To explore the efficacy of extracorporeal shockwave therapy (ESWT) in the treatment of osteochondral defect (OCD), and its effects on the levels of transforming growth factor (TGF)-β, bone morphogenetic protein (BMP)-2, -3, -4, -5, and -7 in terms of cartilage and bone regeneration. The OCD lesion was created on the trochlear groove of left articular cartilage of femur per rat (40 rats in total). The experimental groups were Sham, OCD, and ESWT (0.25 mJ/mm2, 800 impulses, 4 Hz). The animals were euthanized at 2, 4, 8, and 12 weeks post-treatment, and histopathological analysis, micro-CT scanning, and immunohistochemical staining were performed for the specimens.Aims
Methods
Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA). Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.Aims
Methods
Tendon diseases are prevalent health concerns for which current therapies present limited success, in part due to the intrinsically low regenerative ability of tendons. Therefore, tissue engineering presents a potential to improve this outcome. Here, we hypothesize that a concurrent control over both biophysical and biochemical stimuli will boost the tenogenic commitment of stem cells, thus promoting regeneration. To achieve this, we combine molecularly imprinted nanoparticles (MINPs), which act as artificial amplifiers for endogenous growth factor (GF) activity, with bioinspired anisotropic hydrogels. 2. to manufacture 3D tenogenic constructs. MINPs were solid phase-imprinted using a TGF-β3 epitope as template and their affinity for the target was assessed by SPR and dot blot. Magnetically-responsive microfibers were produced by cryosectioning electrospun meshes containing iron oxide nanoparticles. The constructs were prepared by encapsulating adipose tissue-derived stem cells (ASCs), microfibers, and MINPs within gelatin hydrogels, while aligning the microfibers with an external magnetostatic field during gelation. This allows an effective modulation of hydrogel fibrillar topography, mimicking the native tissue's anisotropic architecture. Cell responses were analyzed by multiplex immunoassay, quantitative polymerase chain reaction, and immunocytochemistry. MINPs showed an affinity for the template comparable to monoclonal antibodies. Encapsulated ASCs acquired an elongated shape and predominant orientation along the alignment direction. Cellular studies revealed that combining MINPs with aligned microfibers increased TGF-β signaling via non-canonical Akt/ERK pathways and upregulated tendon-associated gene expression, contrasting with randomly oriented gels.
Tendons display poor intrinsic healing properties and are difficult to treat[1]. Prior in vitro studies[2] have shown that, by targeting the Activin A receptor with magnetic nanoparticles (MNPs), it is possible to remotely induce the tenogenic differentiation of human adipose stem cells (hASCs). In this study, we investigated the tenogenic regenerative potential of remotely-activated MNPs-labelled hASCs in an in vivo rat model. We consider the potential for magnetic controlled nanoparticle mediated tendon repair strategies. hASCs were labelled with 250 nm MNPs functionalized with anti-Activin Receptor IIA antibody. Using a rapid curing fibrin gel as delivery method, the MNPs-labelled cells were delivered into a Ø2 mm rat patellar tendon defect. The receptor was then remotely stimulated by exposing the rats to a variable magnetic gradient (1.28T), using a customised magnetic box. The stimulation was performed 1 hour/day, 3 days/week up to 8 weeks. Tenogenesis, iron deposition and collagen alignment were assessed by histological staining and IHC. Inflammation mediators levels were assessed by ELISA and IHC. The presence of human cells in tendons after 4 and 8 weeks was assessed by FISH analysis. Histological staining showed a more organised collagen arrangement in animals treated with MNPs-labelled cells compared to the controls. IHC showed positive expression of tenomodulin and scleraxis in the experimental groups.
