Advertisement for orthosearch.org.uk
Results 1 - 20 of 5474
Results per page:
Bone & Joint Research
Vol. 13, Issue 11 | Pages 673 - 681
22 Nov 2024
Yue C Xue Z Cheng Y Sun C Liu Y Xu B Guo J

Aims

Pain is the most frequent complaint associated with osteonecrosis of the femoral head (ONFH), but the factors contributing to such pain are poorly understood. This study explored diverse demographic, clinical, radiological, psychological, and neurophysiological factors for their potential contribution to pain in patients with ONFH.

Methods

This cross-sectional study was carried out according to the “STrengthening the Reporting of OBservational studies in Epidemiology” statement. Data on 19 variables were collected at a single timepoint from 250 patients with ONFH who were treated at our medical centre between July and December 2023 using validated instruments or, in the case of hip pain, a numerical rating scale. Factors associated with pain severity were identified using hierarchical multifactor linear regression.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1041 - 1048
19 Nov 2024
Delgado C Martínez-Rodríguez JM Candura D Valencia M Martínez-Catalán N Calvo E

Aims

The Bankart and Latarjet procedures are two of the most common surgical techniques to treat anterior shoulder instability with satisfactory clinical and functional outcomes. However, the outcomes in the adolescent population remain unclear, and there is no information regarding the arthroscopic Latarjet in this population. The purpose of this study was to evaluate the outcomes of the arthroscopic Bankart and arthroscopic Latarjet procedures in the management of anterior shoulder instability in adolescents.

Methods

We present a retrospective, matched-pair study of teenagers with anterior glenohumeral instability treated with an arthroscopic Bankart repair (ABR) or an arthroscopic Latarjet (AL) procedure with a minimum two-year follow-up. Preoperative demographic and clinical features, factors associated with dislocation, and complications were collected. Recurrence, defined as dislocation or subluxation, was established as the primary outcome. Clinical and functional outcomes were analyzed using objective (Rowe), and subjective (Western Ontario Shoulder Instability Index (WOSI) and Single Assessment Numeric Evaluation (SANE)) scores. Additionally, the rate of return to sport was assessed.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1037 - 1040
15 Nov 2024
Wu DY Lam EKF

Aims. The first metatarsal pronation deformity of hallux valgus feet is widely recognized. However, its assessment relies mostly on 3D standing CT scans. Two radiological signs, the first metatarsal round head (RH) and inferior tuberosity position (ITP), have been described, but are seldom used to aid in diagnosis. This study was undertaken to determine the reliability and validity of these two signs for a more convenient and affordable preoperative assessment and postoperative comparison. Methods. A total of 200 feet were randomly selected from the radiograph archives of a foot and ankle clinic. An anteroposterior view of both feet was taken while standing on the same x-ray platform. The intermetatarsal angle (IMA), metatarsophalangeal angle (MPA), medial sesamoid position, RH, and ITP signs were assessed for statistical analysis. Results. There were 127 feet with an IMA > 9°. Both RH and ITP severities correlated significantly with IMA severity. RH and ITP were also significantly associated with each other, and the pronation deformities of these feet are probably related to extrinsic factors. There were also feet with discrepancies between their RH and ITP severities, possibly due to intrinsic torsion of the first metatarsal. Conclusion. Both RH and ITP are reliable first metatarsal pronation signs correlating to the metatarsus primus varus deformity of hallux valgus feet. They should be used more for preoperative and postoperative assessment. Cite this article: Bone Jt Open 2024;5(11):1037–1040


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 66 - 66
14 Nov 2024
Tirta M Hjorth MH Jepsen JF Kold S Rahbek O
Full Access

