Frailty has been gathering attention as a factor to predict surgical outcomes. However, the association of frailty with postoperative complications remains controversial in spinal metastases surgery. We therefore designed a prospective study to elucidate risk factors for postoperative complications with a focus on frailty. We prospectively analyzed 241 patients with spinal metastasis who underwent palliative surgery from June 2015 to December 2021. Postoperative complications were assessed by the Clavien-Dindo classification; scores of ≥ Grade II were defined as complications. Data were collected regarding demographics (age, sex, BMI, and primary cancer) and preoperative clinical factors (new Katagiri score, Frankel grade, performance status, radiotherapy, chemotherapy, spinal instability neoplastic score, modified Frailty Index-11 (mFI), diabetes, and serum albumin levels). Univariate and multivariate analyses were developed to identify risk factors for postoperative complications (p < 0.05).Aims
Methods
Aim. This study aimed to externally validate promising preoperative PJI prediction models in a recent, multinational European cohort. Method. Three preoperative PJI prediction models (by Tan et al., Del Toro et al., and BĂĽlow et al.) which previously demonstrated high levels of accuracy were selected for validation. A multicenter retrospective observational analysis was performed of patients undergoing total hip arthroplasty (THA) and total knee arthroplasty (TKA) between January 2020 and December 2021 and treated at centers in the Netherlands, Portugal, and Spain. Patient characteristics were compared between our cohort and those used to develop the prediction models. Model performance was assessed through
Introduction. The increased prevalence of osteoporosis in the patient population undergoing reverse shoulder arthroplasty (RSA) results in significantly increased complication rates. Mainly demographic and clinical predictors are currently taken into the preoperative assessment for risk stratification without quantification of preoperative computed tomography (CT) data (e.g. bone density). It was hypothesized that preoperative CT bone density measures would provide objective quantification with subsequent classification of the patients’ humeral bone quality. Methods. Thirteen bone density parameters from 345 preoperative CT scans of a clinical RSA cohort represented the data set in this study. The data set was divided into testing (30%) and training data (70%), latter included an 8-fold cross validation. Variable selection was performed by choosing the variables with the highest descriptive value for each correlation clustered variables. Machine learning models were used to improve the clustering (Hierarchical Ward) and classification (Support Vector Machine (SVM)) of bone densities at risk for complications and were compared to a conventional statistical model (Logistic Regression (LR)). Results. Clustering partitioned this cohort (training data set) into a high bone density subgroup consisting of 96 patients and a low bone density subgroup consisting of 146 patients. The optimal number of clusters (n = 2) was determined based on optimization metrics.
Aims. Though most humeral shaft fractures heal nonoperatively, up to one-third may lead to nonunion with inferior outcomes. The Radiographic Union Score for HUmeral Fractures (RUSHU) was created to identify high-risk patients for nonunion. Our study evaluated the RUSHU’s prognostic performance at six and 12 weeks in discriminating nonunion within a significantly larger cohort than before. Methods. Our study included 226 nonoperatively treated humeral shaft fractures. We evaluated the interobserver reliability and intraobserver reproducibility of RUSHU scoring using intraclass correlation coefficients (ICCs). Additionally, we determined the optimal cut-off thresholds for predicting nonunion using the receiver operating characteristic (ROC) method. Results. The RUSHU demonstrated good interobserver reliability with an ICC of 0.78 (95% CI 0.72 to 0.83) at six weeks and 0.77 (95% CI 0.71 to 0.82) at 12 weeks. Intraobserver reproducibility was good or excellent for all analyses. Area under the curve in the ROC analysis was 0.83 (95% CI 0.77 to 0.88) at six weeks and 0.89 (95% CI 0.84 to 0.93) at 12 weeks, indicating excellent
We aimed to compare reoperations following distal radial fractures (DRFs) managed with early fixation versus delayed fixation following initial closed reduction (CR). We used administrative databases in Ontario, Canada, to identify DRF patients aged 18 years or older from 2003 to 2016. We used procedural and fee codes within 30 days to determine which patients underwent early fixation (≤ seven days) or delayed fixation following CR. We grouped patients in the delayed group by their time to definitive fixation (eight to 14 days, 15 to 21 days, and 22 to 30 days). We used intervention and diagnostic codes to identify reoperations within two years. We used multivariable regression to compare the association between early versus delayed fixation and reoperation for all patients and stratified by age (18 to 60 years and > 60 years).Aims
Methods
