Advertisement for orthosearch.org.uk
Results 1 - 20 of 1032
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 6 | Pages 548 - 554
1 Jun 2024
Ohyama Y Minoda Y Masuda S Sugama R Ohta Y Nakamura H

Aims. The aim of this study was to compare the pattern of initial fixation and changes in periprosthetic bone mineral density (BMD) between patients who underwent total hip arthroplasty (THA) using a traditional fully hydroxyapatite (HA)-coated stem (T-HA group) and those with a newly introduced fully HA-coated stem (N-HA group). Methods. The study included 36 patients with T-HA stems and 30 with N-HA stems. Dual-energy X-ray absorptiometry was used to measure the change in periprosthetic BMD, one and two years postoperatively. The 3D contact between the stem and femoral cortical bone was evaluated using a density-mapping system, and clinical assessment, including patient-reported outcome measurements, was recorded. Results. There were significantly larger contact areas in Gruen zones 3, 5, and 6 in the N-HA group than in the T-HA group. At two years postoperatively, there was a significant decrease in BMD around the proximal-medial femur (zone 6) in the N-HA group and a significant increase in the T-HA group. BMD changes in both groups correlated with BMI or preoperative lumbar BMD rather than with the extent of contact with the femoral cortical bone. Conclusion. The N-HA-coated stem showed a significantly larger contact area, indicating a distal fixation pattern, compared with the traditional fully HA-coated stem. The T-HA-coated stem showed better preservation of periprosthetic BMD, two years postoperatively. Surgeons should consider these patterns of fixation and differences in BMD when selecting fully HA-coated stems for THA, to improve the long-term outcomes. Cite this article: Bone Joint J 2024;106-B(6):548–554


Bone & Joint Open
Vol. 5, Issue 4 | Pages 286 - 293
9 Apr 2024
Upadhyay PK Kumar V Mirza SB Shah N

Aims. This study reports the results of 38 total hip arthroplasties (THAs) in 33 patients aged less than 50 years, using the JRI Furlong hydroxyapatite ceramic (HAC)-coated femoral component. Methods. We describe the survival, radiological, and functional outcomes of 33 patients (38 THAs) at a mean follow-up of 27 years (25 to 32) between 1988 and 2018. Results. Of the surviving 30 patients (34 THAs), there were four periprosthetic fractures: one underwent femoral revision after 21 years, two had surgical fixation as the stem was deemed stable, and one was treated nonoperatively due to the patient’s comorbidities. The periprosthetic fracture patients showed radiological evidence of change in bone stock around the femoral stem, which may have contributed to the fractures; this was reflected in change of the canal flare index at the proximal femur. Two patients (two hips) were lost to follow-up. Using aseptic loosening as the endpoint, 16 patients (18 hips; 48%) needed acetabular revision. None of the femoral components were revised for aseptic loosening, demonstrating 100% survival. The estimate of the cumulative proportion surviving for revisions due to any cause was 0.97 (standard error 0.03). Conclusion. In young patients with high demands, the Furlong HAC-coated femoral component gives excellent long-term results. Cite this article: Bone Jt Open 2024;5(4):286–293


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 110 - 114
1 Mar 2024
Yee AHF Chan VWK Fu H Chan P Chiu KY

Aims

The aim of this study was to evaluate the survival of a collarless, straight, hydroxyapatite-coated femoral stem in total hip arthroplasty (THA) at a minimum follow-up of 20 years.

Methods

We reviewed the results of 165 THAs using the Omnifit HA system in 138 patients, performed between August 1993 and December 1999. The mean age of the patients at the time of surgery was 46 years (20 to 77). Avascular necrosis was the most common indication for THA, followed by ankylosing spondylitis and primary osteoarthritis. The mean follow-up was 22 years (20 to 31). At 20 and 25 years, 113 THAs in 91 patients and 63 THAs in 55 patients were available for review, respectively, while others died or were lost to follow-up. Kaplan-Meier analysis was performed to evaluate the survival of the stem. Radiographs were reviewed regularly, and the stability of the stem was evaluated using the Engh classification.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 115 - 120
1 Mar 2024
Ricotti RG Flevas DA Sokrab R Vigdorchik JM Mayman DJ Jerabek SA Sculco TP Sculco PK

