Advertisement for orthosearch.org.uk
Results 1 - 20 of 65
Results per page:
The Bone & Joint Journal
Vol. 106-B, Issue 9 | Pages 898 - 906
1 Sep 2024
Kayani B Wazir MUK Mancino F Plastow R Haddad FS

Aims

The primary objective of this study was to develop a validated classification system for assessing iatrogenic bone trauma and soft-tissue injury during total hip arthroplasty (THA). The secondary objective was to compare macroscopic bone trauma and soft-tissues injury in conventional THA (CO THA) versus robotic arm-assisted THA (RO THA) using this classification system.

Methods

This study included 30 CO THAs versus 30 RO THAs performed by a single surgeon. Intraoperative photographs of the osseous acetabulum and periacetabular soft-tissues were obtained prior to implantation of the acetabular component, which were used to develop the proposed classification system. Interobserver and intraobserver variabilities of the proposed classification system were assessed.


The Bone & Joint Journal
Vol. 106-B, Issue 4 | Pages 324 - 335
1 Apr 2024
Fontalis A Kayani B Plastow R Giebaly DE Tahmassebi J Haddad IC Chambers A Mancino F Konan S Haddad FS

Aims

Achieving accurate implant positioning and restoring native hip biomechanics are key surgeon-controlled technical objectives in total hip arthroplasty (THA). The primary objective of this study was to compare the reproducibility of the planned preoperative centre of hip rotation (COR) in patients undergoing robotic arm-assisted THA versus conventional THA.

Methods

This prospective randomized controlled trial (RCT) included 60 patients with symptomatic hip osteoarthritis undergoing conventional THA (CO THA) versus robotic arm-assisted THA (RO THA). Patients in both arms underwent pre- and postoperative CT scans, and a patient-specific plan was created using the robotic software. The COR, combined offset, acetabular orientation, and leg length discrepancy were measured on the pre- and postoperative CT scanogram at six weeks following surgery.


Bone & Joint Open
Vol. 4, Issue 11 | Pages 889 - 898
23 Nov 2023
Clement ND Fraser E Gilmour A Doonan J MacLean A Jones BG Blyth MJG

Aims

To perform an incremental cost-utility analysis and assess the impact of differential costs and case volume on the cost-effectiveness of robotic arm-assisted unicompartmental knee arthroplasty (rUKA) compared to manual (mUKA).

Methods

This was a five-year follow-up study of patients who were randomized to rUKA (n = 64) or mUKA (n = 65). Patients completed the EuroQol five-dimension questionnaire (EQ-5D) preoperatively, and at three months and one, two, and five years postoperatively, which was used to calculate quality-adjusted life years (QALYs) gained. Costs for the primary and additional surgery and healthcare costs were calculated.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_7 | Pages 90 - 90
1 Jul 2022
KRISHNAN B ANDREWS N CHATOO M THAKRAR R
Full Access

Abstract. Introduction. Osteotomy is a recognised surgical option for the management of unicompartmental knee osteoarthritis. The effectiveness of the surgery is correlated with the accuracy of correction obtained. Overcorrection can potentially lead to excess load through the healthy cartilage resulting in accelerated wear and early failure of surgery. Despite this past studies report this accuracy to be as low as 20% in achieving planned corrections. Aim. Assess the effectiveness of adopting modern osteotomy techniques in improving surgical accuracy. Methodology. A prospective cohort study. Patients were identified who had undergone osteotomy surgery for unicompartmental knee OA using a standardised technique. The surgical techniques adopted to ensure accuracy included digital templating software (Orthoview), Precision saw(Stryker), bone wedge allograft and plate osteosynthesis (Tomofix). Pre and post operative analysis of standardised long leg X-rays was performed and the intended (I) and achieved(A) corrections were calculated. Results. A total of 94 (35F/59M) patients with a mean age of 52 years were identified who fulfilled the inclusion criteria for the study. 62 patients were treated with a tibial osteotomy, 21 with femoral and 11 with a double level osteotomy. Using a 10% acceptable range (AR) for error, in 89% of cases (84 of 94) the target Mikulicz point was achieved. Potential risk factors for overcorrection included female sex and osteotomy type, with a higher incidence of over correction observed with double level osteotomies (27%). Conclusion. This study demonstrates that meticulous digital software planning and surgical technique ensures accurate surgical correction in periarticular knee osteotomy surgery