Treatment for delayed wound healing resulting from peripheral vascular diseases and diabetic foot ulcers remains a challenge. A novel surgical technique named ‘tibial cortex transverse transport’ (TTT) has been developed for treating peripheral ischaemia, with encouraging clinical effects. However, its underlying mechanisms remain unclear. In the present study, we explored the potential biological mechanisms of TTT surgery using various techniques in a rat TTT animal model. A novel rat model of TTT was established with a designed external fixator, and effects on wound healing were investigated. Laser speckle perfusion imaging, vessel perfusion, histology, and immunohistochemistry were used to evaluate the wound healing processes.Aims
Methods
Bone metastasis ultimately occurs due to a complex multistep process, during which the interactions between cancer cells and bone microenvironment play important roles. Prior to colonization of the bone, cancer cells must succeed through a series of steps that will allow them to gain migratory and invasive properties; epithelial-to-mesenchymal transition (EMT) is known to be integral here. The aim of this study was to determine the effects of G protein subunit alpha Q (GNAQ) on the mechanisms underlying bone metastasis through EMT pathway. A total of 80 tissue samples from patients who were surgically treated during January 2012 to December 2014 were used in the present study. Comparative gene analysis revealed that the GNAQ was more frequently altered in metastatic bone lesions than in primary tumour sites in lung cancer patients. We investigated the effects of GNAQ on cell proliferation, migration, EMT, and stem cell transformation using lung cancer cells with GNAQ-knockdown. A xenograft mouse model tested the effect of GNAQ using micro-CT analyses and histological analyses.Aims
Methods
Dystrophic calcification (DC) is the abnormal appearance of calcified deposits in degenerating tissue, often associated with injury. Extensive DC can lead to heterotopic ossification (HO), a pathological condition of ectopic bone formation. The highest rate of HO was found in combat-related blast injuries, a polytrauma condition with severe muscle injury. It has been noted that the incidence of HO significantly increased in the residual limbs of combat-injured patients if the final amputation was performed within the zone of injury compared to that which was proximal to the zone of injury. While aggressive limb salvage strategies may maximize the function of the residual limb, they may increase the possibility of retaining non-viable muscle tissue inside the body. In this study, we hypothesized that residual dead muscle tissue at the zone of injury could promote HO formation. We tested the hypothesis by investigating the cellular and molecular consequences of implanting devitalized muscle tissue into mouse muscle pouch in the presence of muscle injury induced by cardiotoxin.Aims
Methods
Surgeons and most engineers believe that bone compaction improves implant primary stability without causing undue damage to the bone itself. In this study, we developed a murine distal femoral implant model and tested this dogma. Each mouse received two femoral implants, one placed into a site prepared by drilling and the other into the contralateral site prepared by drilling followed by stepwise condensation.Aims
Methods
Mesenchymal stem cells (MSC) have a well recognised potential for tissue repair. This potential is two pronged: they can differentiate into the functional cell types of the damaged tissues and they can support tissue recovery by secreting trophic factors, depositing an extracellular matrix (ECM) and dampening inflammation. Three-dimensional microscopy recently shown that MSCs in the bone marrow create an intricate proteo-cellular scaffold with the ECM forming an interconnected cellular continuum whose structure is guided by the deposited ECM. This proteo-cellular scaffold controls bone marrow functions from hematopoiesis to osteogenesis. In the current study we aimed to optimise ECM production under in vitro conditions by immortalised MSCs with the view that the generated ECM can be utilised for tissue repair. With immunocytochemistry we determined the deposition of bone marrow-characteristic ECM proteins: collagen I, III, IV, V, VI, laminin and fibronectin. While primary MSCs produced slightly higher amount ECM proteins than immortalised MSCs, the relative abundancy of the ECM proteins was very similar. In order to isolate the ECM, we optimised a decellularisation method based on gentle lysis with sodium-deoxycholate and DNase digestion.
