To test the hypothesis that reseeded anterior cruciate ligament (ACL)-derived cells have a better ability to survive and integrate into tendon extracellular matrix (ECM) and accelerate the ligamentization process, compared to adipose-derived mesenchymal stem cells (ADMSCs). Acellularized tibialis allograft tendons were used. Tendons were randomly reseeded with ACL-derived cells or ADMSCs. ACL-derived cells were harvested and isolated from remnants of ruptured ACLs during reconstruction surgery and cultured at passage three. Cell suspensions (200 µl) containing 2 × 106 ACL-derived cells or ADMSCs were prepared for the purpose of reseeding. At days 1, 3, and 7 post-reseeding, graft composites were assessed for repopulation with histological and immunohistochemical analysis. Matrix protein contents and gene expression levels were analyzed.Aims
Methods
Heterotopic ossification (HO) is a common complication after elbow trauma and can cause severe upper limb disability. Although multiple prognostic factors have been reported to be associated with the development of post-traumatic HO, no model has yet been able to combine these predictors more succinctly to convey prognostic information and medical measures to patients. Therefore, this study aimed to identify prognostic factors leading to the formation of HO after surgery for elbow trauma, and to establish and validate a nomogram to predict the probability of HO formation in such particular injuries. This multicentre case-control study comprised 200 patients with post-traumatic elbow HO and 229 patients who had elbow trauma but without HO formation between July 2019 and December 2020. Features possibly associated with HO formation were obtained. The least absolute shrinkage and selection operator regression model was used to optimize feature selection. Multivariable logistic regression analysis was applied to build the new nomogram: the Shanghai post-Traumatic Elbow Heterotopic Ossification Prediction model (STEHOP). STEHOP was validated by concordance index (C-index) and calibration plot. Internal validation was conducted using bootstrapping validation.Aims
Methods
The aim of the HIPGEN consortium is to develop the first cell therapy product for hip fracture patients using PLacental-eXpanded (PLX-PAD) stromal cells. HIPGEN is a multicentre, multinational, randomized, double-blind, placebo-controlled trial. A total of 240 patients aged 60 to 90 years with low-energy femoral neck fractures (FNF) will be allocated to two arms and receive an intramuscular injection of either 150 × 106 PLX-PAD cells or placebo into the medial gluteal muscle after direct lateral implantation of total or hemi hip arthroplasty. Patients will be followed for two years. The primary endpoint is the Short Physical Performance Battery (SPPB) at week 26. Secondary and exploratory endpoints include morphological parameters (lean body mass), functional parameters (abduction and handgrip strength, symmetry in gait, weightbearing), all-cause mortality rate and patient-reported outcome measures (Lower Limb Measure, EuroQol five-dimension questionnaire). Immunological biomarker and in vitro studies will be performed to analyze the PLX-PAD mechanism of action. A sample size of 240 subjects was calculated providing 88% power for the detection of a 1 SPPB point treatment effect for a two-sided test with an α level of 5%.Aims
Methods
Acquired heterotopic ossification (HO) is a debilitating disease characterized by abnormal extraskeletal bone formation within soft-tissues after injury. The exact pathogenesis of HO remains unknown. It was reported that Achilles tendon puncture (ATP) mouse model was performed on ten-week-old male C57BL/6J mice. One week after ATP procedure, the mice were given different treatments (e.g. JQ1, shMancr). Achilles tendon samples were collected five weeks after treatment for RNA-seq and real-time quantitative polymerase chain reaction (RT-qPCR) analysis; the legs were removed for micro-CT imaging and subsequent histology. Human bone marrow mesenchymal stem cells (hBMSCs) were isolated and purified bone marrow collected during surgeries by using density gradient centrifugation. After a series of interventions such as knockdown or overexpressing Aims
Methods
Post-traumatic elbow stiffness is a disabling condition that remains challenging for upper limb surgeons. Open elbow arthrolysis is commonly used for the treatment of stiff elbow when conservative therapy has failed. Multiple questions commonly arise from surgeons who deal with this disease. These include whether the patient has post-traumatic stiff elbow, how to evaluate the problem, when surgery is appropriate, how to perform an excellent arthrolysis, what the optimal postoperative rehabilitation is, and how to prevent or reduce the incidence of complications. Following these questions, this review provides an update and overview of post-traumatic elbow stiffness with respect to the diagnosis, preoperative evaluation, arthrolysis strategies, postoperative rehabilitation, and prevention of complications, aiming to provide a complete diagnosis and treatment path. Cite this article:
