Injuries to the quadriceps muscle group are common in athletes performing high-speed running and kicking sports. The complex anatomy of the rectus femoris puts it at greatest risk of injury. There is variability in prognosis in the literature, with reinjury rates as high as 67% in the severe graded proximal tear. Studies have highlighted that athletes can reinjure after nonoperative management, and some benefit may be derived from surgical repair to restore function and return to sport (RTS). This injury is potentially career-threatening in the elite-level athlete, and we aim to highlight the key recent literature on interventions to restore strength and function to allow early RTS while reducing the risk of injury recurrence. This article reviews the optimal diagnostic strategies and classification of quadriceps injuries. We highlight the unique anatomy of each injury on MRI and the outcomes of both nonoperative and operative treatment, providing an evidence-based management framework for athletes. Cite this article:
Fracture of contemporary femoral stems is a rare occurrence. Earlier THR stems failed due to design issues or post manufacturing heat treatments that weakened the core metal. Our group identified and analyzed 4 contemporary fractured femoral stems after revision surgery in which electrochemical welds contributed to the failure. All four stems were proximally porous coated titanium alloy components. All failures occurred in the neck region post revision surgery in an acetabular cup exchange. All were men and obese. The fractures occurred at an average of 3.6 years post THR redo (range, 1.0–6.5 years) and 8.3 years post index surgery (range, 5.5–12.0 years). To demonstrate the effect of
This systematic review and meta-analysis aimed to compare the influence of patellar resurfacing following cruciate-retaining (CR) and posterior-stabilized (PS) total knee arthroplasty (TKA) on the incidence of anterior knee pain, knee-specific patient-reported outcome measures, complication rates, and reoperation rates. A systematic review of MEDLINE, PubMed, and Google Scholar was performed to identify randomized controlled trials (RCTs) according to search criteria. Search terms used included: arthroplasty, replacement, knee (Mesh), TKA, prosthesis, patella, patellar resurfacing, and patellar retaining. RCTs that compared patellar resurfacing versus unresurfaced in primary TKA were included for further analysis. Studies were evaluated using the Scottish Intercollegiate Guidelines Network assessment tool for quality and minimization of bias. Data were synthesized and meta-analysis performed.Aims
Methods
Arthroscopic electrosurgical tools for ablative, desiccating or coagulative effect are delivered as monopolar or bipolar probes. Monopolar electrosurgery delivers various profiles of heat energy directly to the tissue within a non-conductive irrigant (such as water or glycine) whereas bipolar electrosurgery creates an energy source by producing an electrical arc between the bipolar electrodes on the instrument head within an electro-conductive irrigation solution (saline) - and the heat generated is then transferred to the target tissues. This study investigated the heat generation within the simulated in-vitro test model to review the level of local heat production and potential local tissue heat. In a simulated In-vitro testing environment the local heat generation using bipolar or monopolar electrosurgical probes at standard power setting in either saline or water was tested, both touching and not touching a simulated tissue target, and for variable on-times. Monopolar generated relatively little heat when used in water and not touching the tissue. By contrast the bipolar wand generated potentially damaging local tissue temperature rises when used in saline and not touching the tissue. Both probes generated high local tissue heat when touching the tissue in their recommended irrigation solution. Monopolar electrosurgery delivered high localized temperature to the simulated tissue surface, but produced relatively little heat when not touching the tissue in a water solution. Bipolar however created high local temperature within the fluid adjacent to the probe irrespective if it was touching the tissue or not. Activation of the bipolar probe away from the tissue in saline irrigation may create a potential harmful temperature within the fluid medium without delivering therapeutic thermal effect to the target tissues. Monopolar electrosurgery appears to deliver a more controlled thermal effect, and only when in contact with the target tissues – potentially creating a reduced collateral thermal footprint.
The use of tourniquets in lower limb trauma surgery to control bleeding and improve the surgical field is a long established practice. In this article, we review the evidence relating to harms and benefits of tourniquet use in lower limb fracture fixation surgery and report the results of a survey on current tourniquet practice among trauma surgeons in the UK.
Introduction. Pitting damage on implants has been reported and attributed to use of
Aims. The worldwide COVID-19 pandemic is directly impacting the field of orthopaedic surgery and traumatology with postponed operations, changed status of planned elective surgeries and acute emergencies in patients with unknown infection status. To this point, Germany's COVID-19 infection numbers and death rate have been lower than those of many other nations. Methods. This article summarizes the current regimen used in the field of orthopaedics in Germany during the COVID-19 pandemic. Internal university clinic guidelines, latest research results, expert consensus, and clinical experiences were combined in this article guideline. Results. Every patient, with and without symptoms, should be screened for COVID-19 before hospital admission. Patients should be assigned to three groups (infection status unknown, confirmed, or negative). Patients with unknown infection status should be considered as infectious. Dependent of the infection status and acuity of the symptoms, patients are assigned to a COVID-19-free or affected zone of the hospital. Isolation, hand hygiene, and personal protective equipment is essential. Hospital personnel directly involved in the care of COVID-19 patients should be tested on a weekly basis independently of the presence of clinical symptoms, staff in the COVID-19-free zone on a biweekly basis. Class 1a operation rooms with laminar air flow and negative pressure are preferred for surgery in COVID-19 patients.