Aims. Treatment of high-grade limb bone sarcoma that invades a joint requires en bloc extra-articular excision. MRI can demonstrate joint invasion but is frequently inconclusive, and its predictive value is unknown. We evaluated the diagnostic accuracy of direct and indirect radiological signs of intra-articular tumour extension and the performance characteristics of MRI findings of intra-articular tumour extension. Methods. We performed a retrospective case-control study of patients who underwent extra-articular excision for sarcoma of the knee, hip, or shoulder from 1 June 2000 to 1 November 2020. Radiologists blinded to the pathology results evaluated preoperative MRI for three direct signs of joint invasion (capsular disruption, cortical breach, cartilage invasion) and indirect signs (e.g. joint effusion, synovial thickening). The discriminatory ability of MRI to detect intra-articular tumour extension was determined by receiver operating characteristic analysis. Results. Overall, 49 patients underwent extra-articular excision. The area under the curve (AUC) ranged from 0.65 to 0.76 for direct signs of joint invasion, and was 0.83 for all three combined. In all, 26 patients had only one to two direct signs of invasion, representing an equivocal result. In these patients, the AUC was 0.63 for joint effusion and 0.85 for synovial thickening. When direct signs and synovial thickening were combined, the AUC was 0.89. Conclusion. MRI provides excellent
This study aimed to define the histopathology of degenerated humeral head cartilage and synovial inflammation of the glenohumeral joint in patients with omarthrosis (OmA) and cuff tear arthropathy (CTA). Additionally, the potential of immunohistochemical tissue biomarkers in reflecting the degeneration status of humeral head cartilage was evaluated. Specimens of the humeral head and synovial tissue from 12 patients with OmA, seven patients with CTA, and four body donors were processed histologically for examination using different histopathological scores. Osteochondral sections were immunohistochemically stained for collagen type I, collagen type II, collagen neoepitope C1,2C, collagen type X, and osteocalcin, prior to semiquantitative analysis. Matrix metalloproteinase (MMP)-1, MMP-3, and MMP-13 levels were analyzed in synovial fluid using enzyme-linked immunosorbent assay (ELISA).Aims
Methods
The aims were to assess whether joint-specific outcome after total knee arthroplasty (TKA) was influenced by implant design over a 12-year follow-up period, and whether patient-related factors were associated with loss to follow-up and mortality risk. Long-term follow-up of a randomized controlled trial was undertaken. A total of 212 patients were allocated a Triathlon or a Kinemax TKA. Patients were assessed preoperatively, and one, three, eight, and 12 years postoperatively using the Oxford Knee Score (OKS). Reasons for patient lost to follow-up, mortality, and revision were recorded.Aims
Methods
Our primary aim was to establish the proportion of female orthopaedic consultants who perform arthroplasty via cases submitted to the National Joint Registry (NJR), which covers England, Wales, Northern Ireland, the Isle of Man, and Guernsey. Secondary aims included comparing time since specialist registration, private practice participation, and number of hospitals worked in between male and female surgeons. Publicly available data from the NJR was extracted on the types of arthroplasty performed by each surgeon, and the number of procedures of each type undertaken. Each surgeon was cross-referenced with the General Medical Council (GMC) website, using GMC number to extract surgeon demographic data. These included sex, region of practice, and dates of full and specialist registration.Aims
Methods
The Oxford Shoulder Score (OSS) is a 12-item measure commonly used for the assessment of shoulder surgeries. This study explores whether computerized adaptive testing (CAT) provides a shortened, individually tailored questionnaire while maintaining test accuracy. A total of 16,238 preoperative OSS were available in the National Joint Registry (NJR) for England, Wales, Northern Ireland, the Isle of Man, and the States of Guernsey dataset (April 2012 to April 2022). Prior to CAT, the foundational item response theory (IRT) assumptions of unidimensionality, monotonicity, and local independence were established. CAT compared sequential item selection with stopping criteria set at standard error (SE) < 0.32 and SE < 0.45 (equivalent to reliability coefficients of 0.90 and 0.80) to full-length patient-reported outcome measure (PROM) precision.Aims
Methods
The overall aim of this study was to determine the impact of deprivation with regard to quality of life, demographics, joint-specific function, attendances for unscheduled care, opioid and antidepressant use, having surgery elsewhere, and waiting times for surgery on patients awaiting total hip arthroplasty (THA) and total knee arthroplasty (TKA). Postal surveys were sent to 1,001 patients on the waiting list for THA or TKA in a single Northern Ireland NHS Trust, which consisted of the EuroQol five-dimension five-level questionnaire (EQ-5D-5L), visual analogue scores (EQ-VAS), and Oxford Hip and Knee Scores. Electronic records determined prescriptions since addition to the waiting list and out-of-hour GP and emergency department attendances. Deprivation quintiles were determined by the Northern Ireland Multiple Deprivation Measure 2017 using postcodes of home addresses.Aims