Aims

Periprosthetic femoral fracture (PPF) is a major complication following total hip arthroplasty (THA). Uncemented femoral components are widely preferred in primary THA, but are associated with higher PPF risk than cemented components. Collared components have reduced PPF rates following uncemented primary THA compared to collarless components, while maintaining similar prosthetic designs. The purpose of this study was to analyze PPF rate between collarless and collared component designs in a consecutive cohort of posterior approach THAs performed by two high-volume surgeons.

Methods

This retrospective series included 1,888 uncemented primary THAs using the posterior approach performed by two surgeons (PKS, JMV) from January 2016 to December 2022. Both surgeons switched from collarless to collared components in mid-2020, which was the only change in surgical practice. Data related to component design, PPF rate, and requirement for revision surgery were collected. A total of 1,123 patients (59.5%) received a collarless femoral component and 765 (40.5%) received a collared component. PPFs were identified using medical records and radiological imaging. Fracture rates between collared and collarless components were analyzed. Power analysis confirmed 80% power of the sample to detect a significant difference in PPF rates, and a Fisher’s exact test was performed to determine an association between collared and collarless component use on PPF rates.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 81 - 88
1 Mar 2024
Lustig S Cotte M Foissey C Asirvatham RD Servien E Batailler C

Aims

The benefit of a dual-mobility acetabular component (DMC) for primary total hip arthroplasties (THAs) is controversial. This study aimed to compare the dislocation and complication rates when using a DMC compared to single-mobility (SM) acetabular component in primary elective THA using data collected at a single centre, and compare the revision rates and survival outcomes in these two groups.

Methods

Between 2010 and 2019, 2,075 primary THAs using either a cementless DM or SM acetabular component were included. Indications for DMC were patients aged older than 70 years or with high risk of dislocation. All other patients received a SM acetabular component. Exclusion criteria were cemented implants, patients treated for femoral neck fracture, and follow-up of less than one year. In total, 1,940 THAs were analyzed: 1,149 DMC (59.2%) and 791 SM (40.8%). The mean age was 73 years (SD 9.2) in the DMC group and 57 years (SD 12) in the SM group. Complications and revisions have been analyzed retrospectively.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 104 - 109
1 Mar 2024
Sugano N Maeda Y Fuji H Tamura K Nakamura N Takashima K Uemura K Hamada H

Aims

Femoral component anteversion is an important factor in the success of total hip arthroplasty (THA). This retrospective study aimed to investigate the accuracy of femoral component anteversion with the Mako THA system and software using the Exeter cemented femoral component, compared to the Accolade II cementless femoral component.

Methods

We reviewed the data of 30 hips from 24 patients who underwent THA using the posterior approach with Exeter femoral components, and 30 hips from 24 patients with Accolade II components. Both groups did not differ significantly in age, sex, BMI, bone quality, or disease. Two weeks postoperatively, CT images were obtained to measure acetabular and femoral component anteversion.


The Bone & Joint Journal
Vol. 106-B, Issue 2 | Pages 136 - 143
1 Feb 2024
van der Lelij TJN Marang-van de Mheen PJ Kaptein BL Koster LA Ljung P Nelissen RGHH Toksvig-Larsen S

