closed fixation design.

Purpose

In this study, we assessed the subsidence of two different polished triple tapered stems and two different cements in primary THA.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_3 | Pages 56 - 56
1 Jan 2016
Moussa H Scemama C Kerboull L
Full Access

Introduction

Excellent long-term survival rates associated with the absence of stem subsidence have been achieved with total hip arthroplasty (THA) using femoral components cemented line-to-line (“French Paradox”). Recently, short stems have been introduced in order to preserve diaphyseal bone and to accommodate to minimal invasive THA and a variety of clinical situations. The aim of the current study was to quantify the rotational and tilting stability of a Kerboull stem of varying length after line-to-line cementation using a validated in-vitro model.

Materials & methods

The femoral component made of M30NW stainless steel was derived from the original Kerboull stem. It had a double taper, a highly polished surface, and a quadrangular cross-section. Four stem lengths were designed from the original length with a distal reduction of 6, 12, 17 and 22%, whereas the proximal body geometry of the implant remained unaffected. For each stem length, five specimens were implanted into a non-canal synthetic femoral model. The femoral preparation was performed in order to obtain rotational and tilting stability of the stem prior to the line-to-line cementation. Spatial micro-motions of the specimens were investigated using a validated rotational measuring set-up. In addition, in a second separate step, the specimens were exposed to a ventro-dorsal moment to mimic varus-valgus moment. Statistical analysis was performed using ANOVA with Fisher PLSD.


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_2 | Pages 132 - 132
1 Jan 2016
MacDonald D Kurtz SM Kocagoz S Hanzlik J Underwood RJ Gilbert J Lee G Mont M Kraay M Klein GR Parvizi J Day J Rimnac C
Full Access

Introduction. Recent implant design trends have renewed concerns regarding metal wear debris release from modular connections in THA. Previous studies regarding modular head-neck taper corrosion were largely based on cobalt chrome (CoCr) alloy femoral heads. Comparatively little is known about head-neck taper corrosion with ceramic femoral heads or about how taper angle clearance influences taper corrosion. This study addressed the following research questions: 1) Could ceramic heads mitigate electrochemical processes of taper corrosion compared to CoCr heads? 2) Which factors influence stem taper corrosion with ceramic heads? 3) What is the influence of taper angle clearance on taper corrosion in THA?. Methods. 100 femoral head-stem pairs were analyzed for evidence of fretting and corrosion. A matched cohort design was employed in which 50 ceramic head-stem pairs were matched with 50 CoCr head-stem pairs based on implantation time, lateral offset, stem design and flexural rigidity. Fretting corrosion was assessed using a semi-quantitative scoring scale where a score of 1 was given for little to no damage and a score of 4 was given for severe fretting corrosion. The head and trunnion taper angles were measured using a roundness machine (Talyrond 585, Taylor Hobson, UK). Taper angle clearance is defined as the difference between the head and trunnion taper angles. Results. The fretting corrosion scores were significantly lower for the stems in the ceramic head cohort when compared with the CoCr cohort. Stem alloy and stem flexural rigidity were predictors of stem fretting and corrosion damage in the ceramic head cohort, however not for the CoCr cohort. The mechanism of mechanically assisted crevice corrosion was the same in the two cohorts, with the exception being that, only one of the two surfaces (i.e., the trunnion) engaged in the oxide abrasion and repassivation process in the ceramic cohort. There was no significant correlation observed between taper angle clearance and visual fretting-corrosion scores for trunnions in the ceramic cohort (Rho=−0.17), trunnions in the CoCr cohort (Rho=0.24), or the femoral head tapers in the metal cohort (Rho=−0.05) (Figure 1). Additionally, visual fretting-corrosion scores in the metal cohort were similar between components with distal contact (negative taper angle clearance) and components with proximal contact (positive taper angle clearance) (p=0.43 and 0.56 for head and trunnion scores, respectively). Conclusions. The results suggest that by using a ceramic femoral head, CoCr fretting and corrosion from the modular head-neck taper may be mitigated, but not completely eliminated. The findings of this study support further study of the role of ceramic heads in potentially reducing femoral taper corrosion. Taper angle clearance was not correlated with the visual fretting-corrosion scores in the ceramic or CoCr cohort in the present study. The effects of taper angle clearance may not be significant compared to other factors leading to material loss or the lack of correlation may be due to the limitations in the visual scoring method. Research is underway quantify the volume of material release from explants to better understand the reasons for reduced fretting and corrosion observed in the ceramic head cohort


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 52 - 52
1 Jan 2016
Takigami I Otsuka H Iwase T Fujita H Akiyama H
Full Access

Background. Impaction bone grafting (IBG) using a circumferential metal mesh is one of the options that allow restoration of the femoral bone stock and stability of the implant in hip arthroplasty. Here we examined the clinical and radiographic outcome of this procedure with a cemented stem and analyzed experimentally the initial stability of mesh–grafted bone–cemented stem complexes. Methods. We retrospectively reviewed 6 hips (6 patients) that had undergone femoral revisions with a circumferential metal mesh, impacted bone allografts, and a cemented stem. The mean follow-up period was 2.9 years (range, 1.4–3.8 years). Hip joint function was evaluated with the Japanese Orthopaedic Association hip score, and radiographic changes were determined from radiographs. The initial resistance of cemented stem complexes to axial and rotational force was measured in a composite bone model with various segmental losses of the proximal femur. Results. The hip score improved from 50 (range, 10–84) preoperatively to a mean of 74 (range, 67–88) at the final follow-up. The overall implant survival rate was 100% at 4 years when radiological loosening or revision for any reason was used as the endpoint. No stem subsided more than 3 mm vertically within 1 year after implantation. Computed tomography showed reconstitution of the femoral canal in a metal mesh. In mechanical analyses, there was no influence on the stem stability to axial compression during the repeated axial compression test between IBG reconstruction rates. On the other hand, for IBG reconstruction rate of 66.7%, grafted bone-Sawbone juntion was buckled under the axial breaking force. In contrast, under rotational load, the rotation angles of the stainless mesh were strongly affected by the IBG reconstruction rate. Conclusions. The short-term results show good outcomes for reconstruction of proximal bone loss with impaction bone allografts and a circumferential mesh. The procedure should be applied in cases where the circumferential proximal bone loss is less than half of the stem length implanted