Introduction. Epiphysiodesis, defined as the process of closing the growth plate (physis), have been used for several years as a treatment option of cases where the predicted leg-length discrepancy (LLD) falls between 2 to 5 cm. The aim of this study was to systematically review the existing literature on the effectiveness of three different epiphysiodesis techniques with implant usage for the treatment of leg-length discrepancy in the pediatric population. The secondary aim was to address the reported complications of staples, tension-band plates (TBP) and percutaneous epiphysiodesis screws (PETS). Method. This systematic review was performed according to PRISMA guidelines. We searched MEDLINE (PubMed), Embase, Cochrane Library, Web of Science and Scopus for studies on skeletally immature patients with LLD treated with epiphysiodesis with an implant. The extracted outcome categories were effectiveness of epiphysiodesis (LLD measurements pre/post-operatively, successful/unsuccessful) and complications that were graded on severity. Result. Forty-four studies (2184 patients) were included, from whom 578 underwent TBP, 455 PETS and 1048 staples. From pooled analysis of the studies reporting success rate, 64% (150/234) successful TBP surgeries (10 studies), 78% (222/284) successful PETS (9 studies) and 52% (212/407) successful Blount staples (8 studies). Severe complications rate was 7% for PETS, 17% for TBP and 16% for Blount staples. TBP had 43 cases of angular deformity (10%), Blount staples 184 (17%) while PETS only 18 cases (4%). Conclusion. Our results highlighted that PETS seems to be the most successful type of epiphysiodesis surgery with an implant, with higher success rate and lower severe complications than TBP or Blount staples


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 43 - 43
14 Nov 2024
Malakoutikhah H Madenci E Latt D
Full Access

Introduction. The arch of the foot has been described as a truss where the plantar fascia (PF) acts as the tensile element. Its role in maintaining the arch has likely been underestimated because it only rarely torn in patients with progressive collapsing foot deformity (PCFD). We hypothesized that elongation of the plantar fascia would be a necessary and sufficient precursor of arch collapse. Method. We used a validated finite element model of the foot reconstructed from CT scan of a female cadaver. Isolated and combined simulated ligament transection models were created for each combination of the ligaments. A collapsed foot model was created by simulated transection of all the arch supporting ligaments and unloading of the posterior tibial tendon. Foot alignment angles, changes in force and displacement within each of the ligaments were compared between the intact, isolated ligament transection, and complete collapse conditions. Result. Isolated release of the PF did not cause deformity, but lead to increased force in the long (142%) and short plantar (156%), deltoid (45%), and spring ligaments (60%). The PF was the structure most able to prevent arch collapse and played a secondary role in preventing hindfoot valgus and forefoot abduction deformities. Arch collapse was associated with substantial attenuation of the spring (strain= 41%) and interosseous talocalcaneal ligaments (strain= 27%), but only a small amount in the plantar fascia (strain= 10%). Conclusion. Isolated PF release did not cause arch collapse, but arch collapse could not occur without at least 10% elongation of the PF. Simulated transection of the PF led to substantial increase in the force in the other arch supporting ligaments, putting the foot at risk of arch collapse over time. Chronic degeneration of the PF leading to plantar fasciitis may be an early sign of impending PCFD


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 90 - 90
14 Nov 2024
Halloum A Rahbek O Gholinezhad S Kold S Rasmussen J Rölfing JD Tirta M Abood AA
Full Access

Introduction. Current treatments of rotational deformities of long bones in children are osteotomies and fixations. In recent years, the use of guided growth for correction of rotational deformities has been reported in several pre-clinical and clinical studies. Various techniques have been used, and different adverse effects, like growth retardation and articular deformities, have been reported. We tested a novel plate concept intended for correction of rotational deformities of long bones by guided growth, with sliding screw holes to allow for longitudinal growth, in a porcine model. Method. Twelve, 12-week-old female porcines were included in the study. Surgery was performed on the left femur. The right femur was used as control. Plates were placed distally to induce external rotation, as longitudinal growth occurred. CT-scans of the femurs were processed to 3-D models and used for measuring rotation. Result. The plates rotated as intended in all 12 porcines. One porcine was excluded due to congenital deformity of the proximal part of the femurs. Two porcines had cut-out of the proximal screw on the lateral side, observed at the end of the intervention. These two porcines were included in the results. We observed a Δrotation of 5.7° ± 2° in external direction (CI: 3.7°– 7.7°). ΔFemur length was -0.4 cm [-0.7 cm – 0 cm] equal to 1.5% shortening of the operated femur. No significant difference was observed in coronal or sagittal plane. Conclusion. Significant external rotation was achieved with minimal effect on longitudinal growth. While the use of guided growth for correction of rotational deformities is already being used clinically, it is still to be considered an experimental procedure with sparse evidence. This study shows promising results for the feasibility of the method in a large animal model and is an important first step in validating the technique and detecting possible adverse effects, before future clinical studies


