Advertisement for orthosearch.org.uk
Results 1 - 20 of 652
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 96 - 96
14 Nov 2024
Mahadeshwara MR Pandit H Hall RM Jawad MA Bryant M Gendy RE
Full Access

Introduction. Osteoarthritis (OA) occurs due to a multi-scale degradation of articular cartilage (AC) surface which aggravates the disease condition. Investigating the micro-scale structural alterations and mechano-tribological properties facilitates comprehension of disease-mechanisms to improve future injectable-therapies. This study aims to analyze these properties using various experimental and analytical methods to establish correlations between their morpho-physiological features. Method. In this study, Raman-spectroscopy was used to investigate microscale changes in AC constituents and categorize OA damage regions in knee-joint samples from joint replacement patients (Samples = 5 and Regions = 40). Following, microscale indentation and sliding tests were performed on these regions to evaluate variations in aggregate-modulus (AM) and elastic-modulus (EM), with coefficient of friction (COF). Finally, scanning electron microscopy (SEM) was employed to analyze these morphological variations. Result. Raman spectroscopy revealed degree of collagen-damage (Amide-3 α-helix to random-coil ratio I-1250/I-1280), proteoglycan-damage (Sulphated bonds SO. 3-. to CH. 2. twist ratio I-1065/I-1206), amount of bone exposure (Phosphated-hydroxyapatite PO. 4. 3-. to Amide-1 ratio I-959/I-1669) and increased crystallinity (Carbonated hydroxyapatite CO. 3. 2-. to Amide-1 ratio I-1075/I-959) in ECM. Subsequently, these regions were categorized into different groups (G) based on these damages; G1 (Proteoglycan); G2 (Collagen + Proteoglycan); G3 (Collagen + Proteoglycan + Carbonated crystallinity) G4 (Collagen or Proteoglycan + bone exposure); and G5 (Collagen + Proteoglycan + Bone exposure). Further experimentation revealed the differences in mechano-tribological properties (AM, EM, and COF) between the different groups. G5 displayed the highest values of AM (1.5 ± 0.2MPa), EM (0.3 ± 0.01MPa) and COF (0.39 ± 0.08), compared to other groups. These altered properties were confirmed via SEM that revealed micro-asperity junctions, superficial fronding, fibrillations and bone exposure at these damaged regions. Conclusion. This study demonstrated micro-scale changes in AC among OA patients commensurate to the degree of tissue damage, which correlates with disease progression altering joint structure and function particularly in regions with high COF


Bone & Joint Open
Vol. 5, Issue 11 | Pages 971 - 976
5 Nov 2024
Baker G Hill J O'Neill F McChesney J Stevenson M Beverland D

Aims

In 2015, we published the results of our ceramic-on-metal (CoM) total hip arthroplasties (THAs) performed between October 2007 and July 2009 with a mean follow-up of 34 months (23 to 45) and a revision rate of 3.1%. The aim of this paper is to present the longer-term outcomes.

Methods

A total of 264 patients were reviewed at a mean of 5.8 years (4.6 to 7.2) and 10.1 years (9.2 to 10.6) to determine revision rate, pain, outcome scores, radiological analysis, and blood ion levels. Those who were unwilling or unable to travel were contacted by telephone.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1273 - 1283
1 Nov 2024
Mahmud H Wang D Topan-Rat A Bull AMJ Heinrichs CH Reilly P Emery R Amis AA Hansen UN

Aims

The survival of humeral hemiarthroplasties in patients with relatively intact glenoid cartilage could theoretically be extended by minimizing the associated postoperative glenoid erosion. Ceramic has gained attention as an alternative to metal as a material for hemiarthroplasties because of its superior tribological properties. The aim of this study was to assess the in vitro wear performance of ceramic and metal humeral hemiarthroplasties on natural glenoids.

Methods

Intact right cadaveric shoulders from donors aged between 50 and 65 years were assigned to a ceramic group (n = 8, four male cadavers) and a metal group (n = 9, four male cadavers). A dedicated shoulder wear simulator was used to simulate daily activity by replicating the relevant joint motion and loading profiles. During testing, the joint was kept lubricated with diluted calf serum at room temperature. Each test of wear was performed for 500,000 cycles at 1.2 Hz. At intervals of 125,000 cycles, micro-CT scans of each glenoid were taken to characterize and quantify glenoid wear by calculating the change in the thickness of its articular cartilage.