Heterotopic ossification (HO) is a potentially devastating complication of the surgical treatment of a proximal humeral fracture. The literature on the rate and risk factors for the development of HO under these circumstances is lacking. The aim of this study was to determine the incidence and risk factors for the development of HO in these patients. A retrospective analysis of 170 patients who underwent operative treatment for a proximal humeral fracture between 2005 and 2016, in a single institution, was undertaken. The mean follow-up was 18.2 months (1.5 to 140). The presence of HO was identified on follow-up radiographs.Aims
Methods
Shoulder arthroplasty using short humeral components is becoming increasingly popular. Some such components have been associated with relatively high rates of adverse radiological findings. The aim of this retrospective review was to evaluate the radiological humeral bone changes and mechanical failure rates with implantation of a short cementless humeral component in anatomical (TSA) and reverse shoulder arthroplasty (RSA). A total of 100 shoulder arthroplasties (35 TSA and 65 RSA) were evaluated at a mean of 3.8 years (3 to 8.3). The mean age at the time of surgery was 68 years (31 to 90). The mean body mass index was 32.7 kg/m2 (17.3 to 66.4).Aims
Patients and Methods
Total ankle arthroplasty (TAA) surgery is complex and attracts a wide variety of complications. The literature lacks consistency in reporting adverse events and complications. The aim of this article is to provide a comprehensive analysis of each of these complications from a literature review, and to compare them with rates from our Unit, to aid clinicians with the process of informed consent. A total of 278 consecutive total ankle arthroplasties (251 patients), performed by four surgeons over a six-year period in Wrightington Hospital (Wigan, United Kingdom) were prospectively reviewed. There were 143 men and 108 women with a mean age of 64 years (41 to 86). The data were recorded on each follow-up visit. Any complications either during initial hospital stay or subsequently reported on follow-ups were recorded, investigated, monitored, and treated as warranted. Literature search included the studies reporting the outcomes and complications of TAA implants.Aims
Patients and Methods
Calcium sulphate has traditionally been used as a filler of dead space arising during surgery. Various complications have been described following the use of Stimulan bio-absorbable calcium sulphate beads. This study is a prospective observational study to assess the safety profile of these beads when used in revision arthroplasty, comparing the complication rates with those reported in the literature. A total of 755 patients who underwent 456 revision total knee arthroplasties (TKA) and 299 revision total hip arthroplasties (THA), with a mean follow-up of 35 months (0 to 78) were included in the study.Aims
Methods
The aim of this study was to assess the efficacy of non-selective
and selective non-steroidal anti-inflammatory drugs (NSAIDs) in
preventing heterotopic ossification (HO) after total hip arthroplasty
(THA). A thorough and systematic literature search was conducted and
29 studies were found that met inclusion criteria. Data were extracted
and statistical analysis was carried out generating forest plots.Aims
Methods
To evaluate the outcomes of cemented total hip arthroplasty (THA)
following a fracture of the acetabulum, with evaluation of risk
factors and comparison with a patient group with no history of fracture. Between 1992 and 2016, 49 patients (33 male) with mean age of
57 years (25 to 87) underwent cemented THA at a mean of 6.5 years
(0.1 to 25) following acetabular fracture. A total of 38 had undergone
surgical fixation and 11 had been treated non-operatively; 13 patients
died at a mean of 10.2 years after THA (0.6 to 19). Patients were
assessed pre-operatively, at one year and at final follow-up (mean
9.1 years, 0.5 to 23) using the Oxford Hip Score (OHS). Implant
survivorship was assessed. An age and gender-matched cohort of THAs
performed for non-traumatic osteoarthritis (OA) or avascular necrosis
(AVN) (n = 98) were used to compare complications and patient-reported outcome
measures (PROMs).Aims
Patients and Methods