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 35 - 35
14 Nov 2024
Bulut H Abasova F Basaran T Balaban P
Full Access

Introduction. Congenital scoliosis is a prevalent congenital spinal deformity, more frequently encountered than congenital lordosis or kyphosis. The prevailing belief is that most instances of congenital scoliosis are not hereditary but rather stem from issues in fetal spine development occurring between the 5th and 8th weeks of pregnancy. However, it has been linked to several genes in current literature. Our goal was to explore potential pathways through an exhaustive bioinformatics analysis of genes related to congenital scoliosis. Method. The literature from the 1970s to February 2024 was surveyed for genes associated with CS, and 63 genes were found to be associated with AIS out of 1743 results. These genes were analyzed using DAVID Bioinformatics. Result. Our pathway analysis has unveiled several significant associations with congenital scoliosis. Notably, “Glycosaminoglycan biosynthesis - chondroitin sulfate / dermatan sulfate” (P-Value:8.8E-3, Fold Enrichment: 20.6), “Central carbon metabolism in cancer” (P-Value:1.3E-3, Fold Enrichment: 10.3), and “Lysine degradation” (P-Value: 9.0E-3, Fold Enrichment: 9.1) emerge as statistically significant pathways. Additionally, “Endocrine resistance” (P-Value:4.4E-3, Fold Enrichment:7.4) and”EGFR tyrosine kinase inhibitor resistance” (P-Value: 1.7E-2, Fold Enrichment:7.3) pathways are noteworthy. These findings suggest a potential involvement of these pathways in the biological processes underlying congenital scoliosis. Furthermore, “Signaling pathways regulating pluripotency of stem cells” (P-Value:4.0E-4, Fold Enrichment:7.1), “Notch signaling pathway” (P-Value:6.7E-2, Fold Enrichment: 7.0), and “TGF-beta signaling pathway” (P-Value:6.2E-3, Fold Enrichment: 6.7) exhibit a less pronounced yet intriguing association that may warrant further investigation. Conclusion. In conclusion, our comprehensive analysis of the genetic etiology of congenital scoliosis has revealed significant associations with various pathways, shedding light on potential underlying biological mechanisms. While further research is needed to fully understand these associations and their implications, our findings provide a valuable starting point for future investigations into the management and treatment of congenital scoliosis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 51 - 51
14 Nov 2024
Shayestehpour H Shayestehpour MA Wong C Bencke J Rasmussen J
Full Access

Introduction. Adolescent Idiopathic Scoliosis (AIS) is a three-dimensional deformity of the spine with unclear etiology. Due to the asymmetry of lateral curves, there are differences in the muscle activation between the convex and concave sides. This study utilized a comprehensive thoracic spine and ribcage musculoskeletal model to improve the biomechanical understanding of the development of AIS deformity and approach an explanation of the condition. Methods. In this study, we implemented a motion capture model using a generic rigid-body thoracic spine and ribcage model, which is kinematically determinate and controlled by spine posture obtained, for instance, from radiographs. This model is publicly accessible via a GitHub repository. We simulated gait and standing models of two AIS (averaging 15 years old, both with left lumbar curve and right thoracic curve averaging 25 degrees) and one control subject. The marker set included extra markers on the sternum and the thoracic and lumbar spine. The study was approved by the regional Research Ethics Committee (Journal number: H17034237). Results. We investigated the difference between the muscle activation on the right and left sides including erector spinae (ES), psoas major (PS), and multifidus (MF). Results of the AIS simulations indicated that, on average throughout the gait cycle, the right ES, left PS and left MF had 46%, 44%, and 23% higher activities compared to the other side, respectively. In standing, the ratios were 28%, 40%, and 19%, respectively. However, for the control subject, the differences were under 7%, except ES throughout the gait, which was 17%. Conclusion. The musculoskeletal model revealed distinct differences in force patterns of the right and left sides of the spine, indicating an instability phenomenon, where larger curves lead to higher muscle activations for stabilization. Acknowledgement. The project is funded by the European Union's Horizon 2020 program through Marie Skłodowska-Curie grant No. [764644]