Bone & Joint Research
Vol. 13, Issue 10 | Pages 611 - 621
24 Oct 2024
Wan Q Han Q Liu Y Chen H Zhang A Zhao X Wang J

Aims

This study aimed to investigate the optimal sagittal positioning of the uncemented femoral component in total knee arthroplasty to minimize the risk of aseptic loosening and periprosthetic fracture.

Methods

Ten different sagittal placements of the femoral component, ranging from -5 mm (causing anterior notch) to +4 mm (causing anterior gap), were analyzed using finite element analysis. Both gait and squat loading conditions were simulated, and Von Mises stress and interface micromotion were evaluated to assess fracture and loosening risk.


Bone & Joint Research
Vol. 13, Issue 6 | Pages 306 - 314
19 Jun 2024
Wu B Su J Zhang Z Zeng J Fang X Li W Zhang W Huang Z

Aims

To explore the clinical efficacy of using two different types of articulating spacers in two-stage revision for chronic knee periprosthetic joint infection (kPJI).

Methods

A retrospective cohort study of 50 chronic kPJI patients treated with two types of articulating spacers between January 2014 and March 2022 was conducted. The clinical outcomes and functional status of the different articulating spacers were compared. Overall, 17 patients were treated with prosthetic spacers (prosthetic group (PG)), and 33 patients were treated with cement spacers (cement group (CG)). The CG had a longer mean follow-up period (46.67 months (SD 26.61)) than the PG (24.82 months (SD 16.46); p = 0.001).


Bone & Joint Research
Vol. 13, Issue 6 | Pages 272 - 278
5 Jun 2024
Niki Y Huber G Behzadi K Morlock MM

Aims

Periprosthetic fracture and implant loosening are two of the major reasons for revision surgery of cementless implants. Optimal implant fixation with minimal bone damage is challenging in this procedure. This pilot study investigates whether vibratory implant insertion is gentler compared to consecutive single blows for acetabular component implantation in a surrogate polyurethane (PU) model.

Methods

Acetabular components (cups) were implanted into 1 mm nominal under-sized cavities in PU foams (15 and 30 per cubic foot (PCF)) using a vibratory implant insertion device and an automated impaction device for single blows. The impaction force, remaining polar gap, and lever-out moment were measured and compared between the impaction methods.


The Bone & Joint Journal
Vol. 106-B, Issue 5 Supple B | Pages 74 - 81
1 May 2024
Callary SA Broekhuis D Barends J Ramasamy B Nelissen RGHH Solomon LB Kaptein BL

Aims

The aim of this study was to compare the biomechanical models of two frequently used techniques for reconstructing severe acetabular defects with pelvic discontinuity in revision total hip arthroplasty (THA) – the Trabecular Metal Acetabular Revision System (TMARS) and custom triflange acetabular components (CTACs) – using virtual modelling.

Methods

Pre- and postoperative CT scans from ten patients who underwent revision with the TMARS for a Paprosky IIIB acetabular defect with pelvic discontinuity were retrospectively collated. Computer models of a CTAC implant were designed from the preoperative CT scans of these patients. Computer models of the TMARS reconstruction were segmented from postoperative CT scans using a semi-automated method. The amount of bone removed, the implant-bone apposition that was achieved, and the restoration of the centre of rotation of the hip were compared between all the actual TMARS and the virtual CTAC implants.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 312 - 318
1 Apr 2024
Sheth NP Jones SA Sanghavi SA Manktelow A

The advent of modular porous metal augments has ushered in a new form of treatment for acetabular bone loss. The function of an augment can be seen as reducing the size of a defect or reconstituting the anterosuperior/posteroinferior columns and/or allowing supplementary fixation. Depending on the function of the augment, the surgeon can decide on the sequence of introduction of the hemispherical shell, before or after the augment. Augments should always, however, be used with cement to form a unit with the acetabular component. Given their versatility, augments also allow the use of a hemispherical shell in a position that restores the centre of rotation and biomechanics of the hip. Progressive shedding or the appearance of metal debris is a particular finding with augments and, with other radiological signs of failure, should be recognized on serial radiographs. Mid- to long-term outcomes in studies reporting the use of augments with hemispherical shells in revision total hip arthroplasty have shown rates of survival of > 90%. However, a higher risk of failure has been reported when augments have been used for patients with chronic pelvic discontinuity.

Cite this article: Bone Joint J 2024;106-B(4):312–318.