The Bone & Joint Journal
Vol. 104-B, Issue 6 | Pages 647 - 656
1 Jun 2022
Knudsen MB Thillemann JK Jørgensen PB Jakobsen SS Daugaard H Søballe K Stilling M

Aims

BoneMaster is a thin electrochemically applied hydroxyapatite (HA) coating for orthopaedic implants that is quickly resorbed during osseointegration. Early stabilization is a surrogacy marker of good survival of femoral stems. The hypothesis of this study was that a BoneMaster coating yields a fast early and lasting fixation of stems.

Methods

A total of 53 patients were randomized to be treated using Bi-Metric cementless femoral stems with either only a porous titanium plasma-sprayed coating (P group) or a porous titanium plasma-sprayed coating with an additional BoneMaster coating (PBM group). The patients were examined with radiostereometry until five years after surgery.


The Bone & Joint Journal
Vol. 103-B, Issue 11 | Pages 1669 - 1677
1 Nov 2021
Divecha HM O'Neill TW Lunt M Board TN

Aims

To determine if primary cemented acetabular component geometry (long posterior wall (LPW), hooded, or offset reorientating) influences the risk of revision total hip arthroplasty (THA) for instability or loosening.

Methods

The National Joint Registry (NJR) dataset was analyzed for primary THAs performed between 2003 and 2017. A cohort of 224,874 cemented acetabular components were included. The effect of acetabular component geometry on the risk of revision for instability or for loosening was investigated using log-binomial regression adjusting for age, sex, American Society of Anesthesiologists grade, indication, side, institution type, operating surgeon grade, surgical approach, polyethylene crosslinking, and prosthetic head size. A competing risk survival analysis was performed with the competing risks being revision for other indications or death.


The Bone & Joint Journal
Vol. 103-B, Issue 6 | Pages 1088 - 1095
1 Jun 2021
Banger M Doonan J Rowe P Jones B MacLean A Blyth MJB

Aims

Unicompartmental knee arthroplasty (UKA) is a bone-preserving treatment option for osteoarthritis localized to a single compartment in the knee. The success of the procedure is sensitive to patient selection and alignment errors. Robotic arm-assisted UKA provides technological assistance to intraoperative bony resection accuracy, which is thought to improve ligament balancing. This paper presents the five-year outcomes of a comparison between manual and robotically assisted UKAs.

Methods

The trial design was a prospective, randomized, parallel, single-centre study comparing surgical alignment in patients undergoing UKA for the treatment of medial compartment osteoarthritis (ISRCTN77119437). Participants underwent surgery using either robotic arm-assisted surgery or conventional manual instrumentation. The primary outcome measure (surgical accuracy) has previously been reported, and, along with secondary outcomes, were collected at one-, two-, and five-year timepoints. Analysis of five-year results and longitudinal analysis for all timepoints was performed to compare the two groups.


Bone & Joint Open
Vol. 2, Issue 5 | Pages 351 - 358
27 May 2021
Griffiths-Jones W Chen DB Harris IA Bellemans J MacDessi SJ

Aims

Once knee arthritis and deformity have occurred, it is currently not known how to determine a patient’s constitutional (pre-arthritic) limb alignment. The purpose of this study was to describe and validate the arithmetic hip-knee-ankle (aHKA) algorithm as a straightforward method for preoperative planning and intraoperative restoration of the constitutional limb alignment in total knee arthroplasty (TKA).