Full Access

Introduction. A long nail is often recommended for treatment of complex trochanteric fractures but requires longer surgical and fluoroscopy times. A possible solution could be a nail with an appropriate length which can be locked in a minimally invasive manner by the main aiming device. We aimed to determine if such a nail model* offers similar structural stability on biomechanical testing on artificial bone as a standard long nail when used to treat complex trochanteric fractures. Method. An artificial osteoporotic bone model was chosen. As osteosynthesis material two cephalomedullary nails (CMN) were chosen: a superior locking nail (SL-Nail) which can be implanted with a singular targeting device, and a long nail (long-nail) with distal locking using free-hand technique. AO31-A2.2 fractures were simulated in a standardized manner. The insertion of the nail was strictly in accordance with the IFU and surgical manual of the manufacturer. The nail was locked dynamically proximally and statically distally. Axial height of the construct, varus collapse, and rotational deformity directly after nail insertion were simulated. A Universal Testing Machine was used. Measurements were made with a stereo-optic tracking system. Reactive movements were recorded and evaluated in all six degrees of freedom. A comparative analysis provided information about the stability and deformation of the assemblies to be compared. Result. There was a detectable difference in the axial fracture movement resulting in narrowing of the fracture gap. The load displacement was 1.7mm higher for the SL-Nail. There was no difference in varus collapse or rotational deformity between the nail variants. Conclusion. We conclude that there are small differences which are clinically insignificant and that a superior locking nail can safely be used to manage complex trochanteric fractures. *DCN SL nail, SWEMAC, Linköping, Sweden. Funding: no funding


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 3 - 3
14 Nov 2024
Chalak A Singh S Kale S
Full Access

Introduction. The non-union of long bones poses a substantial challenge to clinicians and patients alike. The Ilizarov fixation system and Limb Reconstruction System (LRS), renowned for their versatility in managing complex non-unions. The purpose of this retrospective study was to assess the outcomes of acute docking with the bone peg-in-bone technique for the management of non-unions of long bones. The study seeks to evaluate its effectiveness in achieving complete bony union, preserving limb length and alignment, correcting existing deformities, and preventing the onset of new ones. Method. A retrospective analysis of 42 patients was done with infected and non-infected non-unions of long bones who received treatment at a tertiary care hospital between April 2016 to April 2022. We utilized the Association for the Study and Application of Methods of the Ilizarov (ASAMI) scoring system to assess both bone and functional outcomes and measured mechanical lateral distal femoral angle (mLDFA) for the femur and the medial proximal tibial angle (MPTA) for the tibia. Result. In our retrospective study involving 42 patients, a total of 30 patients had post debridement gap of >2 cm and average gap of 4.54 cm (range 1 – 13 cm) and therefore underwent corticotomy and lengthening. The average external fixation time was 6.52 (range 4 – 11 months) and average external fixation index of 2.08 (range 0.4 – 4.5 months/cm). The ASAMI scoring system showed bone result of 38 excellent, 3 good and 1 fair. Functional result of 40 excellent and 2 good outcomes. The post op mLDFA and MPTA were in normal range except in 3 patients which not statistically significant. Conclusion. In conclusion, the use of acute docking provides several advantages such as promoting early fracture healing, increasing stability, shortening treatment time, reducing the number of surgical procedures and reduced number of complications