Bone & Joint Open
Vol. 5, Issue 3 | Pages 154 - 161
1 Mar 2024
Homma Y Zhuang X Watari T Hayashi K Baba T Kamath A Ishijima M

Aims

It is important to analyze objectively the hammering sound in cup press-fit technique in total hip arthroplasty (THA) in order to better understand the change of the sound during impaction. We hypothesized that a specific characteristic would present in a hammering sound with successful fixation. We designed the study to quantitatively investigate the acoustic characteristics during cementless cup impaction in THA.

Methods

In 52 THAs performed between November 2018 and April 2022, the acoustic parameters of the hammering sound of 224 impacts of successful press-fit fixation, and 55 impacts of unsuccessful press-fit fixation, were analyzed. The successful fixation was defined if the following two criteria were met: 1) intraoperatively, the stability of the cup was retained after manual application of the torque test; and 2) at one month postoperatively, the cup showed no translation on radiograph. Each hammering sound was converted to sound pressures in 24 frequency bands by fast Fourier transform analysis. Basic patient characteristics were assessed as potential contributors to the hammering sound.


The Bone & Joint Journal
Vol. 106-B, Issue 3 Supple A | Pages 81 - 88
1 Mar 2024
Lustig S Cotte M Foissey C Asirvatham RD Servien E Batailler C

Aims

The benefit of a dual-mobility acetabular component (DMC) for primary total hip arthroplasties (THAs) is controversial. This study aimed to compare the dislocation and complication rates when using a DMC compared to single-mobility (SM) acetabular component in primary elective THA using data collected at a single centre, and compare the revision rates and survival outcomes in these two groups.

Methods

Between 2010 and 2019, 2,075 primary THAs using either a cementless DM or SM acetabular component were included. Indications for DMC were patients aged older than 70 years or with high risk of dislocation. All other patients received a SM acetabular component. Exclusion criteria were cemented implants, patients treated for femoral neck fracture, and follow-up of less than one year. In total, 1,940 THAs were analyzed: 1,149 DMC (59.2%) and 791 SM (40.8%). The mean age was 73 years (SD 9.2) in the DMC group and 57 years (SD 12) in the SM group. Complications and revisions have been analyzed retrospectively.


Bone & Joint Open
Vol. 5, Issue 1 | Pages 28 - 36
18 Jan 2024
Selmene MA Moreau PE Zaraa M Upex P Jouffroy P Riouallon G

Aims

Post-traumatic periprosthetic acetabular fractures are rare but serious. Few studies carried out on small cohorts have reported them in the literature. The aim of this work is to describe the specific characteristics of post-traumatic periprosthetic acetabular fractures, and the outcome of their surgical treatment in terms of function and complications.

Methods

Patients with this type of fracture were identified retrospectively over a period of six years (January 2016 to December 2021). The following data were collected: demographic characteristics, date of insertion of the prosthesis, details of the intervention, date of the trauma, characteristics of the fracture, and type of treatment. Functional results were assessed with the Harris Hip Score (HHS). Data concerning complications of treatment were collected.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 17 - 17
2 Jan 2024
Ramos-Díez S Camarero-Espinosa S
Full Access

Articular cartilage is a multi-zonal tissue that coats the epiphysis of long bones and avoids its wear during motion. An unusual friction could micro-fracture this connective membrane and progress into an osteochondral defect (OD), where the affected cartilage suffers inflammation, fibrillation, and forfeiture of its anisotropic structure. Clinical treatment for ODs has been focused on micro-fracture techniques, where the defect area is removed and small incisions are performed in the subchondral bone, which allows the exudation of mesenchymal stem cells (hMSCs) to the abraded zone. However, hMSCs represent less than 0.01% of the total cell population and are not able to self-organise coherently, so the treatments fail in the long term. To select, support and steer hMSCs from the bone marrow into a specific differentiation stage, and recreate the cartilage anisotropic microenvironment, multilayer dual-porosity 3D-printed scaffolds were developed. Dual-porosity scaffolds were printed using prepared inks, containing specific ratios of poly-(d,l)lactide-co-caprolactone copolymer and gelatine microspheres of different diameters, which acted as sacrificial micro-pore templates and were leached after printing. The cell adhesion capability was investigated showing an increased cell number in dual-porosity scaffolds as compared to non-porous ones. To mimic the stiffness of the three cartilage zones, several patterns were designed, printed, and checked by dynamic-mechanical analysis under compression at 37 ºC. Three patterns with specific formulations were chosen as candidates to recreate the mechanical properties of the cartilage layers. Differentiation studies in the selected scaffolds showed the formation of mature cartilage by gene expression, protein deposition and biomolecular analysis. Given the obtained results, designed scaffolds were able to guide hMSC behaviour. In conclusion, biocompatible, multilayer and dual-porosity scaffolds with cell entrapment capability were manufactured. These anisotropic scaffolds were able to recreate the physical microenvironment of the natural cartilage, which in turn stimulated cell differentiation and the formation of mature cartilage. Acknowledgments: This work was supported by the EMAKIKER grant