Aims. The objective of this study was to compare the two-year migration and clinical outcomes of a new cementless hydroxyapatite (HA)-coated titanium acetabular shell with its previous version, which shared the same geometrical design but a different manufacturing process for applying the titanium surface. Methods. Overall, 87 patients undergoing total hip arthroplasty (THA) were randomized to either a Trident II HA or Trident HA shell, each cementless with clusterholes and HA-coating. All components were used in combination with a cemented Exeter V40 femoral stem. Implant migration was measured using radiostereometric analysis (RSA), with radiographs taken within two days of surgery (baseline), and at three, 12, and 24 months postoperatively. Proximal acetabular component migration was the primary outcome measure. Clinical scores and patient-reported outcome measures (PROMs) were collected at each follow-up. Results. Mean proximal migrations at three, 12, and 24 months were 0.08 mm (95% confidence interval (CI) 0.03 to 0.14), 0.11 mm (95% CI 0.06 to 0.16), and 0.14 mm (95% CI 0.09 to 0.20), respectively, in the Trident II HA group, versus 0.11 mm (95% CI 0.06 to 0.16), 0.12 mm (95% CI 0.07 to 0.17), and 0.14 mm (95% CI 0.09 to 0.19) in the Trident HA group (p = 0.875). No significant differences in translations or rotations between the two designs were found in any other direction. Clinical scores and PROMs were comparable between groups, except for an initially greater postoperative improvement in Hip disability and Osteoarthritis Outcome Symptoms score in the Trident HA group (p = 0.033). Conclusion. The Trident II clusterhole HA shell has comparable migration with its predecessor, the Trident hemispherical HA cluster shell, suggesting a similar risk of long-term aseptic loosening. Cite this article: Bone Joint J 2024;106-B(2):136–143


Bone & Joint 360
Vol. 13, Issue 1 | Pages 13 - 16
1 Feb 2024

The February 2024 Hip & Pelvis Roundup360 looks at: Trial of vancomycin and cefazolin as surgical prophylaxis in arthroplasty; Is preoperative posterior femoral neck tilt a risk factor for fixation failure? Cemented versus uncemented hemiarthroplasty for displaced intracapsular fractures of the hip; Periprosthetic fractures in larger hydroxyapatite-coated stems: are collared stems a better alternative for total hip arthroplasty?; Postoperative periprosthetic fracture following hip arthroplasty with a polished taper slip versus composite beam stem; Is oral tranexamic acid as good as intravenous?; Stem design and the risk of early periprosthetic femur fractures following THA in elderly patients; Does powered femoral broaching compromise patient safety in total hip arthroplasty?


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 111 - 111
2 Jan 2024
Barbosa F Garrudo FFF Alberte P Carvalho M Ferreira FC Silva JC
Full Access

The current procedures being applied in the clinical setting to address osteoporosis-related delayed union and nonunion bone fractures have been found to present mostly suboptimal outcomes. As a result, bone tissue engineering (BTE) solutions involving the development of implantable biomimetic scaffolds to replace damaged bone and support its regeneration are gaining interest. The piezoelectric properties of the bone tissue, which stem primarily from the significant presence of piezoelectric type I collagen fibrils in the tissue's extracellular matrix (ECM), play a key role in preserving the bone's homeostasis and provide integral assistance to the regeneration process. However, despite their significant potential, these properties of bone tend to be overlooked in most BTE-related studies. In order to bridge this gap in the literature, novel hydroxyapatite (HAp)-filled osteoinductive and piezoelectric poly(vinylidene fluoride-co-tetrafluoroethylene) (PVDF-TrFE) electrospun nanofibers were developed to replicate the bone's fibrous ECM composition and electrical features. Different HAp nanoparticle concentrations (1–10%, wt%) were tested to assess their effect on the physicochemical and biological properties of the resulting fibers. The fabricated scaffolds displayed biomimetic collagen fibril-like diameters, while also presenting mechanical features akin to type I collagen. The increase in HAp presence was found to enhance both surface and piezoelectric properties of the fibers, with an improvement in scaffold wettability and increase in β-phase nucleation (translating to increased piezoelectricity) being observed. The HAp-containing scaffolds also exhibited an augmented bioactivity, with a more comprehensive surface mineralization of the fibers being obtained for the scaffolds with the highest HAp concentrations. Improved osteogenic differentiation of seeded human mesenchymal stem/stromal cells was achieved with the addition of HAp, as confirmed by an increased ALP activity, calcium deposition and upregulated expression of key osteogenic markers. Overall, our findings highlight, for the first time, the potential of combining PVDF-TrFE and HAp to develop electroactive and osteoinductive nanofibers for BTE. Acknowledgements: The authors thank FCT for funding through the projects InSilico4OCReg (PTDC/EME-SIS/0838/2021), OptiBioScaffold (PTDC/EME-SIS/4446/2020) and BioMaterARISES (EXPL/CTM-CTM/0995/2021), the PhD scholarship (2022.10572.BD) and to the research institutions iBB (UIDB/04565/2020 and UIDP/04565/2020) and Associate Laboratory i4HB (LA/P/0140/2020)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 61 - 61
2 Jan 2024
Graziani G
Full Access