The objectives of this study were: 1) to examine osteophyte formation, subchondral bone advance, and bone marrow lesions (BMLs) in osteoarthritis (OA)-prone Hartley guinea pigs; and 2) to assess the disease-modifying activity of an orally administered phosphocitrate ‘analogue’, Carolinas Molecule-01 (CM-01). Young Hartley guinea pigs were divided into two groups. The first group (n = 12) had drinking water and the second group (n = 9) had drinking water containing CM-01. Three guinea pigs in each group were euthanized at age six, 12, and 18 months, respectively. Three guinea pigs in the first group were euthanized aged three months as baseline control. Radiological, histological, and immunochemical examinations were performed to assess cartilage degeneration, osteophyte formation, subchondral bone advance, BMLs, and the levels of matrix metalloproteinse-13 (MMP13) protein expression in the knee joints of hind limbs.Objectives
Methods
After an injury, the biological reattachment of tendon to bone is a challenge because healing takes place between a soft (tendon) and a hard (bone) tissue. Even after healing, the transition zone in the enthesis is not completely regenerated, making it susceptible to re-injury. In this study, we aimed to regenerate Achilles tendon entheses (ATEs) in wounded rats using a combination of kartogenin (KGN) and platelet-rich plasma (PRP). Wounds created in rat ATEs were given three different treatments: kartogenin platelet-rich plasma (KGN-PRP); PRP; or saline (control), followed by histological and immunochemical analyses, and mechanical testing of the rat ATEs after three months of healing.Objectives
Methods
For unrepairable nerve defects, to date autogenous nerves are considered the golden standard, but donor site morbidity, limited availability and operation time prolongation are relevant problem. Acellular nerves from cadaveric donor, introduced since more than one decade ago, represent a novel promising alternative to bridge unrepairable nerve gaps. Aim of this study is to provide a new tool to ameliorate the assistance of the numerous patients suffering from traumatic, oncological and jatrogenic nerve lesions. For this purpose, our project is promoting a progress beyond the state of the art of nerve gaps bridging surgery by developing a new technique to obtain acellular nerve allografts (ANAs). Several methods to examine the effect of detergents on nerve tissue morphology and protein composition have been previously reported. Most of them are too expensive and time consuming. The presented novel decellularization technique is a modification of the Michigan detergent-based organic material removal, to speed up myelin and cellular debris detachment. The previously published Hudson's method. 1. has been chosen as control of the decellularization process). To validate the new nerve decellularization method, in terms of histological characteristics, outcomes were estimated through morphological and immunohistochemical studies in vitro and in vivo. The in vivo study consisted of a 1 cm defect in the tibial nerve of 3 new Zealand rabbits. This nerve defect was microsurgically replaced with a “Rizzoli” acellular nerve allograft. Rabbits were sacrificed 12 weeks after surgery. Endpoints were nerve conduction studies and histology. Histological analysis of processed acellular nerve have been performed to evaluate the preservation of the structure and almost complete clearance of donor cells and cellular debris.
We have observed clinical cases where bone is formed in the overlaying muscle covering surgically created bone defects treated with a hydroxyapatite/calcium sulphate biomaterial. Our objective was to investigate the osteoinductive potential of the biomaterial and to determine if growth factors secreted from local bone cells induce osteoblastic differentiation of muscle cells. We seeded mouse skeletal muscle cells C2C12 on the hydroxyapatite/calcium sulphate biomaterial and the phenotype of the cells was analysed. To mimic surgical conditions with leakage of extra cellular matrix (ECM) proteins and growth factors, we cultured rat bone cells ROS 17/2.8 in a bioreactor and harvested the secreted proteins. The secretome was added to rat muscle cells L6. The phenotype of the muscle cells after treatment with the media was assessed using immunostaining and light microscopy.Objectives
Materials and Methods
Hematopoietic stem cells (HSCs) reside within a specialised niche area in the bone marrow (BM). They have tremendous clinical relevance, although HSC expansion and culture ex vivo is not currently possible, reducing BM transplant success. This project expands a novel 3D MSC niche model developed in our lab to include HSCs. MSCs were loaded with green fluorescent magnetic iron oxide (FeO. 3. ) nanoparticles (200 nm diameter) at a concentration of 0.1 mg ml. −1. , and incubated for 30 min over a magnet to enhance cellular uptake. The cells were washed, detached and resuspended, then transferred to a plate with magnets above. Spheroids formed within hours and were implanted into 2 mg ml. −1. collagen gel. HSCs were loaded with nanoparticles via incubation with suspension, and then introduced to the gel containing the spheroid.