The purpose of this study was to determine the sensitivity, specificity
and predictive values of previously reported thresholds of proximal
translation and sagittal rotation of cementless acetabular components
used for revision total hip arthroplasty (THA) at various times
during early follow-up. Migration of cementless acetabular components was measured retrospectively
in 84 patients (94 components) using Ein-Bild-Rontgen-Analyse (EBRA-Cup)
in two groups of patients. In Group A, components were recorded
as not being loose intra-operatively at re-revision THA (52 components/48
patients) and Group B components were recorded to be loose at re-revision
(42 components/36 patients).Aims
Patients and Methods
Bone tissue engineering constructs (BTEC) combining natural resorbable osteoconductive scaffolds and mesenchymal stem cells (MSCs) have given promising results to repair critical size bone defect. Yet, results remain inconsistent. Adjonction of an osteoinductive factor to these BTEC, such as rh-BMP-2, to improve bone healing, seems to be a relevant strategy. However, currently supraphysiological dose of this protein are used and can lead to adverse effects such as inflammation,
We retrospectively reviewed 89 consecutive patients
(45 men and 44 women) with a mean age at the time of injury of 58
years (18 to 97) who had undergone external fixation after sustaining
a unilateral fracture of the distal humerus. Our objectives were
to determine the incidence of heterotopic ossification (HO); identify
risk factors associated with the development of HO; and characterise
the location, severity and resultant functional impairment attributable
to the presence of HO. HO was identified in 37 elbows (42%), mostly around the humerus
and along the course of the medial collateral ligament. HO was hazy
immature in five elbows (13.5%), mature discrete in 20 (54%), extensive
mature in 10 (27%), and complete bone bridges were present in two
elbows (5.5%). Mild functional impairment occurred in eight patients,
moderate in 27 and severe in two. HO was associated with less extension
(p = 0.032) and less overall flexion-to-extension movement (p =
0.022); the flexion-to-extension arc was <
100º in 21 elbows
(57%) with HO compared with 18 elbows (35%) without HO (p = 0.03).
HO was removed surgically in seven elbows. The development of HO was significantly associated with sustaining
a head injury (p = 0.015), delayed internal fixation (p = 0.027),
the method of fracture fixation (p = 0.039) and the use of bone
graft or substitute (p = 0.02).HO continues to be a substantial
complication after internal fixation for distal humerus fractures. Cite this article:
Summary. In this study, OsteoAMP® bone graft showed superior fusion rates as compared to rhBMP-2 at all timepoints (p<0.004). Additionally, OsteoAMP® bone graft had >80% few adverse events as compared to rhBMP-2. Introduction. Adverse events and complications related to use of rhBMP-2 have raised many ethical, legal, and reimbursement concerns for surgeons. OsteoAMP® bone graft is an allograft derived growth factor, rich in osteoinductive, angiogenic, and mitogenic proteins. The following data displays a blinded, multi -center study evaluating and comparing fusion outcomes between rhBMP-2 and OsteoAMP® bone graft. Patients & Methods. A total of 254 consecutive patients (383 total levels) were treated with TLIF or LLIF spine fusion procedures. A group of 70 patients (53.3 ± 11.1 y/o) were treated with rhBMP-2 (Infuse®/Inductos®, Medtronic) and local bone inside of a PEEK interbody cage with an average of 1.44 levels per surgery. A group of 184 patients (60.5 ± 13.1 y/o) were treated with OsteoAMP® (Advanced Biologics) and local bone inside of a PEEK interbody cage with an average of 1.53 levels per surgery. Fusion assessments were made by a blinded independent radiologist based on radiograph and CT images at 6w, 3m, 6m, 12m, and 18m follow up. Radiographically evident adverse events were also assessed in a blinded manner by an independent radiologist. Results. Overall fusion analysis showed superiority in efficacy of OsteoAMP® over rhBMP-2 at all time points (p<0.004). Use of rhBMP-2 produced limited early fusions at 6 months (22.7%) yet improved at 1 year (71.4%). OsteoAMP® facilitated fusion for the majority of patients by 6 months (54.1%) and nearly all patients within 1 year (93.9%). At 18 months, 99.3% of OsteoAMP® patients had fused while the rhBMP-2 arm had an 86.7% fusion rate. Total time for fusion for OsteoAMP® was approximately half that of rhBMP-2 at 211.4 days and 407.1 days respectively. A subset cohort of 47 patients in the rhBMP-2 arm had OsteoAMP® packed anterior to the PEEK cage. When OsteoAMP® was used as an