Methods

A comparative cross-sectional, radiological study was undertaken of 500 normal knees and 500 arthritic knees undergoing TKA. By definition, the aHKA algorithm subtracts the lateral distal femoral angle (LDFA) from the medial proximal tibial angle (MPTA). The mechanical HKA (mHKA) of the normal group was compared to the mHKA of the arthritic group to examine the difference, specifically related to deformity in the latter. The mHKA and aHKA were then compared in the normal group to assess for differences related to joint line convergence. Lastly, the aHKA of both the normal and arthritic groups were compared to test the hypothesis that the aHKA can estimate the constitutional alignment of the limb by sharing a similar centrality and distribution with the normal population.


Orthopaedic Proceedings
Vol. 102-B, Issue SUPP_11 | Pages 6 - 6
1 Dec 2020
Murthy SN Rao SKN
Full Access

Preoperative planning for Total Hip Arthroplasty has been acknowledged as a vital step to facilitate a successful outcome. Templating ascertains the dimensions and positioning of the implants, minimizing both intraoperative and postoperative complications. The purpose of this study is to compare the accuracy of digital templating to acetate templating in the preoperative planning of Total Hip Arthroplasty. Preoperative planning was performed on 40 consecutive patients (mean age = 70.5 years), undergoing Total Hip Arthroplasty. Digital templating was performed by the Hip fellow 1, using Orthoview software (Jacksonville, FL, USA) and recorded the sizes of the cup and stem for each of the 40 patients. Subsequently, the same 40 patients were templated by Hip fellow 2, with X-rays done with a lead marker of known size by the side of the femur, using, acetate templating method. Templating results were compared to the actual sizes of the implants used, as noted in operative notes. Templating scores for the acetabular cup were 40% (16/40) with digital templating and 50% (20/40) with acetate templating. The templating scores for stem were 28% (11/40) with digital templating and 90% (36/40) with acetate templating. The differences between templating and actual implant sizes were plotted in Bland–Altman plot. Acetate templating proved to be statistically, significantly more accurate than digital templating (p value= 0.0083). Our results indicate that the traditional acetate method is solid and valid to use for preoperative planning. This method is accurate and offers a more affordable option for preoperative templating. Although the templated size is one, there is a tendency to increase cup size to use bigger heads, which is the recent National Joint Registries trend. We recommend that acetate templating should be used as the default option


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_10 | Pages 32 - 32
1 May 2016
Shimosawa H Kodama T Kobayashi S
Full Access

Introduction. When total knee arthroplasty (TKA) or unicompartmental knee arthroplasty (UKA) was indicated for the patient, it is important to perform the exact preoperative planning. Conventionally we created the plan based on the Xp films and transparent acetate sheets. Recntly, the digital radiographs and templating systems were introduced in hospitals and utilized for the preoperative planning. The purpose of this study is to investigate the accuracy of the digital templating by comparing the size of the implants between those chosen by the planning and those actually selected during the operation. Materials and methods. We investigated the plans of 715 knees with TKAs and 238 knees with UKAs between 2010 and 2014. There were 89 men and 438 women with average age of 72.1. There were 867 osteoarthritis, 46 rheumatoid arthritis, 39 osteonecrosis and 1 revision TKA. We created the preoperative planning using Electronic Picture and Communication system (PACS) and templating system (Advanced Case Plan 2.2 / Stryker). [Fig. 1] During the operation we have checked the actual femoral and tibial sizes of the implants, and compared them with preoperative plannings. Results. The exact matching of the sizes of the implants between the planning and the operation with TKAs were 59.4% for the femoral components, 52.7% for the tibial components and 32.4% for both components. [Fig. 2] While those figures with UKAs were 88.7%, 67.6% and 63.0% respectively. [Fig. 3] The matching within 1 size difference of the size of the implants between the planning and the operation were 92.4% with TKAs and 95.8% with UKAs. Discussion. Our study suggested that the digital templating of the TKAs and UKAs had satisfactory accuracy to use as preoperative planning for the operation. The accuracy was better in femur than that of tibia. The difference of the accuracy indicate the probable presence of the hyperplasia of the medial tibial condyle that we cut off to get good ligamtnt balancing. The accuracy of the UKAs was better than that of TKAs. During UKAs, we initially chose the predicted size of the devise and cut the bone, and then finally select the size of the implant. While during TKAs, we measure the size of the bone and then cut the bone. This difference of the operative procedure may result in the higher accuracy of UKAs. We conclude that digital templating for preoperative planning of TKAs and UKAs had satisfactory accuracy