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 29 - 29
14 Nov 2024
Dhillon M Klos K Lenz M Zderic I Gueorguiev B
Full Access

Introduction. Tibiocalcaneal arthrodesis with a retrograde intramedullary nail is an established procedure considered as a salvage in case of severe arthritis and deformity of the ankle and subtalar joints [1]. Recently, a significant development in hindfoot arthrodesis with plates has been indicated. Therefore, the aim of this study was to compare a plate specifically developed for arthrodesis of the hindfoot with an already established nail system [2]. Method. Sixteen paired human cadaveric lower legs with removed forefoot and cut at mid-tibia were assigned to two groups for tibiocalcaneal arthrodesis using either a hindfoot arthrodesis nail or an arthrodesis plate. The specimens were tested under progressively increasing cyclic loading in dorsiflexion and plantar flexion to failure, with monitoring via motion tracking. Initial stiffness was calculated together with range of motion in dorsiflexion and plantar flexion after 200, 400, 600, 800, and 1000 cycles. Cycles to failure were evaluated based on 5° dorsiflexion failure criterion. Result. Initial stiffness in dorsiflexion, plantar flexion, varus, valgus, internal rotation and external rotation did not differ significantly between the two arthrodesis techniques (p ≥ 0.118). Range of motion in dorsiflexion and plantar flexion increased significantly between 200 and 1000 cycles (p < 0.001) and remained not significantly different between the groups (p ≥ 0.120). Cycles to failure did not differ significantly between the two techniques (p = 0.764). Conclusion. From biomechanical point of view, both tested techniques for tibiocalcaneal arthrodesis appear to be applicable. However, clinical trials and other factors, such as extent of the deformity, choice of the approach and preference of the surgeon play the main role for implant choice. Acknowledgements. This study was performed with the assistance of the AO Foundation


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 58 - 58
14 Nov 2024
Bulut H Maestre M Tomey D
Full Access

Introduction. Unplanned reoperations (UROs) following corrective surgery for adult spinal deformity (ASD) present significant challenges for both patients and surgeons. Understanding the specific UROs types is crucial for improving patient outcomes and refining surgical strategies in ASD correction. Method. This retrospective analysis utilized data from the American College of Surgeons National Surgical Quality Improvement Program (ACS NSQIP) database spanning from 2017 to 2021. Patient information was extracted using specific CPT codes related to posterior pedicle fixation. Result. In a cohort of 1088 patients undergoing posterior spinal deformity corrections, we examined various preoperative factors to discern their correlation with reoperation prevalence. Our analysis revealed no statistically significant differences in reoperation prevalence concerning gender (male: 4.0%, p=0.131) or ethnicity (Hispanic: 4.2%, p=0.192). Similarly, no notable associations were identified for diabetes mellitus, smoking status, dyspnea, history of severe COPD, hypertension, ASA classification, or functional health status before surgery, with reoperation prevalences ranging from 3.2% to 8.8% and p-values spanning from 0.146 to 0.744. Overall, the reoperation prevalence within the entire cohort stood at 5.2% (55 cases). In terms of the types of reoperations investigated, spinal-related procedures emerged as the most prevalent, accounting for 43.7% (24 cases), followed closely by wound site revisions at 23.6% (13 cases). Additionally, gastrointestinal-related procedures and various other miscellaneous interventions, such as uroscopy, demonstrated reoperation prevalences of 7.2% (4 cases) and 25.5% (14 cases), respectively. Conclusion. our findings highlight the diverse spectrum of reoperation procedures encountered following posterior spinal deformity corrections, with wound site revisions and spinal-related interventions being the most prevalent categories. These results emphasize the complexity of managing UROs in spinal surgery and the need for tailored approaches and infection/incision protocols to address the specific challenges associated with each type of reoperation


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1013 - 1019
11 Nov 2024
Clark SC Pan X Saris DBF Taunton MJ Krych AJ Hevesi M