The use of technology to assess balance and alignment during total knee surgery can provide an overload of numerical data to the surgeon. Meanwhile, this quantification holds the potential to clarify and guide the surgeon through the surgical decision process when selecting the appropriate bone recut or soft tissue adjustment when balancing a total knee. Therefore, this paper evaluates the potential of deploying supervised machine learning (ML) models to select a surgical correction based on patient-specific intra-operative assessments. Based on a clinical series of 479 primary total knees and 1,305 associated surgical decisions, various ML models were developed. These models identified the indicated surgical decision based on available, intra-operative alignment, and tibiofemoral load data.Aims
Methods
We evaluated a large database with mechanical failure of a single uncemented modular femoral component, used in revision hip arthroplasty, as the end point and compared them to a control group treated with the same implant. Patient- and implant-specific risk factors for implant failure were analyzed. All cases of a fractured uncemented modular revision femoral component from one manufacturer until April 2017 were identified and the total number of implants sold until April 2017 was used to calculate the fracture rate. The manufacturer provided data on patient demographics, time to failure, and implant details for all notified fractured devices. Patient- and implant-specific risk factors were evaluated using a logistic regression model with multiple imputations and compared to data from a previously published reference group, where no fractures had been observed. The results of a retrieval analysis of the fractured implants, performed by the manufacturer, were available for evaluation.Aims
Methods
The coronavirus disease 2019 (COVID-19) pandemic presents significant challenges to healthcare systems globally. Orthopaedic surgeons are at risk of contracting COVID-19 due to their close contact with patients in both outpatient and theatre environments. The aim of this review was to perform a literature review, including articles of other coronaviruses, to formulate guidelines for orthopaedic healthcare staff. A search of Medline, EMBASE, the Cochrane Library, World Health Organization (WHO), and Centers for Disease Control and Prevention (CDC) databases was performed encompassing a variety of terms including ‘coronavirus’, ‘covid-19’, ‘orthopaedic’, ‘personal protective environment’ and ‘PPE’. Online database searches identified 354 articles. Articles were included if they studied any of the other coronaviruses or if the basic science could potentially applied to COVID-19 (i.e. use of an inactivated virus with a similar diameter to COVID-19). Two reviewers independently identified and screened articles based on the titles and abstracts. 274 were subsequently excluded, with 80 full-text articles retrieved and assessed for eligibility. Of these, 66 were excluded as they compared personal protection equipment to no personal protection equipment or referred to prevention measures in the context of bacterial infections.Aim
Methods
The objectives of this study were to assess the effect of anterior cruciate ligament (ACL) resection on flexion-extension gaps, mediolateral soft tissue laxity, maximum knee extension, and limb alignment during primary total knee arthroplasty (TKA). This prospective study included 140 patients with symptomatic knee osteoarthritis undergoing primary robotic-arm assisted TKA. All operative procedures were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess study outcomes pre- and post-ACL resection with knee extension and 90° knee flexion. This study included 76 males (54.3%) and 64 females (45.7%) with a mean age of 64.1 years (SD 6.8) at time of surgery. Mean preoperative hip-knee-ankle deformity was 6.1° varus (SD 4.6° varus).Aims
Methods
To describe and analyze the mid-term functional outcomes of a large series of patients who underwent the Hoffer procedure for brachial plexus birth palsy (BPBP). All patients who underwent the Hoffer procedure with minimum two-year follow-up were retrospectively reviewed. Active shoulder range of movement (ROM), aggregate modified Mallet classification scores, Hospital for Sick Children Active Movement Scale (AMS) scores, and/or Toronto Test Scores were used to assess functional outcomes. Subgroup analysis based on age and level of injury was performed. Risk factors for subsequent humeral derotational osteotomy and other complications were also assessed. A total of 107 patients, average age 3.9 years (1.6 to 13) and 59% female, were included in the study with mean 68 months (24 to 194) follow-up.Aims
Methods
Introduction. During revision surgery, the active electrode of an
The aim of this study was to assess the effect of posterior cruciate ligament (PCL) resection on flexion-extension gaps, mediolateral soft-tissue laxity, fixed flexion deformity (FFD), and limb alignment during posterior-stabilized (PS) total knee arthroplasty (TKA). This prospective study included 110 patients with symptomatic osteoarthritis of the knee undergoing primary robot-assisted PS TKA. All operations were performed by a single surgeon using a standard medial parapatellar approach. Optical motion capture technology with fixed femoral and tibial registration pins was used to assess gaps before and after PCL resection in extension and 90° knee flexion. Measurements were made after excision of the anterior cruciate ligament and prior to bone resection. There were 54 men (49.1%) and 56 women (50.9%) with a mean age of 68 years (Aims