To elucidate the effects of age on the expression levels of the receptor activator of the nuclear factor-κB ligand (RANKL) and osteoclasts in the periodontal ligament during orthodontic mechanical loading and post-orthodontic retention. The study included 20 male Sprague-Dawley rats, ten in the young group (aged four to five weeks) and ten in the adult group (aged 18 to 20 weeks). In each rat, the upper-left first molar was subjected to a seven-day orthodontic force loading followed by a seven-day retention period. The upper-right first molar served as a control. The amount of orthodontic tooth movement was measured after seven-day force application and seven-day post-orthodontic retention. The expression levels of RANKL and the tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts were evaluated on day 7 (end of mechanical force loading) and day 14 (after seven days of post-orthodontic retention). Statistical analysis was performed using the Objectives
Materials and Methods
Summary Statement. This work raises the potential of utilizing stem cells to catalyze cartilage regeneration by a minimal number of neonatal chondrocytes via controlling cell distribution in 3D matrices, and may solve the challenge of scarce donor availability associated with cell-based therapy. Introduction. Cartilage loss is a leading cause of disability among adults and represents a huge socio-economical burden. Allogeneic neonatal articular chondrocytes (NChons) is a promising cell source for cartilage regeneration because these cells are highly proliferative, immune-privileged, and readily produce abundant cartilage matrix. However, scarce donor availability for NChons greatly hinders their broad clinical application. Besides their ability to differentiate into different tissue types, stem cells may contribute to tissue regeneration through the secretion of paracrine factors. Here we examined the potential for using a minimal number of NChons to catalyze cartilage tissue formation by co-culturing them with adipose-derived stem cells (ADSCs) in 3D biomimetic hydrogels. Materials & Methods. NChons were isolated from articular cartilage of a three-day old calf. Human adult ADSCs were expanded to passage 5. Cells were photo-encapsulated in a hydrogel consisting of 7% w/v poly(ethylene glycol diacrylate) and 3% w/v chondroitin sulfate-methacrylate. To examine the effects of different paracrine concentrations, NChons and ADSCs were co-cultured in three different co-culture models: 1) cells cultured with conditioned medium supplementation from the other cell type (CM), 2) bi-layered co-culture confining each cell type to its own layer (BI), and 3) mixed cell co-culture at different ratios (75C:25A, 50C:50A, 25C:75A, 10C:90A). Cell-hydrogel constructs were cultured for 3 weeks in chondrogenic medium with 10ng/ml TGF-β3 and analyzed for biochemical content (DNA, sulfated glycosaminoglycan (sGAG), and collagen) and immunostaining. Fluorescent cell membrane labeling was used to identify ADSCs in mixed co-culture. To quantify interaction synergy, the interaction index, defined as the measured biochemical content in the mixed co-culture normalised by the expected value based on cell ratio and the measured content in the controls, was calculated (2). Statistical significance (∗) was set to p<0.05. Results. At day 21, mixed co-culture with as low as 25% NChons led to higher cell number and cartilage matrix content than NChon control. ADSC control had significantly lower matrix content. In mixed co-culture, the interaction index for DNA, sGAG, and collagen increased with an increase in ADSC ratio, reaching up to 5–6 at 90% ADSCs.
Summary Statement. Differential expression of canonical and noncanonical Wnt signalling along cartilage canals and osteochondral junctions is dependent on age. Increased gene expression of PTHrP along cartilage canals and Ihh along osteochondral junctions suggests paracrine feedback in articular-epiphyseal cartilage. Introduction. Wnt signaling has been shown to regulate chondrocyte differentiation during pre-/post-natal cartilage development. In addition, parathyroid-related peptide(PTHrP) and Indian hedgehog(Ihh) create a negative feedback loop in growth cartilage, but less is known in articular cartilage. The objective of this study was to elucidate expression of regulatory molecules in chondrocytes surrounding cartilage canals and osteochondral junctions during neonatal and pre-adolescent development. We hypothesised there would be increased expression of canonical Wnt signalling molecules and Ihh in osteochondral junction chondrocytes compared to cartilage canal chondrocytes. In addition, we hypothesised that Wnt signaling and PTHrP expression would be