Functionalization of biomimetic nanomaterials allows to reproduce the composition of native bone, permitting better regeneration, while nanoscale surface morphologies provide cues for cell adhesion, proliferation and differentiation. Functionalization of 3D printed and bioprinted constructs, by plasma-assisted deposition of calcium phosphates-based (CaP) nanostructured coatings and by nanoparticles, respectively, will be presented. Stoichiometric and ion doped CaP- based nanocoatings, including green materials (mussel seashells and cuttlefish bone), will be introduced to guide tissue regeneration. We will show interactions between biomimetic surfaces and MSCs to address bone regeneration and SAOS-2 cells for bone tumor models. Our results show that combining AM and nanostructured biomimetic films permits to reproduce the architecture and the mechanical and compositional characteristics of bone. Stability behavior of the coatings, as well as MSCs behavior strongly depend on the starting CaP material, with more soluble CaPs and ion-doped ones showing better biological behavior. Green materials appear promising, as biomimetic films can be successfully obtained upon conversion of the marine precursors into hydroxyapatite. Last-not-least, nanoparticles-loaded scaffolds could be bioprinting without loss of cell viability, but ink characteristics depend on ion-doping as demonstrated for SAOS-2 cells over 14 days of culture. Biomimetic nanomaterials for functionalization in AM is a promising approach for bone modelling and regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 123 - 123
2 Jan 2024
Gögele C Müller S Wiltzsch S Lenhart A Schäfer-Eckart K Schulze-Tanzil G
Full Access

The regenerative capacity of hyaline cartilage is greatly limited. To prevent the onset of osteoarthritis, cartilage defects have to be properly treated. Cartilage, tissue engineered by mean of bioactive glass (BG) scaffolds presents a promising approach. Until now, conventional BGs have been used mostly for bone regeneration, as they are able to form a hydroxyapatite (HA) layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to compare two BGs based on a novel BG composition tailored specifically for cartilage (CAR12N) and patented by us with conventional BG (BG1393) with a similar topology. The highly porous scaffolds consisting of 100% BG (CAR12N, CAR12N with low Ca2+/Mg2+ and BG1393) were characterized and dynamically seeded with primary porcine articular chondrocytes (pACs) or primary human mesenchymal stem cells (hMSCs) for up to 21 days. Subsequently, cell viability, DNA and glycosaminoglycan contents, cartilage-specific gene and protein expression were evaluated. The manufacturing process led to a comparable high (over 80%) porosity in all scaffold variants. Ion release and pH profiles confirmed bioactivity for them. After both, 7 and 21 days, more than 60% of the total surfaces of all three glass scaffold variants was densely colonized by cells with a vitality rate of more than 80%. The GAG content was significantly higher in BG1393 colonized with pACs. In general, the GAG content was higher in pAC colonized scaffolds in comparison to those seeded with hMSCs. The gene expression of cartilage-specific collagen type II, aggrecan, SOX9 and FOXO1 could be detected in all scaffold variants, irrespectively whether seeded with pACs or hMSCs. Cartilage-specific ECM components could also be detected at the protein level. In conclusion, all three BGs allow the maintenance of the chondrogenic phenotype or chondrogenic differentiation of hMSCs and thus, they present a high potential for cartilage regeneration


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 10 - 10
2 Jan 2024
Tian X Vater C Raina DB Findeisen L Matuszewski L Tägil M Lidgren L Schaser K Disch A Zwingenberger S
Full Access