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_9 | Pages 16 - 16
1 May 2016
Manzotti A Confalonieri N
Full Access

Introduction. Aim of this study is to assess any differences in digital templanting accuracy of a modular short femoral stems implanted with 2 different appoaches (direct anterior and posterolateral). Material and Methods. From December 2012 to Jenaury 2014 100 patient undergoing to a THA using the same implant with a short femoral modular stem were prospectively included in the study and divided in 2 groups according to the surgical approach. All the patients underwent to the same preoperative radiological protocol and the digital templating. The digital templating results were compared with the truly inserted implant size and a statistical analysis was carried on. Results. For the cup the mean percentage of agreement (±2 size) was 90.0 % in Anterior approach-group and 89.6 % in the the posterolateral approach group. For the mean percentage of agreement (± 2 size) was 88.0 % in and 89.1 % respectively. Likewise there was a statistical significant better accuracy in the modular femoral neck accuracy in the anterior approach (±2 size) and a statistical significant higher percentage of modular femoral neck with an increased antiversion in the posterolateral approach. Discussion. In our experience digital templating in short modular femoral stem seems to be less accurate for the posterior-lateral approach in term of both femoral neck length and antiversion. A possible explanation may be not a technical error but just a surgeon behavior to overcorrect the templating to prevent dislocation potentially more common using a postero-lateral approach


Bone & Joint 360
Vol. 5, Issue 1 | Pages 12 - 14
1 Feb 2016


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_4 | Pages 73 - 73
1 Jan 2016
Togashi E Fukushima S Sugawara H Narita A Takagi M
Full Access

Various types of tibial alignment guides exist, the results in performing the tibial resection in total knee arthroplasty (TKA) are more or less than we desired. In addition, it is difficult to estimate the accuracy of tibial component alignment with radiograph because it is difficult to get true frontal and lateral view. In this study, we use new tibial alignment guide and estimate tibial component alignment by using postoperative CT scan. 30 knees underwent TKA using an accelerometer-based, portable navigation device (KneeAlign 2) and postoperative CT scans were obtained. Postoperative CT scans of the lower limbs analysed by 3D digital template system (Athena), demonstrated that 96.6% of the tibial components were placed within 90°± 2°to the mechanical axis in the coronal plane, and 96.6% of the components were placed within 3°± 2°to the mechanical axis in the sagittal plane. As a result of this study, an accelerometer-based, portable navigation device can expect to decrease outliers in tibial component alignment


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_1 | Pages 124 - 124
1 Jan 2016
Mclawhorn A Carroll K Esposito C Maratt J Mayman DJ
Full Access