Aims. Distal femoral osteotomies (DFOs) are commonly used for the correction of valgus deformities and lateral compartment osteoarthritis. However, the impact of a DFO on subsequent total knee arthroplasty (TKA) function remains a subject of debate. Therefore, the purpose of this study was to determine the effect of a unilateral DFO on subsequent TKA function in patients with bilateral TKAs, using the contralateral knee as a self-matched control group. Methods. The inclusion criteria consisted of patients who underwent simultaneous or staged bilateral TKA after prior unilateral DFO between 1972 and 2023. The type of osteotomy performed, osteotomy hardware fixation, implanted TKA components, and revision rates were recorded. Postoperative outcomes including the Forgotten Joint Score-12 (FJS-12), Tegner Activity Scale score, and subjective knee preference were also obtained at final follow-up. Results. A total of 21 patients underwent bilateral TKA following unilateral DFO and were followed for a mean of 31.5 years (SD 11.1; 20.2 to 74.2) after DFO. The mean time from DFO to TKA conversion was 13.1 years (SD 9.7) with 13 (61.9%) of DFO knees converting to TKA more than ten years after DFO. There was no difference in arthroplasty implant systems employed in both the DFO-TKA and TKA-only knees (p > 0.999). At final follow-up, the mean FJS-12 of the DFO-TKA knee was 62.7 (SD 36.6), while for the TKA-only knee it was 65.6 (SD 34.7) (p = 0.328). In all, 80% of patients had no subjective knee preference or preferred their DFO-TKA knee. Three DFO-TKA knees and two TKA-only knees underwent subsequent revision following index arthroplasty at a mean of 12.8 years (SD 6.9) and 8.5 years (SD 3.8), respectively (p > 0.999). Conclusion. In this self-matched study, DFOs did not affect subsequent TKA function as clinical outcomes, subjective knee preference, and revision rates were similar in both the DFO-TKA and TKA-only knees at mean 32-year follow-up. Cite this article: Bone Jt Open 2024;5(11):1013–1019


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1020 - 1026
11 Nov 2024
Pigeolet M Sana H Askew MR Jaswal S Ortega PF Bradley SR Shah A Mita C Corlew DS Saeed A Makasa E Agarwal-Harding KJ

Aims

Lower limb fractures are common in low- and middle-income countries (LMICs) and represent a significant burden to the existing orthopaedic surgical infrastructure. In high income country (HIC) settings, internal fixation is the standard of care due to its superior outcomes. In LMICs, external fixation is often the surgical treatment of choice due to limited supplies, cost considerations, and its perceived lower complication rate. The aim of this systematic review protocol is identifying differences in rates of infection, nonunion, and malunion of extra-articular femoral and tibial shaft fractures in LMICs treated with either internal or external fixation.

Methods

This systematic review protocol describes a broad search of multiple databases to identify eligible papers. Studies must be published after 2000, include at least five patients, patients must be aged > 16 years or treated as skeletally mature, and the paper must describe a fracture of interest and at least one of our primary outcomes of interest. We did not place restrictions on language or journal. All abstracts and full texts will be screened and extracted by two independent reviewers. Risk of bias and quality of evidence will be analyzed using standardized appraisal tools. A random-effects meta-analysis followed by a subgroup analysis will be performed, given the anticipated heterogeneity among studies, if sufficient data are available.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 999 - 1003
7 Nov 2024
Tan SHS Pei Y Chan CX Pang KC Lim AKS Hui JH Ning B

Aims

Congenital pseudarthrosis of the tibia (CPT) has traditionally been a difficult condition to treat, with high complication rates, including nonunion, refractures, malalignment, and leg length discrepancy. Surgical approaches to treatment of CPT include intramedullary rodding, external fixation, combined intramedullary rodding and external fixation, vascularized fibular graft, and most recently cross-union. The current study aims to compare the outcomes and complication rates of cross-union versus other surgical approaches as an index surgery for the management of CPT. Our hypothesis was that a good index surgery for CPT achieves union and minimizes complications such as refractures and limb length discrepancy.