Although bone morphogenetic protein 2 (BMP-2) has been FDA-approved for spinal fusion for decades, its disadvantages of promoting osteoclast-based bone resorption and suboptimal carrier (absorbable collagen sponge) leading to premature release of the protein limit its clinical applications. Our recent study showed an excellent effect on bone regeneration when BMP-2 and zoledronic acid (ZA) were co-delivered based on a calcium sulphate/hydroxyapatite (CaS/HA) scaffold in a rat critical-size femoral defect model. Therefore, the aim of this study was to evaluate whether local application of BMP-2 and ZA released from a CaS/HA scaffold is favorable for spinal fusion. We hypothesized that CaS/HA mediated controlled co-delivery of rhBMP-2 and ZA could show an improved effect in spinal fusion over BMP-2 alone. 120, 8-week-old male Wistar rats (protocol no. 25-5131/474/38) were randomly divided into six groups in this study (CaS/HA, CaS/HA + BMP-2, CaS/HA + systemic ZA, CaS/HA + local ZA, CaS/HA + BMP-2 + systemic ZA, CaS/HA + BMP-2 + local ZA). A posterolateral spinal fusion at L4 to L5 was performed bilaterally by implanting group-dependent scaffolds. At 3 weeks and 6 weeks, 10 animals per group were euthanized for µCT, histological staining, or mechanical testing. µCT and histological results showed that the CaS/HA + BMP-2 + local ZA group significantly promoted bone regeneration than other treated groups. Biomechanical testing showed breaking force in CaS/HA + BMP + local ZA group was significantly higher than other groups at 6 weeks. In conclusion, the CaS/HA-based biomaterial functionalized with bioactive molecules rhBMP-2 and ZA enhanced bone formation and concomitant spinal fusion outcome. Acknowledgements: Many thanks to Ulrike Heide, Anna-Maria Placht (assistance with surgeries) as well as Suzanne Manthey & Annett Wenke (histology)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 134 - 134
2 Jan 2024
Ghezzi D Sartori M Boi M Montesissa M Sassoni E Fini M Baldini N Cappelletti M Graziani G
Full Access

Prosthetic joint infections represent complications connected to the implantation of biomedical devices, they have high incidence, interfere with osseointegration, and lead to a high societal burden. The microbial biofilm, which is a complex structure of microbial cells firmly attached to a surface, is one of the main issues causing infections. Biofilm- forming bacteria are acquiring more and more resistances to common clinical treatments due to the abuse of antibiotics administration. Therefore, there is increasing need to develop alternative methods exerting antibacterial activities against multidrug-resistant biofilm-forming bacteria. In this context, metal-based coatings with antimicrobial activities have been investigated and are currently used in the clinical practice. However, traditional coatings exhibit some drawbacks related to the insufficient adhesion to the substrate, scarce uniformity and scarce control over the toxic metal release reducing their efficacy. Here, we propose the use of antimicrobial silver-based nanostructured thin films to discourage bacterial infections. Coatings are obtained by Ionized Jet Deposition, a plasma-assisted technique that permits to manufacture films of submicrometric thickness having a nanostructured surface texture, allow tuning silver release, and avoid delamination. To mitigate interference with osseointegration, here silver composites with bone apatite and hydroxyapatite were explored. The antibacterial efficacy of silver films was tested in vitro against gram- positive and gram-negative species to determine the optimal coatings characteristics by assessing reduction of bacterial viability, adhesion to substrate, and biofilm formation. Efficacy was tested in an in vivo rabbit model, using a multidrug-resistant strain of Staphylococcus aureus showing significant reduction of the bacterial load on the silver prosthesis both when coated with the metal only (>99% reduction) and when in combination with bone apatite (>86% reduction). These studies indicate that IJD films are highly tunable and can be a promising route to overcome the main challenges in orthopedic prostheses


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 99 - 99
2 Jan 2024
Johansen Å Lin J Yamada S Yassin MA Hutchinson D Malkoch M Mustafa K
Full Access