extender to rhBMP-2 in this manner, fusion rates increased at all timepoints (p=0.05 at 18 months) over patients that only had rhBMP-2 and local bone within the disc space. Though, the fusion rates of OsteoAMP® without rhBMP-2 remained higher than the rhBMP-2/local bone/OsteoAMP® extender cohort at all timepoints (p<0.05). To further isolate the effect of OsteoAMP, a subset cohort of 52 patients within the OsteoAMP® treatment arm in the absence of rhBMP-2 did not utilise bone marrow aspirate. The fusion rates of patients within this cohort was statistically higher at 6 months but did not show statistically higher fusion rates at 3 months, 12 months, or 18 months (p>0.12). When compared to the rhBMP-2 study arm, patients within the OsteoAMP® arm that did not receive bone marrow aspirate demonstrated higher fusion rates at all time points (p<0.04 at 12 and 18 months). The rhBMP-2 arm had more than 5 times the incidence of radiologically evident adverse events (osteolysis and
Summary. 45S5 bioactive glass combined with hMSC did not permit de novo ectopic bone formation. Such absence of osteogenicity was most likely due to the alkalinization of the 45S5 microenvironment that affects adversely the osteogenic differentiation of stem/precursor cells. Bone marrow stromal cells (BMSCs) are capable of bone formation and can promote the repair of osseous defects when implanted in appropriate scaffolds. The most promising biomaterials for application in bone tissue engineering (TE) are hydroxyapatite (HA), tricalcium phosphate (TCP), calcium carbonate (coral) ceramics or bioactive glasses (BG) because of their osteoconductive properties and ability to enhance bone formation. However, information regarding the osteogenic potential of hBMSCs in combination with BG scaffolds is strikingly lacking in the TE field. The present study focused on evaluating the osteogenicity of bone constructs prepared from particles of 45S5 BG combined with hBMSCs in comparison with biphasic HA/TCP or coral particles, in a mouse ectopic model. The in vivo osteogenicity was then correlated with various aspects of the effects of the scaffold materials tested on hBMSCs functions pertinent to bone tissue formation. Particular attention was given to the pH in the microenvironment where the cells reside in TE constructs and its effect on the osteoblastic differentiation of hBMSCs. In vivo experiments evidenced that 45S5 BG constructs with hBMSCs failed to form
Neurogenic heterotopic ossification (NHO) is
a disorder of aberrant bone formation affecting one in five patients sustaining
a spinal cord injury or traumatic brain injury.
Heterotopic ossification (HO) is perhaps the
single most significant obstacle to independence, functional mobility, and
return to duty for combat-injured veterans of Operation Enduring
Freedom and Operation Iraqi Freedom. Recent research into the cause(s)
of HO has been driven by a markedly higher prevalence seen in these
wounded warriors than encountered in previous wars or following
civilian trauma. To that end, research in both civilian and military
laboratories continues to shed light onto the complex mechanisms
behind HO formation, including systemic and wound specific factors,
cell lineage, and neurogenic inflammation. Of particular interest,
non-invasive
A Ruys, School of Aerospace, Mechanical and Mechatronic Engineering, University of Sydney, Sydney. The effects of bone anabolics can be maximised by systemic co-treatment with an anti-catabolic. Local treatment may reduce the total drug required and produce superior outcomes, although high dose local bisphosphonate has been reported to impair bone formation. We have explored local co-delivery of anabolic/anti- catabolic bone drugs at different doses. We manufactured biodegradable poly-D,L-lactic acid (PDLLA) polymer pellets containing 25g BMP-7 as an anabolic with or without 0.002mg-2mg Pamidronate (PAM) as an anti-catabolic. Polymer pellets were surgically implanted into the hind limb muscle of female C57BL6 mice. Animals were sacrificed at three weeks post- implantation and bone formation was assessed by radiography, microcomputed tomography (microCT) and histology. Histological staining on five Âm paraffin sections included haematoxylin/eosin, alcian blue/picrosirius red, and tartrate- resistant acid phosphatase (TRAP). Radiographic and microCT data confirmed that 0.02mg and 0.2mg local PAM doses significantly augmented BMP-7 induced bone formation. In contrast, 2mg local PAM dramatically reduced the amount of bone present. This dose was comparable to that used by Choi et al who also reported impaired bone formation in a skull defect model.2 three-dimensional microCT and histological analyses of the