greater in neonates than pre-adolescents. Patients & Methods. Osteochondral samples were obtained(IACUC-approved) from normal femoropatellar joints of 14 euthanised immature horses(6 neonates, 8 pre-adolescents). Samples were frozen in OCT for laser capture microdissection(LCM) or fixed in 4% paraformaldehyde and paraffin-embedded for immunohistochemistry. Chondrocytes surrounding cartilage canals and osteochondral junctions were captured using LCM. Following RNA isolation, equine-specific β-catenin, Wnt-4, Wnt-5b, Wnt-11, Dickkopf-1(Dkk-1), low-density lipoprotein receptor-related protein-4,-6(Lrp4, Lrp6), Axin1, Wnt inhibitory factor-1(WIF)-1, secreted Frizzled-related protein-1,-3,-5(sFRP), retinoic acid receptor gamma(RARG), RAR-inducible serine carboxypeptidase(SC-PEP), Ihh, PTHrP, VEGF, PDGF, MMP-13, and 18S mRNA expression levels were evaluated by two-step real-time qPCR. Following immunohistochemistry using rabbit polyclonal or mouse monoclonal primary antibodies (confirmed by Western blot), spatial tissue protein expression was scored (0–3). Statistical analysis included Wilcoxon signed rank test(paired samples) or rank sum test(unpaired samples)(P<0.05). Results. Gene expression in chondrocytes along cartilage canals was significantly higher for PTHrP, β-catenin, Lrp6, Axin1, sFRP5, RARgamma, and SC-PEP than osteochondral junctions. Conversely, gene expression of Ihh, Wnt4, Wnt11, sFRP3, and VEGF were higher in osteochondral junction chondrocytes than cartilage canals. There was higher protein expression of β-catenin, PDGF, VEGF, and MMP-13 along osteochondral junctions than cartilage canals of pre-adolescents. Neonates had higher gene expression of PTHrP, Wnt-5b, sFRP3, Lrp6, and RARG in cartilage canal chondrocytes than pre-adolescents, while Ihh, Wnt-11, Lrp4, and Dkk1 were significantly higher in pre-adolescents.
Summary Statement. Wnt/β-catenin gene expression is altered in early osteochondrosis, particularly in chondrocytes surrounding cartilage canals, and may be associated with disease initiation and/or pathogenesis. Introduction. Osteochondrosis (OC) is a disease of articular cartilage development involving abnormal endochondral ossification along the osteochondral junction. Associated etiological factors of OC have included rapid growth rate, biomechanical trauma, abnormal collagen turnover, aberrant paracrine signaling, and altered blood supply involving cartilage canals. Wnt signaling regulates chondrocyte differentiation/maturation during pre-/post-natal cartilage development. Gene expression profiling of leukocytes has revealed aberrant expression of Wnt/β-catenin pathway in early OC. The objective of this study was to elucidate the expression of molecules associated with Wnt/β-catenin signaling in early OC using an equine model. Our hypothesis was that there would be increased expression of Wnt signaling molecules in chondrocytes adjacent to cartilage canals and the osteochondral junction in early OC lesions compared to normal controls. Patients & Methods. Osteochondral samples were obtained (IACUC-approved) from femoropatellar joints of 15 euthanised immature horses (1–6 months old). Disease status was determined based on histology of osteochondral junctions (7 early OC, 8 normal controls). Osteochondral sections were frozen in OCT for laser capture microdissection (LCM) or fixed in 4% paraformaldehyde and paraffin-embedded for immunohistochemistry. Chondrocytes surrounding cartilage canals and osteochondral junctions were captured using LCM. RNA isolation and reverse transcription were performed. Equine-specific β-catenin, Wnt-4, Wnt-5b, Wnt-11, Dickkopf-1(Dkk-1), Lrp-4 and -6, Axin1, Wnt inhibitory factor(WIF)-1, secreted Frizzled-related protein-1, -3, and -5(Sfrp), retinoic acid receptor-gamma(RARG), RAR-inducible serine carboxypeptidase(SC-PEP) and 18S mRNA expression was evaluated by two-step real-time qPCR. Spatial protein expression was determined by immunohistochemistry using rabbit polyclonal (β-catenin, Wnt-11) or mouse monoclonal (Wnt-4, Dkk1) primary antibodies (confirmed by Western blot). Statistical analysis of early OC vs. normal controls was performed using Wilcoxon rank sum test (p <0.05). Results. Chondrocytes adjacent to cartilage canals had significantly increased gene expression of β-catenin (p=0.026), Wnt-5b (p=0.04), Lrp6 (p=0.026), WIF-1 (p=0.026), Dkk-1 (p=0.015), Axin1 (0.041), and SC-PEP (p=0.026), and decreased expression of Wnt-11 (p=0.04), in OC vs. normal controls. OC chondrocytes along osteochondral junctions had significantly increased gene expression of β-catenin (p=0.004) and SC-PEP (p=0.026), with a trend for increased Wnt-4 (p= 0.06) and Wnt-5b (p=0.06) compared to normal controls.