Background. Digital templating is a critical part of preoperative planning for total hip arthroplasty (THA) that is increasingly used by orthopaedic surgeons as part of their preoperative planning process. Digital templating has been used as a method of reducing hospital costs by eliminating the need for acetate films and providing an accurate method of preoperative planning. Pre-operative templating can help anticipate and predict appropriate component sizes to help avoid postoperative leg length discrepancy, failure to restore offset, femoral fracture, and instability. A preoperative plan using digital radiographs for surgical templating for component size can improve intraoperative accuracy and precision. While templating on conventional and digital radiographs is reliable and accurate, the accuracy of templating on digital images acquired with a novel biplanar imaging system (EOS Imaging Inc, Cambridge, MA, USA) remains unknown. EOS imaging captures whole body images of a standing patient without stitching or vertical distortion, less magnification error and exposes patients to less radiation than a pelvis AP radiograph. Therefore, the purpose of this study was to compare EOS imaging and conventional anteroposterior (AP) xrays for preoperative digital templating for THA, and compare the results to the implant sizes used intraoperatively. Methods. Forty primary unilateral THA patients had preoperative supine AP xrays and standing EOS imaging. The mean age for patients was 61 ± 8 years, the mean body mass index 29 ± 6 kg/m. 2. and 21 patients were female. All patients underwent a THA with the same THA system (R3 Acetabular System and Synergy Cementless Stem, Smith & Nephew, TN, USA) by a single surgeon. Two blinded observers preoperatively templated using both AP xray and EOS imaging for each patient to predict acetabular size, femoral component size, and stem offset. All templating was performed by two observers with standard software (Ortho Toolbox, Sectra AB, Linköping, Sweden) [Figure 1] one week prior to surgery, and were compared using the Cronbach's alpha (∝) coefficient of reliability. The accuracy of templating was reported as the average percent agreement between the implanted size and the templated size for each component. Results. For templating acetabular component size, the exact size was predicted for 48% using AP xrays and 70% using EOS imaging, and within 1 size for 88% using xrays and 98% using EOS imaging. For templating femoral component size, the exact size was predicted exactly for 33% using AP xrays and 60% using EOS imaging, and within 1 size for 85% using xrays and 98% using EOS imaging (Figure 2). Interobserver agreement was excellent for acetabular components (Cronbach's α = 0.94) and femoral components (Cronbach's α = 0.96) using EOS imaging. Conclusions. This study demonstrates that preoperative digital templating for THA using EOS imaging is accurate, with excellent interobserver agreement. EOS imaging has less magnification error, which may partially explain the accuracy of our templating method


Orthopaedic Proceedings
Vol. 97-B, Issue SUPP_9 | Pages 9 - 9
1 Aug 2015
Yeo A Richards C Eastwood D
Full Access

This study aimed to define the rates of lower limb angular correction using temporary hemiepiphysiodesis in differing skeletal pathologies. A retrospective review of 61 children (36M:25F) with angular deformities about the knee who underwent 8-plate hemiepiphysiodesis (mean age 10.8y) was undertaken. The children were divided into 9 groups based on their underlying pathology (lower limb hypoplasia, Blount's disease, skeletal dysplasia, rickets, metabolic disease, acquired growth disturbance, vascular malformation, steroid use and complex genetic disorders). Radiographic measurements of each limb segment was undertaken using the TraumaCad® digital templating software based on standing long-leg radiographs - mechanical lateral distal femoral angle (mLDFA) and mechanical medial proximal tibial angle (mMPTA). The rate of correction of each parameter was calculated as a function of the time lapse between the operation date and first radiographic evidence of full correction of the mechanical axis (zone 1). A total of 144 limb segments (80 distal femoral, 64 proximal tibial physes) were analysed. 62.5% of children had mechanical axes outside the knee joint at the time of operation; 63.2% achieved full correction. The rate of angular correction at the distal femur (mLDFA) was quickest in those with acquired growth disturbance (1.15°/month), complex genetic disorders (1.12°/month) and rickets (0.93°/month). It was slowest in those with vascular malformation (0.40°/month), lower extremity hypoplasia (0.44°/month) and metabolic disease (0.49°/month). At the proximal tibia, mMPTA correction was quickest in those with acquired growth disturbance (0.77°/month) and skeletal dysplasia (0.57°/month); whilst being slowest in those with metabolic disease (0.22°/month) and Blount's disease (0.29°/month). The rate of angular correction about the knee varies with the underlying pathology with correction rates varying up to 3-fold. This study demonstrated the differential rate of correction of angular deformities in children with different skeletal pathologies, which would help guide the timing of hemiepiphysiodesis


The Bone & Joint Journal
Vol. 97-B, Issue 2 | Pages 154 - 159
1 Feb 2015
Halai M Gupta S Gilmour A Bharadwaj R Khan A Holt G

We evaluated an operative technique, described by the Exeter Hip Unit, to assist accurate introduction of the femoral component. We assessed whether it led to a reduction in the rate of leg-length discrepancy after total hip arthroplasty (THA).

A total of 100 patients undergoing THA were studied retrospectively; 50 were undertaken using the test method and 50 using conventional methods as a control group. The groups were matched with respect to patient demographics and the grade of surgeon. Three observers measured the depth of placement of the femoral component on post-operative radiographs and measured the length of the legs.