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 98 - 98
2 Jan 2024
Mehta S Goel A Mahajan U Reddy N Bhaskar D
Full Access

Dislocation post THA confers a higher risk of re-dislocation (Kotwal et al, 2009). The dual mobility (DM) cup design (1974) was aimed at improving the stability by increasing the femoral head to neck ratio (Cuthbert et al., 2019) combining the ideas of low friction arthroplasty with increased jump distance associated with a big head arthroplasty. Understand the dislocation rates, rates of aseptic loosening, infection rate and revision rates between the 2 types of constructs to provide current and up-to date evidence. Medline, pubmed, embase and Cochrane databases were used based on PRISMA guidelines. RevMan software was used for the meta-analysis. Studies (English literature) which used DM construct with atleast 6 months follow-up used as intervention and non DM construct as control were included. 2 independent reviewers conducted the review with a third reviewer in case of difference in opinion regarding eligibility. Primary outcome was dislocation rate and secondary outcome was rate of revision. 564 articles identified out of which 44 articles were screened for full texts and eventually 4 systematic review articles found eligible for the study. Thus, study became a review of systematic reviews. From the 4 systematic reviews, another 35 studies were identified for data extraction and 13 papers were used for meta-analysis. Systematic reviews evaluated, projected an average follow up of 6-8 years with significantly lower dislocation rates for DM cups. The total number of patients undergoing DM cup primary THA were 30,559 with an average age 71 years while the control group consisted of 218,834 patients with an average age of 69 years. DM group had lower rate of dislocation (p < 0.00001), total lower rate of cup revision (p < 0.00001, higher incidence of fracture (p>0.05). DM THA is a viable alternative for conventional THA. The long-term results of DM cups in primary THA need to be further evaluated using high quality prospective studies and RCTs


Bone & Joint 360
Vol. 12, Issue 6 | Pages 49 - 51
1 Dec 2023
Burden EG Whitehouse MR Evans JT


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 38 - 38
17 Nov 2023
Al-Namnam NM Luczak AT Collishaw S Li X Lucas M Simpson AHRW
Full Access

Abstract. Introduction. Ultrasonic cutting in surgery has great potential. However, a key limitation is heat created by friction between the bone and the blade. Bone has poor thermal conductivity which hinders the dissipation of heat, causing cell death near the cut site In addition, ultrasonic vibration may create microcracks. It was hypothesised that these effects on bone would vary with the frequency and displacement of the ultrasonically powered blade. Therefore varying frequencies and displacements of the tip of the blade were studied to find the combination with fewest microcracks and lowest temperature rise at the bone-tool interface. Aim. To explore the effect of different frequencies and tip displacements of ultrasonic cutting devices on the amount of thermal and mechanical damage. Methods. In vitro tests were conducted on fresh rat femoral shafts using two different frequencies; 20kHz and 35kHz.Two displacement amplitudes of two different frequencies were used: 23.9 μm (p-p) and 7.5 μm (p-p) both at 20kHz and 18.7 μm (p-p) and 27 μm (p-p) both at 35kHz and. Cooling was used to emulate clinical conditions. Histological examination (H & E and TUNEL) was performed to identify live and dead cells. Further rat femoral shafts (n=6) were exposed to the same number of cuts by each tool to identify any micro-damage induced by different electrical currents using Micro-CT and confocal Laser scanning microscope. All experimental data were expressed as mean ± standard deviation. Statistical analysis was performed using one-way ANOVA, followed by Post Hoc multiple comparisons test. Differences between groups were considered statistically significant at p < 0.05. Results. The cut site at 7.5 μm (p-p) in 20kHz displayed only indentation instead of a cut, and was excluded. Histological examination revealed a high incidence of cell death at the cutting edge, in both frequencies. At 35kHz and 27 μm (p-p) some charring was evident, while at 20kHz and 23.9 μm (p-p) more irregularities were seen on the surface of the cut indicating instability during cutting when this setting was used. In contrast, the 35kHz at 18.7 μm (p-p) resulted in a smoother cutting surface. The highest cell death percentage ranged from 25% (at 35kHz, 18.7 μm (p-p)) to 44 % (at 35kHz, 27 μm (p-p)). Most of the tool's effect was located within 25 µm of the cut surface. There was a significant decrease to < 5 % at 200 µm. No cell death was found over 200 µm from the cut surface in both frequencies (35 kHz and 20 kHz). No significant difference in total percentage cell death was found between cutting at 35kHz and 18.7 μm (p-p) and at 20kHz and 23.9 μm (p-p). No microcracks were detected along the depth of the cut site at either frequency. Conclusion. Of the 2 ultrasonic cutting frequencies tested, the combination of the higher vibration frequency (35kHz) and the lower displacement amplitude (18.7 μm (p-p) demonstrated least damage to the bone tissue. No microcracks were displayed when using either of the ultrasonic cutting frequencies. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 1 - 1
17 Nov 2023
Mehta S Goel A Mahajan U Reddy R Bhaskar D
Full Access