Methods

A multicentre study was conducted involving two institutions in Singapore and China. All patients with CPT who were surgically managed between January 2009 and December 2021 were included. The patients were divided based on their index surgery. Group 1 included patients who underwent excision of hamartoma, cross-union of the tibia and fibula, autogenic iliac bone grafting, and internal fixation for their index surgery. Group 2 included patients who underwent all other surgical procedures for their index surgery, including excision of hamartoma, intramedullary rodding, and/or external fixation, without cross-union of the tibia and fibula. Comparisons of the rates of union, refracture, limb length discrepancy, reoperations, and other complications were performed between the two groups.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 992 - 998
6 Nov 2024
Wignadasan W Magan A Kayani B Fontalis A Chambers A Rajput V Haddad FS

Aims. While residual fixed flexion deformity (FFD) in unicompartmental knee arthroplasty (UKA) has been associated with worse functional outcomes, limited evidence exists regarding FFD changes. The objective of this study was to quantify FFD changes in patients with medial unicompartmental knee arthritis undergoing UKA, and investigate any correlation with clinical outcomes. Methods. This study included 136 patients undergoing robotic arm-assisted medial UKA between January 2018 and December 2022. The study included 75 males (55.1%) and 61 (44.9%) females, with a mean age of 67.1 years (45 to 90). Patients were divided into three study groups based on the degree of preoperative FFD: ≤ 5°, 5° to ≤ 10°, and > 10°. Intraoperative optical motion capture technology was used to assess pre- and postoperative FFD. Clinical FFD was measured pre- and postoperatively at six weeks and one year following surgery. Preoperative and one-year postoperative Oxford Knee Scores (OKS) were collected. Results. Overall, the median preoperative navigated (NAV) FFD measured 6.0° (IQR 3.1 to 8), while the median postoperative NAV FFD was 3.0° (IQR 1° to 4.4°), representing a mean correction of 49.2%. The median preoperative clinical FFD was 5° (IQR 0° to 9.75°) for the entire cohort, which decreased to 3.0° (IQR 0° to 5°) and 2° (IQR 0° to 3°) at six weeks and one year postoperatively, respectively. A statistically significant improvement in PROMs compared with baseline was evident in all groups (p < 0.001). Regression analyses showed that participants who experienced a larger FFD correction, showed greater improvement in PROMs (β = 0.609, p = 0.049; 95% CI 0.002 to 1.216). Conclusion. This study found that UKA was associated with an approximately 50% improvement in preoperative FFD across all three examined groups. Participants with greater correction of FFD also demonstrated larger OKS gains. These findings could prove a useful augment to clinical decision-making regarding candidacy for UKA and anticipated improvements in FFD


Bone & Joint Open
Vol. 5, Issue 11 | Pages 971 - 976
5 Nov 2024
Baker G Hill J O'Neill F McChesney J Stevenson M Beverland D

Aims

In 2015, we published the results of our ceramic-on-metal (CoM) total hip arthroplasties (THAs) performed between October 2007 and July 2009 with a mean follow-up of 34 months (23 to 45) and a revision rate of 3.1%. The aim of this paper is to present the longer-term outcomes.

Methods

A total of 264 patients were reviewed at a mean of 5.8 years (4.6 to 7.2) and 10.1 years (9.2 to 10.6) to determine revision rate, pain, outcome scores, radiological analysis, and blood ion levels. Those who were unwilling or unable to travel were contacted by telephone.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1301 - 1305
1 Nov 2024
Prajapati A Thakur RPS Gulia A Puri A

Aims

Reconstruction after osteoarticular resection of the proximal ulna for tumours is technically difficult and little has been written about the options that are available. We report a series of four patients who underwent radial neck to humeral trochlea transposition arthroplasty following proximal ulnar osteoarticular resection.