Several synthetic polymers have been widely investigated for their use in bone tissue engineering applications, but the ideal material is yet to be engineered. Triazine-trione (TATO) based materials and their derivatives are novel in the field of biomedical engineering but have started to draw interest. Different designs of the TATO monomers and introduction of different chemical linkages and end-groups widens the scope of the materials due to a range of mechanical properties. The aim of our work is to investigate novel TATO based materials, with or without hydroxyapatite filler, for their potential in bone tissue engineering constructs. Initially the biocompatibility of the materials was tested, indirectly and directly, according to ISO standards. Following this the osteoconductive properties were investigated with primary osteoblasts and an osteoblastic cell line. Bone marrow derived mesenchymal stem cells were used to evaluate the osteogenic differentiation and consequently the materials potential in bone tissue engineering applications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 77 - 77
2 Jan 2024
Khiabani A Kovrlija I Locs J Loca D Gasik M
Full Access

Titanium alloys are one of the most used for orthopaedic implants and the fabrication of them by 3D printing technology is a raising technology, which could effectively resolve existing challenges. Surface modification of Ti surfaces is often necessary to improve biocorrosion resistance, especially in inflammatory conditions. Such modification can be made by coatings based on hydrogels, like alginate (Alg) - a naturally occurring anionic polymer. The properties of the hydrogel can be further enhanced with calcium phosphates like octacalcium phosphate (OCP) as a precursor of biologically formed hydroxyapatite. Formed Alg-OCP matrices have a high potential in wound healing, delivery of bioactive agents etc. but their effect on 3D printed Ti alloys performance was not well known. In this work, Alg-OCP coated 3D printed samples were studied with electrochemical measurements and revealed significant variations of corrosion resistance vs. composition of the coating. The potentiodynamic polarization test showed that the Alg-OCP-coated samples had lower corrosion current density than simple Alg-coated samples. Electrochemical impedance spectroscopy indicated that OCP incorporated hydrogels had also a high value of the Bode modulus and phase angle. Hence Alg-OCP hydrogels could be highly beneficial in protecting 3D printed Ti alloys especially when the host conditions for the implant placement are inflammatory. AcThis work was supported by the European Union Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie Actions GA860462 (PREMUROSA). The authors also acknowledge the access to the infrastructure and expertise of the BBCE – Baltic Biomaterials Centre of Excellence (European Union Horizon 2020 programme under GA857287)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 140 - 140
2 Jan 2024
Banfi A
Full Access

Bone regeneration is an area of acute medical need, but its clinical success is hampered by the need to ensure rapid vascularization of osteogenic grafts. Vascular Endothelial Growth Factor (VEGF) is the master regulator of vascular growth and during bone development angiogenesis and osteogenesis are physiologically coupled through so-called angiocrine factors produced by blood vessels. However, how to exploit this process for therapeutic bone regeneration remains a challenge (1). Here we will describe recent work aiming at understanding the cross-talk between vascular growth and osteogenesis under conditions relevant for therapeutic bone regeneration. To this end we take advantage of a unique platform to generate controlled signalling microenvironments, by the covalent decoration of fibrin matrices with tunable doses and combinations of engineered growth factors. The combination of human osteoprogenitors and hydroxyapatite in these engineered fibrin matrices provides a controlled model to investigate how specific molecular signals regulate vascular invasion and bone formation in vivo. In particular, we found that:. 1). Controlling the distribution of VEGF protein in the microenvironment is key to recapitulate its physiologic function to couple angiogenesis and osteogenesis (2);. 2). Such coupling is exquisitely dependent on VEGF dose and on a delicate equilibrium between opposing effects. A narrow range of VEGF doses specifically activates Notch1 signaling in invading blood vessels, inducing a pro-osteogenic functional state called Type H endothelium, that promotes differentiation of surrounding mesenchymal progenitors. However, lower doses are ineffective and higher ones paradoxically inhibit both vascular invasion and bone formation (Figure 1) (3);. 3). Semaphorin3a (Sema3a) acts as a novel pro-osteogenic angiocrine factor downstream of VEGF and it mediates VEGF dose-dependent effects on both vascular invasion and osteogenic progenitor stimulation. In conclusion, vascularization of osteogenic grafts is not simply necessary in order to enable progenitor survival. Rather, blood vessels can actively stimulate bone regeneration in engineered grafts through specific molecular signals that can be harnessed for therapeutic purposes. Acknowledgements: This work was supported in part by the European Union Horizon 2020 Program (Grant agreement 874790 – cmRNAbone). For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 89 - 89
2 Jan 2024
Runzer C Sadowska J Plank C O'Brien F van Griensven M Balmayor E
Full Access