Abstract. Introduction. Dislocation post THA confers a higher risk of re-dislocation (Kotwal et al, 2009). The dual mobility (DM) cup design (1974) was aimed at improving the stability by increasing the femoral head to neck ratio (Cuthbert et al., 2019) combining the ideas of low friction arthroplasty with increased jump distance associated with a big head arthroplasty. Aims. Understand the dislocation rates, rates of aseptic loosening, infection rate and revision rates between the 2 types of constructs to provide current and up-to date evidence. Methods. Medline, pubmed, embase and Cochrane databases were used based on PRISMA guidelines. RevMan software was used for the meta-analysis. Studies (English literature) which used DM construct with atleast 6 months follow-up used as intervention and non DM construct as control were included. 2 independent reviewers conducted the review with a third reviewer in case of difference in opinion regarding eligibility. Primary outcome was dislocation rate and secondary outcome was rate of revision. Results. 564 articles identified out of which 44 articles were screened for full texts and eventually 4 systematic review articles found eligible for the study. Thus, study became a review of systematic reviews. From the 4 systematic reviews, another 35 studies were identified for data extraction and 13 papers were used for meta-analysis. Systematic reviews evaluated, projected an average follow up of 6–8 years with significantly lower dislocation rates for DM cups. The total number of patients undergoing DM cup primary THA were 30,559 with an average age 71 years while the control group consisted of 218,834 patients with an average age of 69 years. DM group had lower rate of dislocation (p < 0.00001), total lower rate of cup revision (p < 0.00001, higher incidence of fracture (p>0.05). Conclusion. DM THA is a viable alternative for conventional THA. The long-term results of DM cups in primary THA need to be further evaluated using high quality prospective studies and RCTs. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_16 | Pages 21 - 21
17 Nov 2023
Matar H van Duren B Berber R Bloch B James P Manktelow A
Full Access

Abstract. Objectives. Total hip replacement (THR) is one of the most successful and cost-effective interventions in orthopaedic surgery. Dislocation is a debilitating complication of THR and managing an unstable THR constitutes a significant clinical challenge. Stability in THR is multifactorial and is influenced by surgical, patient and implant related factors. It is established that larger diameter femoral heads have a wider impingement-free range of movement and an increase in jump distance, both of which are relevant in reducing the risk of dislocation. However, they can generate higher frictional torque which has led to concerns related to increased wear and loosening. Furthermore, the potential for taper corrosion or trunnionosis is also a potential concern with larger femoral heads, particularly those made from cobalt-chrome. These concerns have meant there is hesitancy among surgeons to use larger sized heads. This study presents the comparison of clinical outcomes for different head sizes (28mm, 32mm and 36mm) in primary THR for 10,104 hips in a single centre. Methods. A retrospective study of all consecutive patients who underwent primary THR at our institution between 1st April 2003 and 31st Dec 2019 was undertaken. Institutional approval for this study was obtained. Demographic and surgical data were collected. The primary outcome measures were all-cause revision, revision for dislocation, and all-cause revision excluding dislocation. Continuous descriptive statistics used means, median values, ranges, and 95% confidence intervals where appropriate. Kaplan-Meier survival curves were used to estimate time to revision. Cox proportional hazard regression analysis was used to compare revision rates between the femoral head size groups. Adjustments were made for age at surgery, gender, primary diagnosis, ASA score, articulation type, and fixation method. Results. 10,104 primary THRs were included; median age 68.6 years with 61.5% females. A posterior approach was performed in 71.6%. There were 3,295 hips with 28 mm heads (32.6%), 4,858 (48.1%) with 32 mm heads and 1,951 (19.3%) with 36 mm heads. Overall rate of revision was 1.7% with the lowest rate recorded for the 36mm group (2.7% vs. 1.3% vs. 1.1%). Cox regression analysis showed a decreased risk of all-cause revision for 32mm & 36mm head sizes as compared to 28mm; this was statistically significant for the 32mm group (p = 0.01). Risk of revision for dislocation was significantly reduced in both 32mm (p = 0.03) and 36mm (p = 0.03) head sizes. Analysis of all cause revision excluding dislocation showed no significant differences between head sizes. Conclusion. There was a significantly reduced risk of revision for all causes, but particularly revision for dislocation with larger head sizes (36mm & 32mm vs. 28mm). Concerns regarding increased risk of early revision for aseptic loosening, polyethylene wear or taper corrosion with larger heads appear to be unfounded in this cohort of 10,104 patients with a mean of 6.0-year follow-up. Declaration of Interest. (b) declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research reported:I declare that there is no conflict of interest that could be perceived as prejudicing the impartiality of the research project