Introduction. Mesenchymal stem cells (MSCs) are identified by having the ability to differentiate into various tissues and typically used to generate bone tissue by a process of resembling intramembranous ossification, namely by direct osteoblastic differentiation. However, most bones develop by endochondral ossification, namely via remodeling of hypertrophic cartilaginous templates. To date, reconstruction of bone defects by endochondral ossification using mesenchymal stem cell-derived chondrocytes (MSC-DCs) have not been reported. The purpose of this study was to evaluate the effects of the transplantation of MSC-DCs on bone healing in segmental defects in rat femurs. Methods. Segmental bone defects (5, 10, 15-millimeter) were produced in the mid-shaft of the femur of the Fisher 344 rats and stabilised with an external fixator. Bone marrow was aspirated from the rat's femur and tibia at 4 weeks before operation. MSCs were isolated and grown in culture and seeded on a Poly dl-lactic-co glycolic acid (PLGA) scaffold. Subsequently, the scaffold was cultured using chondrogenic inducing medium for 21 days. The characteristics of the PLGA scaffold are radiolucent and to be absorbed in about 4 months. The Treatment Group received MSC-DCs, seeded on a PLGA scaffold, locally at the site of the bone defect, and Control Group received scaffold only. The healing processes were monitored radiographically and studied biomechanically and histologically. Results. 5-millimeter defect model: The bone defects in the Treatment Group healed radiographically with a bridging callus formation at 4 weeks after the procedure. Micro-CT scans showed that newly formed bone volume in the Treatment Group at 16 weeks was 1.5 times larger than that of the unaffected side. Biomechanical testing revealed that the Treatment Group showed more than 100% higher bending strength compared to the unaffected side at 8 weeks after the procedure. Histological examination showed that the implanted scaffold of the Treatment Group were covered with recipient periosteum-derived bridging callus and filled with cancellous bone-like tissues derived from endochondral ossification. Bone marrow was reconstituted at about 16 weeks after the procedure.
Animal studies examining tendon-bone healing have demonstrated that the overall structure, composition, and organization of direct type entheses are not regenerated following repair. We examined the effect of Low-Intensity Pulsed Ultrasound (LIPUS) on tendon-bone healing. LIPUS may accelerate and augment the tendon-bone healing process through alteration of critical molecular expressions. Eight skeletally mature wethers, randomly allocated to either control group (n=4) or LIPUS group (n=4), underwent rotator cuff surgery following injury to the infraspinatus tendon. All animals were sacrificed 28 days post surgery to allow examination of early effects of LIPUS. Humeral head – infraspinatus tendon constructs were harvested and processed for histology and immunohistochemical staining for BMP2, Smad4, VEGF and RUNX2. All the growth factors were semiquantitative evaluated. T-tests were used to examine differences which were considered significant at p < 0.05. Levene's Test (p < 0.05) was used to confirm variance homogeneity of the populations. The surgery and LIPUS treatment were well tolerated by all animals. Placement of LIPUS sensor did not unsettle the animals. Histologic appearance at the tendon-bone interface in LIPUS treated group demonstrated general improvement in appearance compared to controls. Generally a thicker region of newly formed woven bone, morphologically resembling trabecular bone, was noted at the tendon-bone interface in the LIPUS-treated group compared to the controls. Structurally, treatment group also showed evidence of a mature interface between tendon and bone as indicated by alignment of collagen fibres as visualized under polarized light. Immunohistochemistry revealed an increase in the protein expression patterns of VEGF (p = 0.038), RUNX2 (p = 0.02) and Smad4 (p = 0.05) in the treatment group. There was no statistical difference found in the expression patterns of BMP2. VEGF was positively stained within osteoblasts in newly formed bone, endothelial cells and some fibroblasts at the interface and focally within fibroblasts around the newly formed vessels. Expression patterns of RUNX2 were similar to that of BMP-2; the staining was noted in active fibroblasts found at the interface as well as in osteoblast-like cells and osteoprogenitor cells.