Patients and Methods
The battle of revision TKA is won or lost with safe, effective, and minimally bony-destructive implant removal, protecting all ligamentous stabilisers of the knee and, most importantly, the extensor mechanism. For exposure, incisions should be long and generous to allow adequate access. A standard medial parapatellar capsular arthrotomy is preferred. A synovectomy is performed followed by debridement of all scar tissue, especially in the medial and lateral gutters. All peripatellar scar tissue is excised followed by release of scar tissue within the patellar tendon, allowing for displacement or everting of the patella. As patellar tendon avulsion at any time of knee surgery yields disastrous results, the surgeon should be continuously evaluating the patellar tendon integrity, especially while displacing/everting the patella and bringing the knee into flexion. If displacement/eversion is difficult, consider rectis-snip, V-Y quadricepsplasty, or tibial tubercle osteotomy. The long-held requisite for patellar eversion prior to component removal is inaccurate. In most cases simple lateral patellar subluxation will provide adequate exposure. If a modular tibial system is involved, removal of the tibial polyethylene will decompress the knee, allowing for easier access to patellar, femoral, and tibial components. For patellar component removal, first identify the border of the patella, then carefully clean and debride the interface, preferably with
Adequate soft tissue balance at the time of total knee arthroplasty (TKA) prevents early failure. In cases of varus deformity, once the medial osteophytes have been resected, a progressive release of the medial soft tissue sleeve (MSS) from the proximal medial tibia is needed to achieve balance. The “classic” medial soft tissue release technique, popularised by John Insall et al., consists of a sharp subperiosteal dissection from the proximal medial tibia that includes superficial and deep medial collateral ligament (MCL), semimembranosus tendon, posteromedial capsule, along with the pes anserinus tendons, if needed. However, this technique allows for little control over releases that selectively affect the flexion and extension gaps. When severe deformity is present, an extensive MSS release can cause iatrogenic medial instability and the need to use a constrained implant. It has been suggested that the MSS can be elongated by performing selective releases. This algorithmic approach includes the resection of the posterior osteophytes as the initial balancing gesture. If additional MSS release is necessary in extension, a subperiosteal release of the posterior aspect of the MSS is performed with
The aim of this study was to report a retrospective, consecutive
series of patients with adolescent idiopathic scoliosis (AIS) who
were treated with posterior minimally invasive surgery (MIS) with
a mean follow-up of two years ( We prospectively collected the data of 70 consecutive patients
with AIS treated with MIS using three incisions and a muscle-splitting
approach by a single surgeon between June 2013 and February 2016
and these were retrospectively reviewed. There were eight male and
62 female patients with a mean age of 15 years (Aims
Patients and Methods
Aim. The prevention of surgical-site infection (SSI) is of great importance. Airborne particulate correlates with microbial load and SSI. There are many potential sources of airborne particulates in theatre and from an experimental point of view impossible to control. We evaluated the effectiveness of a novel air decontamination-recirculation system (ADRS) in reducing airborne particles in a laboratory environment and controlled the introduction of particulate using diathermy. Methods. Airborne particles were measured with and without activation of the ADRS in PC2 laboratory to provide a baseline. Particles were generated in a controlled manner utilising
Deformity correction is a fundamental goal in total knee arthroplasty. Severe valgus deformities often present the surgeon with a complex challenge. These deformities are associated with abnormal bone anatomy, ligament laxity and soft tissue contractures. Distorted bone anatomy is due to bone loss on the lateral femoral condyle, especially posteriorly. To a lesser extent bone loss occurs from the lateral tibia plateau. The AP axis (Whiteside's Line) or epicondylar axis must be used as a rotational landmark in the severely valgus knee. Gap balancing techniques can be helpful in the severely valgus knee, but good extension balance must be obtained before setting femoral rotation with this technique. Coronal alignment is generally corrected to neutral or 2- to 3-degree overcorrection to mild mechanical varus to unload the attenuated medial ligaments. The goal of soft tissue releases is to obtain rectangular flexion and extension gaps. Soft tissue releases involve the IT band, posterolateral corner/arcuate complex, posterior capsule, LCL, and popliteus tendon. Assessment of which structures is made and then releases are performed. In general, pie crust release of the IT band is sufficient for mild deformity. More severe deformities require release of the posterolateral corner / arcuate and posterior capsule. I prefer a pie crust technique, while Ranawat has described the use of
Recently, a special type of surface pitting found on metal implants was proposed to arise from “inflammatory cell-induced” corrosion (ICI, Figure 1) (1, 2). The actual mechanism of this was unknown, but similar features were suggested to be artefacts of