Methods
This study was designed to develop a model for predicting bone mineral density (BMD) loss of the femur after total hip arthroplasty (THA) using artificial intelligence (AI), and to identify factors that influence the prediction. Additionally, we virtually examined the efficacy of administration of bisphosphonate for cases with severe BMD loss based on the predictive model. The study included 538 joints that underwent primary THA. The patients were divided into groups using unsupervised time series clustering for five-year BMD loss of Gruen zone 7 postoperatively, and a machine-learning model to predict the BMD loss was developed. Additionally, the predictor for BMD loss was extracted using SHapley Additive exPlanations (SHAP). The patient-specific efficacy of bisphosphonate, which is the most important categorical predictor for BMD loss, was examined by calculating the change in predictive probability when hypothetically switching between the inclusion and exclusion of bisphosphonate.Aims
Methods
The February 2024 Wrist & Hand Roundup360 looks at: Occupational therapy for thumb carpometacarpal osteoarthritis?; Age and patient-reported benefits from operative management of intra-articular distal radius fractures: a meta-regression analysis; Long-term outcomes of nonsurgical treatment of thumb carpometacarpal osteoarthritis: a cohort study; Semi-occlusive dressing versus surgery in fingertip injuries: a randomized controlled trial; Re-fracture in partial union of the scaphoid waist?; The WALANT distal radius fracture: a systematic review; Endoscopic carpal tunnel release with or without hand therapy?; Ten-year trends in the level of evidence in hand surgery.
This study aimed to compare the performance of survival prediction models for bone metastases of the extremities (BM-E) with pathological fractures in an Asian cohort, and investigate patient characteristics associated with survival. This retrospective cohort study included 469 patients, who underwent surgery for BM-E between January 2009 and March 2022 at a tertiary hospital in South Korea. Postoperative survival was calculated using the PATHFx3.0, SPRING13, OPTIModel, SORG, and IOR models. Model performance was assessed with area under the curve (AUC), calibration curve, Brier score, and decision curve analysis. Cox regression analyses were performed to evaluate the factors contributing to survival.Aims
Methods
Machine-learning (ML) prediction models in orthopaedic trauma hold great promise in assisting clinicians in various tasks, such as personalized risk stratification. However, an overview of current applications and critical appraisal to peer-reviewed guidelines is lacking. The objectives of this study are to 1) provide an overview of current ML prediction models in orthopaedic trauma; 2) evaluate the completeness of reporting following the Transparent Reporting of a multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement; and 3) assess the risk of bias following the Prediction model Risk Of Bias Assessment Tool (PROBAST) tool. A systematic search screening 3,252 studies identified 45 ML-based prediction models in orthopaedic trauma up to January 2023. The TRIPOD statement assessed transparent reporting and the PROBAST tool the risk of bias.Aims
Methods
This study aimed to evaluate the clinical application of the PJI-TNM classification for periprosthetic joint infection (PJI) by determining intraobserver and interobserver reliability. To facilitate its use in clinical practice, an educational app was subsequently developed and evaluated. A total of ten orthopaedic surgeons classified 20 cases of PJI based on the PJI-TNM classification. Subsequently, the classification was re-evaluated using the PJI-TNM app. Classification accuracy was calculated separately for each subcategory (reinfection, tissue and implant condition, non-human cells, and morbidity of the patient). Fleiss’ kappa and Cohen’s kappa were calculated for interobserver and intraobserver reliability, respectively.Aims
Methods
To map the Oxford Knee Score (OKS) and High Activity Arthroplasty Score (HAAS) items to a common scale, and to investigate the psychometric properties of this new scale for the measurement of knee health. Patient-reported outcome measure (PROM) data measuring knee health were obtained from the NHS PROMs dataset and Total or Partial Knee Arthroplasty Trial (TOPKAT). Assumptions for common scale modelling were tested. A graded response model (fitted to OKS item responses in the NHS PROMs dataset) was used as an anchor to calibrate paired HAAS items from the TOPKAT dataset. Information curves for the combined OKS-HAAS model were plotted. Bland-Altman analysis was used to compare common scale scores derived from OKS and HAAS items. A conversion table was developed to map between HAAS, OKS, and the common scale.Aims
Methods