Bone morphogenetic proteins (BMPs) have been widely investigated for treating non-healing fractures. They participate in bone reconstruction by inducing osteoblast differentiation, and osteoid matrix production. 1. The human recombinant protein of BMP-7 was among the first growth factors approved for clinical use. Despite achieving comparable results to autologous bone grafting, severe side effects have been associated with its use. 2. Furthermore, BMP-7 was removed from the market. 3. These complications are related to the high doses used (1.5-40 miligrams per surgery). 2. compared to the physiological concentration of BMP in fracture healing (in the nanogram to picogram per milliliter range). 4. In this study, we use transcript therapy to deliver chemically modified mRNA (cmRNA) encoding BMP-7. Compared to direct use of proteins, transcript therapy allows the sustained synthesis of proteins with native conformation and true post-translational modifications using doses comparable to the physiological ones. 5. Moreover, cmRNA technology overcomes the safety and affordability limitations of standard gene therapy i.e. pDNA. 6. BMP-7 cmRNA was delivered using Lipofectamine™ MessengerMAX™ to human mesenchymal stromal cells (hMSCs). We assessed protein expression and osteogenic capacity of hMSCs in monolayer culture and in a house-made, collagen hydroxyapatite scaffold. Using fluorescently-labelled cmRNA we observed an even distribution after loading complexes into the scaffold and a complete release after 3 days. For both monolayer and 3D culture, BMP-7 production peaked at 24 hours post-transfection, however cells transfected in scaffolds showed a sustained expression. BMP-7 transfected hMSCs yielded significantly higher ALP activity and Alizarin red staining at later timepoints compared to the untransfected group. Interestingly, BMP-7 cmRNA treatment triggered expression of osteogenic genes like OSX, RUNX-2 and OPN, which was also reflected in immunostainings. This work highlights the relevance of cmRNA technology that may overcome the shortcomings of protein delivery while circumventing issues of traditional pDNA-based gene therapy for bone regeneration. Acknowledgement: This work has been performed as part of the cmRNAbone project and has received funding from the European Union's Horizon 2020 research and innovation programme under the Grant Agreement No 874790


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 73 - 73
2 Jan 2024
Montesissa M Graziani G Borciani G Boi M Rubini K Valle F Boanini E Baldini N
Full Access

Calcium phosphates-based (CaPs) nanocoatings on metallic prosthesis are widely studied in orthopedics and dentistry because they mimic the mineral component of native human bone and favor the osseointegration process. Despite the fact that different calcium phosphates have different properties (composition, crystallinity, and ion release), only stoichiometric hydroxyapatite (HA) films have been analyzed in deep. Here, we have realized films of different CaPs (HA, beta-tricalcium phosphate (β-TCP) and brushite (DCPD)) onto Ti6Al4V microrough substrates by Ionized Jet Deposition (IJD). We have implemented the heating of substrates at 400°C during deposition to see the effect on coating properties. Different film features are evaluated: morphology and topography (FEG-SEM, AFM), physical-chemical composition (FT-IR and EDS), dissolution profile and adhesion to substrate (scratch test), with a focus on how the different CaPs and temperature changed the coating features. After coating optimization, we have studied the in vitro BM-MSC behavior, in term of viability and early adhesion. We have obtained good transfer of fidelity in composition from target to coating for all CaPs, with nanostructured films formed by globular aggregates (~300 nm diameter), with homogeneous and uniform coverage of the substrate surface, without cracks. The heating during deposition has increased the adhesion of the films to the substrate, with higher stability in medium immersion and wettability, features that can improve the biological behavior of cells. All CaP coatings have showed excellent biocompatibility, with DCPD coating that promote higher cells viability at 14 days respect to HA and β- TCP films. About the early cell adhesion, the BM-MSC have showed switch from a globular to an elongated morphology at 6 hours in all coatings respect to the uncoated titanium, sign of better adhesion. From these results, the fabrication of different CaP nanocoatings with IJD can be a promising for applications in orthopedics and dentistry