Methods

Between July 2020 and July 2022, four patients with primary bone tumours of the ulna underwent radial neck to humeral trochlea transposition arthroplasty. Their mean age was 28 years (12 to 41). The functional outcome was assessed using the range of motion (ROM) of the elbow, rotation of the forearm and stability of the elbow, the Musculoskeletal Tumor Society score (MSTS), and the nine-item abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH-9) score.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1206 - 1215
1 Nov 2024
Fontalis A Buchalter D Mancino F Shen T Sculco PK Mayman D Haddad FS Vigdorchik J

Understanding spinopelvic mechanics is important for the success of total hip arthroplasty (THA). Despite significant advancements in appreciating spinopelvic balance, numerous challenges remain. It is crucial to recognize the individual variability and postoperative changes in spinopelvic parameters and their consequential impact on prosthetic component positioning to mitigate the risk of dislocation and enhance postoperative outcomes. This review describes the integration of advanced diagnostic approaches, enhanced technology, implant considerations, and surgical planning, all tailored to the unique anatomy and biomechanics of each patient. It underscores the importance of accurately predicting postoperative spinopelvic mechanics, selecting suitable imaging techniques, establishing a consistent nomenclature for spinopelvic stiffness, and considering implant-specific strategies. Furthermore, it highlights the potential of artificial intelligence to personalize care.

Cite this article: Bone Joint J 2024;106-B(11):1206–1215.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1342 - 1347
1 Nov 2024
Onafowokan OO Jankowski PP Das A Lafage R Smith JS Shaffrey CI Lafage V Passias PG

Aims. The aim of this study was to investigate the impact of the level of upper instrumented vertebra (UIV) in frail patients undergoing surgery for adult spine deformity (ASD). Methods. Patients with adult spinal deformity who had undergone T9-to-pelvis fusion were stratified using the ASD-Modified Frailty Index into not frail, frail, and severely frail categories. ASD was defined as at least one of: scoliosis ≥ 20°, sagittal vertical axis (SVA) ≥ 5 cm, or pelvic tilt ≥ 25°. Means comparisons tests were used to assess differences between both groups. Logistic regression analyses were used to analyze associations between frailty categories, UIV, and outcomes. Results. A total of 477 patients were included (mean age 60.3 years (SD 14.9), mean BMI 27.5 kg/m. 2. (SD 5.8), mean Charlson Comorbidity Index (CCI) 1.67 (SD 1.66)). Overall, 74% of patients were female (n = 353), and 49.6% of patients were not frail (237), 35.4% frail (n = 169), and 15% severely frail (n = 71). At baseline, differences in age, BMI, CCI, and deformity were significant (all p = 0.001). Overall, 15.5% of patients (n = 74) had experienced mechanical complications by two years (8.1% not frail (n = 36), 15.1% frail (n = 26), and 16.3% severely frail (n = 12); p = 0.013). Reoperations also differed between groups (20.2% (n = 48) vs 23.3% (n = 39) vs 32.6% (n = 23); p = 0.011). Controlling for osteoporosis, baseline deformity, and degree of correction (by sagittal age-adjusted score (SAAS) matching), frail and severely frail patients were more likely to experience mechanical complications if they had heart failure (odds ratio (OR) 6.6 (95% CI 1.6 to 26.7); p = 0.008), depression (OR 5.1 (95% CI 1.1 to 25.7); p = 0.048), or cancer (OR 1.5 (95% CI 1.1 to 1.4); p = 0.004). Frail and severely frail patients experienced higher rates of mechanical complication than ‘not frail’ patients at two years (19% (n = 45) vs 11.9% (n = 29); p = 0.003). When controlling for baseline deformity and degree of correction in severely frail and frail patients, severely frail patients were less likely to experience clinically relevant proximal junctional kyphosis or failure or mechanical complications by two years, if they had a more proximal UIV. Conclusion. Frail patients are at risk of a poor outcome after surgery for adult spinal deformity due to their comorbidities. Although a definitively prescriptive upper instrumented vertebra remains elusive, these patients appear to be at greater risk for a poor outcome if the upper instrumented vertebra is sited more distally. Cite this article: Bone Joint J 2024;106-B(11):1342–1347