There was a strong correlation between the depth of insertion of the femoral component and the templated depth in the test group (R = 0.92), suggesting accuracy of the technique. The mean leg-length discrepancy was 5.1 mm (0.6 to 21.4) pre-operatively and 1.3 mm (0.2 to 9.3) post-operatively. There was no difference between Consultants and Registrars as primary surgeons. Agreement between the templated and post-operative depth of insertion was associated with reduced post-operative leg-length discrepancy. The intra-class coefficient was R ≥ 0.88 for all measurements, indicating high observer agreement. The post-operative leg-length discrepancy was significantly lower in the test group (1.3 mm) compared with the control group (6.3 mm, p < 0.001).

The Exeter technique is reproducible and leads to a lower incidence of leg-length discrepancy after THA.

Cite this article: Bone Joint J 2015;97-B:154–9.


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 45 - 45
1 Jul 2014
Vanhegan I Coathup M McCarthy I Haddad F Blunn G
Full Access

Summary Statement. Proximal femoral bony deficits present a surgical and biomechanical challenge to implant longevity in revision hip arthroplasty. This work finds comparable primary stability when a distally fixing tapered fluted stem was compared with a conical design in cadaveric tests. Introduction. Proximal bony deficits complicate revision hip surgery and compromise implant survival. Longer distally fixing stems which bypass such defects are therefore required to achieve stability compatible with bony ingrowth and implant longevity. Aims. It is hypothesised that a tapered stem will provide superior rotational stability to a conical design. This work therefore aims to compare the primary stability and biomechanical properties of a new design of tapered fluted modular femoral stem (Redapt®, Smith & Nephew) with that of a conical fluted stem (Restoration®, Stryker). Materials & Methods. 7 Pairs of cadaveric femora were obtained according to strict inclusion/exclusion criteria. Each underwent dual energy x-ray absorptiometry and calibration plain-film radiographs were taken. Digital templating was performed using TraumaCad (Voyant Health, Brainlab) to determine implant sizing. Both stems are fluted, modular and manufactured from titanium. The control stem (Restoration) featured a straight conical design and the investigation stem (Redapt) a straight tapered design. Implantation was performed by a revision arthroplasty surgeon familiar with both systems. Proximal bone deficiency was reproduced using an extended trochanteric osteotomy with removal of metaphyseal bone before reattaching the osteotomy. Primary stability in the axial, sagittal and coronal planes was assessed using micromotion transducers (HBM, Darmstadt, Germany) and also by Radiostereometric Analysis (RSA). RSA employs simultaneous biplanar radiographs to measure relative movement. Two 1mm tantalum beads were mounted on the prosthesis with the centre of the femoral head taken as the third reference point. Beads were placed proximally in the surrounding bone as rigid body markers. Each bone was potted according to the ISO standard for fatigue testing and cyclically loaded at 1Hz for at least 3 increments (750–350N, 1000–350N, 1500–350N) for 1000 cycles. RSA radiographs were taken at baseline and on completion of each cycle. A strain analysis was concurrently performed using a PhotoStress® (Vishay Precision Group, Raleigh, USA) photoelastic coating on the medial femoral cortex. Each bone was loaded intact and then with the prosthesis in-situ at 500N increments until strain fringes were identified. Once testing was completed, the stems were sectioned at the femoral isthmus and data is presented on the cross-sectional fit and fill observed. Results. Both stem designs showed comparable primary stability with all stems achieving clinically acceptable micromotion (<150 μm) when loaded at body weight. A larger proportion of the control stems remained stable as loading increased to x2-3 body weight. Transducer-recorded migration appeared greatest in the axial plane (y axis) with negligible distal movement in the coronal or sagittal planes. Point motion analysis (RSA) indicated most movement to be in the coronal plane (x-axis) whereas segment motion analysis showed rotation about the long axis of the prosthesis to be largest. Photoelastic strain patterns were transferred more distally in both designs, however substantial stress shielding was also observed. Discussion/Conclusion. Both designs achieved adequate distal fixation and primary stability under representative clinical loading conditions. This work supports the continued use of this novel stem design for revision surgery in the presence of extensive proximal bone loss