The Bone & Joint Journal
Vol. 105-B, Issue 11 | Pages 1177 - 1183
1 Nov 2023
van der Graaff SJA Reijman M Meuffels DE Koopmanschap MA

Aims

The aim of this study was to evaluate the cost-effectiveness of arthroscopic partial meniscectomy versus physical therapy plus optional delayed arthroscopic partial meniscectomy in young patients aged under 45 years with traumatic meniscal tears.

Methods

We conducted a multicentre, open-labelled, randomized controlled trial in patients aged 18 to 45 years, with a recent onset, traumatic, MRI-verified, isolated meniscal tear without knee osteoarthritis. Patients were randomized to arthroscopic partial meniscectomy or standardized physical therapy with an optional delayed arthroscopic partial meniscectomy after three months of follow-up. We performed a cost-utility analysis on the randomization groups to compare both treatments over a 24-month follow-up period. Cost utility was calculated as incremental costs per quality-adjusted life year (QALY) gained of arthroscopic partial meniscectomy compared to physical therapy. Calculations were performed from a healthcare system perspective and a societal perspective.


Bone & Joint 360
Vol. 12, Issue 5 | Pages 45 - 47
1 Oct 2023

The October 2023 Research Roundup360 looks at: Gut microbiota in high-risk individuals for rheumatoid arthritis associated with disturbed metabolome and initiates arthritis by triggering mucosal immunity imbalance; International Consensus on Anaemia Management in Surgical Patients (ICCAMS); Sleep disturbance trends in the short-term postoperative period for patients undergoing total joint replacement; Achilles tendon tissue turnover before and immediately after an acute rupture; Quadriceps or hip exercises for patellofemoral pain? A randomized controlled equivalence trial; Total-body MRI for screening in patients with multiple osteochondromas.


Orthopaedic Proceedings
Vol. 105-B, Issue SUPP_13 | Pages 3 - 3
7 Aug 2023
Fennelly J Santini A Papalexandris S Pope J Yorke J Davidson J
Full Access

Abstract. Background. Oxidized zirconium (OxZr) has been introduced as an alternative bearing for femoral components in Total Knee Arthroplasty (TKA). It has a ceramic-like zirconium oxide outer layer with a low coefficient of friction. Early studies have found OxZr TKA to have a low incidence of early failure in young high demand patients. Currently no study has reported on the outcome of these implants beyond ten years. Objectives. The purpose of our study was to present an in-depth 15-year survival analysis of cemented Profix II OxZr TKA. Study Design & Methods. Data was collected prospectively and survival analysis undertaken with multiple strict end points. Complication rates were recorded and patient reported outcomes were measured. Results. 617 Profix II OxZr TKAs were performed over four years. Forty-nine patients underwent reoperation. Aseptic tibial loosening was the most common cause of failure (32.7%) on average occurring 2.8 years post primary procedure. There was one recorded failure due to loosening of the zirconium femoral component. Revision rate at 15-years was 6.38%. Cumulative survivorship was 91.52% with failure considered to be reoperation for any reason. WOMAC score improved in 86% of patients by year 1. The average score improved by 21.2 points and met the standard for minimum clinically important difference. Conclusions. This study presents the first 15-year survival analysis of cemented Profix II OxZr TKA. Our data supports current literature on the long-term survivorship of oxidised zirconium total knee replacements