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 125 - 125
2 Jan 2024
Mbuku R Sanchez C Evrard R Englebert A Manon J Henriet V Nolens G Duy K Schubert T Henrotin Y Cornu O
Full Access

To design slow resorption patient-specific bone graft whose properties of bone regeneration are increased by its geometry and composition and to assess it in in-vitro and in-vivo models. A graft composed by hydroxyapatite (HA) and β-TCP was designed as a cylinder with 3D gyroid porosities and 7 mm medullary space based on swine's anatomy. It was produced using a stereolithography 3D-printing machine (V6000, Prodways). Sterile bone grafts impregnated with or without a 10µg/mL porcine BMP-2 (pBMP-2) solution were implanted into porcine femurs in a bone loss model. Bone defect was bi-weekly evaluated by X-ray during 3 months. After sacrifice, microscanner and non-decalcified histology analysis were conducted on biopsies. Finally, osteoblasts were cultured inside the bone graft or in monolayer underneath the bone graft. Cell viability, proliferation, and gene expression were assessed after 7 and 14 days of cell culture (n=3 patients). 3D scaffolds were successfully manufactured with a composition of 80% HA and 20% β-TCP ±5% with indentation compressive strength of 4.14 MPa and bending strength of 11.8MPa. In vivo study showed that bone regeneration was highly improved in presence of pBMP-2. Micro-CT shows a filling of the gyroid sinuses of the implant (Figure 1). In vitro, the presence of BMP2 did not influence the viability of the osteoblasts and the mortality remained below 3%. After 7 days, the presence of BMP2 in the scaffold significantly increased by 85 and 65% the COL1A1 expression and by 8 and 33-fold the TNAP expression by osteoblasts in the monolayer or in the scaffold, respectively. This BMP2 effect was transient in monolayer and did not modify gene expression at day 14. BMP2-impregnated bone graft is a promising patient-personalized 3D-printed solution for bone defect regeneration, by promoting neighboring host cells recruitment and solid new bone formation. For any figures and tables, please contact the authors directly


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 16 - 16
2 Jan 2024
Lipreri M Pasquarelli A Scelfo D Baldini N Avnet S
Full Access

Osteoporosis is a progressive, chronic disease of bone metabolism, characterized by decreased bone mass and mineral density, predisposing individuals to an increased risk of fractures. The use of animal models, which is the gold standard for the screening of anti-osteoporosis drugs, raises numerous ethical concerns and is highly debated because the composition and structure of animal bones is very different from human bones. In addition, there is currently a poor translation of pre-clinical efficacy in animal models to human trials, meaning that there is a need for an alternative method of screening and evaluating new therapeutics for metabolic bone disorders, in vitro. The aim of this project is to develop a 3D Bone-On-A-Chip that summarizes the spatial orientation and mutual influences of the key cellular components of bone tissue, in a citrate and hydroxyapatite-enriched 3D matrix, acting as a 3D model of osteoporosis. To this purpose, a polydimethylsiloxane microfluidic device was developed by CAD modelling, stereolithography and replica molding. The device is composed by two layers: (i) a bottom layer for a 3D culture of osteocytes embedded in an osteomimetic collagen-enriched matrigel matrix with citrate-doped hydroxyapatite nanocrystals, and (ii) a upper layer for a 2D perfused co-culture of osteoblasts and osteoclasts seeded on a microporous PET membrane. Cell vitality was evaluated via live/dead assay. Bone deposition and bone resorption was analysed respectively with ALP, Alizarin RED and TRACP staining. Osteocytes dendrite expression was evaluated via immunofluorescence. Subsequently, the model was validated as drug screening platform inducing osteocytes apoptosis and administrating standard anti-osteoporotic drugs. This device has the potential to substitute or minimize animal models in pre-clinical studies of osteoporosis, contributing to pave the way for a more precise and punctual personalized treatment