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_3 | Pages 9 - 9
1 Feb 2014
Halai M Gupta S Gilmour A Bharadwaj R Khan A Holt G
Full Access

Leg length discrepancy (LLD) can adversely affect functional outcome and patient satisfaction after total hip arthroplasty. We describe a novel intraoperative technique for femoral component insertion. We aimed to determine if this technique resulted in the desired femoral placement, as templated, and if this was associated with a reduced LLD. A series of fifty consecutive primary total hip replacements were studied. Preoperative digital templating was performed on standardised PA radiographs of the hips by the senior surgeon. The preoperative LLD was calculated and the distance from the superior tip of the greater trochanter to the predicted shoulder of the stem was calculated (GT-S). Intraoperatively, this length was marked on the rasp handle and the stem inserted to the predetermined level by the surgeon. This level corresponded to the tip of the greater trochanter and formed a continuous line to the mark on the rasp handle. Three independent blinded observers measured the GT-S on the postoperative radiographs. We assessed the relationship between the senior author's GT-S (preoperative) and the observers' GT-S (postoperative) using a Person correlation. The observers also measured the preoperative and postoperative LLD, and the inter-observer variability was calculated as the intra-class correlation coefficient. There was a strong correlation of preoperative and postoperative GT-S (R=0.87), suggesting that the stem was inserted as planned. The mean preoperative and postoperative LLD were −4.3 mm (−21.4–4) and −0.9 mm (−9.8–8.6), respectively (p<0.001). This technique consistently minimised LLD in this series. This technique is quick, non-invasive and does not require supplementary equipment


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 188 - 188
1 Dec 2013
Vanhegan I Coathup M McCarthy I Haddad F Blunn G
Full Access

Introduction. Revision hip arthroplasty is a technically challenging operation as proximal bony deficits preclude the use of standard implants. Longer distally fixing stems are therefore required to achieve primary stability. Aims. This work aims to compare the primary stability and biomechanical properties of a new design of tapered fluted modular femoral stem (Redapt®, Smith & Nephew) to that of a conical fluted stem (Restoration®, Stryker). It is hypothesized that the taper will provide improved rotational stability under cyclical loading. Materials & Methods. 7 Pairs of cadaveric femora were obtained according to strict inclusion/exclusion criteria. Each underwent dual energy x-ray absorptiometry and calibration plain-film radiographs were taken. Digital templating was performed using TraumaCad (Voyant Health, Brainlab) to determine implant sizing. Both stems are fluted, modular and manufactured from titanium (figure 1). The control stem (Restoration) featured a straight conical design and the investigation stem (Redapt) a straight tapered design. Implantation was performed by a revision arthroplasty surgeon familiar with both systems. Proximal bone deficiency was reproduced using an extended trochanteric osteotomy with removal of metaphyseal bone before reattaching the osteotomy. Primary stability in the axial, sagittal and coronal planes was assessed using micromotion transducers (HBM, Darmstadt, Germany) (figure 2a) and also by Radiostereometric Analysis (RSA). RSA employs simultaneous biplanar radiographs to measure relative movement. Two 1 mm tantalum beads were mounted on the prosthesis with the centre of the femoral head taken as the third reference point. Beads were placed proximally in the surrounding bone as rigid body markers. Each bone was potted according to the ISO standard for fatigue testing and cyclically loaded at 1 Hz for at least 3 increments (750–350N, 1000–350N, 1500–350N) for 1000 cycles. RSA radiographs were taken at baseline and on completion of each cycle. A strain analysis was concurrently performed using a PhotoStress ® (Vishay Precision Group, Raleigh, USA) photoelastic coating on the medial femoral cortex. Each bone was loaded intact and then with the prosthesis in-situ at 500N increments until strain fringes were identified. Once testing was completed, the stems were sectioned at the femoral isthmus and data is presented on the cross-sectional fit and fill observed. Results. Both stem designs showed comparable primary stability with all stems achieving clinically acceptable micromotion (<150 μm) when loaded at body weight. A larger proportion of the control stems remained stable as loading increased to x2–3 body weight. Transducer-recorded migration appeared greatest in the axial plane (y axis) (figure 2b) with negligible distal movement in the coronal or sagittal planes. Point motion analysis (RSA) indicated most movement to be in the coronal plane (x-axis) (figure 2c) whereas segment motion analysis showed rotation about the long axis of the prosthesis to be largest. Photoelastic strain patterns were transferred more distally in both designs, however substantial stress shielding was also observed (figure 3). Discussion/Conclusion. Both designs achieved adequate distal fixation and primary stability under representative clinical loading conditions. This work supports the continued use of this novel stem design for revision surgery in the presence of extensive proximal bone loss


Orthopaedic Proceedings
Vol. 95-B, Issue SUPP_34 | Pages 448 - 448
1 Dec 2013
Nakata K Kitada M Akiyama K Owaki H Fuji T
Full Access

[Introduction]. Short tapered wedge-shaped cementless (TW) stems have been widely used for several years. The concept of fixation of TW stem is wedge-fit fixation in the proximal metaphysis. Developmental dysplasia of the hip (DDH) has anatomical abnormality, such as excessive femoral anteversion, short femoral neck length, narrow femoral cavity, or proximal-distal mismatching of the femoral canal. Therefore, Mismatching between stem and bone might be occurred in DDH. We evaluated intramedullary matching of short TW stem for DDH by three dimensional (3D) digital template in order to clarify whether mismatching between stem and bone is seen in DDH implanted short TW stem. [Materials and Methods]. One hundred hips (92 patients) with DDH were performed preoperative simulation for total hip arthroplasty by 3D digital template system (ZedHip: Lexi, Tokyo, Japan). The average age was 63.5 years old. There were 12 males and 80 females. The average bone mass index was 21.5 kg/m. 2. Femoral canal shape was normal in 71, champagne-flute in 16 and stovepipe in 13 hips. Bone quality was classified into type A in 23, type B in 74 and type C in 3 hips. Preoperative computed tomography data were used for 3D digital template and reconstructed to 3D femoral model. Short TW stem (Taperloc Complete Microplasty: Biomet, Warsaw, IN) model constructed from computer-assisted design was matched to the reconstructed femoral model. Short TW stem model was in principle implanted according to the femoral neck anteversion with neutral alignment (varus and valgus < 2 degrees, flexion and extension < 2 degrees) at the coronal and sagittal plane of the femur. Stem size was determined in order to obtain the largest intramedullary matching at the coronal plane. Area of stem fitting with the cortical bone was investigated at 10 mm intervals above and below of mid minor trochanter. Intramedullary matching pattern was classified into proximal mediolateral metaphyseal fit, proximal flare fit and diaphyseal fit at multiple reconstructed planes of the 3D femoral model according to stem fitting area. [Results]. Ninety-three percent of stem could be implanted with neutral alignment at the coronal plane, and 86 percent at the sagittal plane. The average stem anteversion was 31.4 degrees. Over 70 percent of stem could be fit with the medial and lateral cortical bone at 10 mm above and below of mid minor trochanter. Intramedullary matching pattern was proximal mediolateral metaphyseal fit in 49%, proximal flare fit in 44% and diaphyseal fit in 7%. [Discussion and Conclusion]. Early migration or failure of osteointegration of TW stem was recently published. Diaphyseal fixation or mismatching between stem and bone is considered as risk factors of early failure of TW stem. In this study, proximal metaphyseal fit, such as mediolateral metaphyseal fit or flare fit, could be achieved in 93% of DDH patients. Mismatching between stem and bone, such as diaphyseal fit, was observed only in 7% of DDH. Short TW stem is good choice for DDH in order to avoid of diaphyseal fixation followed by early migration of stem and decreased osteointegration