Advertisement for orthosearch.org.uk
Results 1 - 20 of 4048
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 4 - 4
22 Nov 2024
Pidgaiska O Goumenos S Dos Santos MV Trampuz A Stöckle U Meller S
Full Access

Introduction. Since the expanded war in Ukraine in 2022, explosives, mines, debris, blast waves, and other factors have predominantly caused injuries during artillery or rocket attacks. These injuries, such as those from shelling shrapnel, involve high-energy penetrating agents, resulting in extensive necrosis and notable characteristics like soft tissue defects and multiple fragmentary fractures with bone tissue defects and a high rate of infection complications caused by multi resistant gram-negative (MRGN) pathogens. Material and Methods. We conducted a prospective study at our center between March 2022 and December 2023. Out of the 56 patients from Ukraine, 21 met the inclusion criteria who had severe war injuries were included in the study. Each of these patients presented with multiple injuries to both bones and soft tissues, having initially undergone treatment in Ukraine involving multiple surgeries. The diagnosis of infection was established based on the EBJIS criteria. Prior to our treatment patients had undergone multiple revision surgeries, including debridement, biopsies, implant and fixator replacement. Additionally, soft tissue management required previously VAC therapy and flap reconstruction for successful treatment. Results. All 21 infections manifested as bone infections (11; 52%), followed by implant-associated infections (5; 24%), soft tissue infections (4; 19%), and septic arthritis (1; 5%). In all patients, the infection was polymicrobial, caused by 3- and 4-MRGN pathogens, as Klebsiella pneumonia 4MRGN, Proteus mirabilis 4MRGN, Enterobacter cloacae 4MRGN etc. Upon admission, all patients carried a diagnosis and exhibited signs indicative of chronic infection. 19 (90.5%) patients required complex antibiotic regimens combined with multiple wound revisions and debridements, changes of fixators and combination of systemic and local antibiotic therapy. In 6 patients (28%) high dosages of local antibiotics such as gentamycin, vancomycin and meropenem were incorporated into a carrier of bio-absorbable calcium sulfate, calcium sulfate/hydroxyapatite which were introduced into the hip joint, femoral canal or bone defect for dead space management during the surgery. When local antibiotics were administered at intervals, the microbiology results at implantation showed negative results. 2 (9%) patients had new infections (different site, different pathogens), 1 (4.8%) is still under the treatment. In 17 (81%) patients infection complications were treated successfully with no recurrence of infection. Conclusion. War injuries result in complex bone and soft-tissue infections caused by 3-, 4-MRGN pathogens. Addressing this challenge necessitates multidisciplinary approach with multiple, thorough surgical debridements, effective local, and systemic antimicrobial therapy. As for the outlook we can see potential in local antibiotic carriers


Aim. Decubitus ulcers are found in approximately 4.7% of hospitalized patients, with a higher prevalence (up to 30%) among those with spinal cord injuries. These ulcers are often associated with hip septic arthritis and/or osteomyelitis involving the femur. Girdlestone resection arthroplasty is a surgical technique used to remove affected proximal femur and acetabular tissues, resulting in a substantial defect. The vastus lateralis flap has been employed as an effective option for managing this dead space. The aim of this study was to evaluate the long-term outcomes of this procedure in a consecutive series of patients. Method. A retrospective single-center study was conducted from October 2012 to December 2022, involving 7 patients with spinal cord injuries affected by chronic severe septic hip arthritis and/or femoral head septic necrosis as a consequence of decubitus ulcers over trochanter area. All patients underwent treatment using a multidisciplinary approach by the same surgical team (orthopedic and plastic surgeons) along with infectious disease specialists. The treatment consisted of a one-stage procedure combining Girdlestone resection arthroplasty with unilateral vastus lateralis flap reconstruction, alongside targeted antibiotic therapy. Complications and postoperative outcomes were assessed and recorded. The mean follow-up period was 8 years (range 2-12). Results. Of the 7 patients, 5 were male and 2 were female, with a mean age of 50.3 years at the time of surgery. Minor wound dehiscence occurred in 28.6% of the flap sites, and 2 patients required additional revisional procedures—one for hematoma and the other for bleeding. There were no instances of flap failure, and complete wound healing was achieved in an average of 32 days (range 20-41), with the ability to load over the hip area. No cases of infection recurrence or relapse were observed. Conclusions. An aggressive surgical approach is strongly recommended for managing chronic hip septic arthritis or proximal femur osteomyelitis in patients with spinal cord injuries. A single-stage procedure combining Girdlestone resection arthroplasty with immediate vastus lateralis muscle flap reconstruction proves to be an effective strategy for dead space management and localized antibiotic delivery through the vastus muscle, giving reliable soft tissue coverage around the proximal femur to avoid the recurrence of pressure ulcers. The implementation of a standardized multidisciplinary protocol contributes significantly to the success of reconstruction efforts


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 86 - 86
22 Nov 2024
Lentini A Djoko J Putineanu D Tribak K Coyette M Yombi J Cornu O
Full Access

Aim. Bone infections often manifest with soft tissue complications such as severe scarring, fistulas, or ulcerations. Ideally, their management involves thorough debridement of infected bone and associated soft tissues, along with achieving stable bone structure, substantial tissue coverage, and long-term antibiotic therapy. The formation of a multidisciplinary team comprising orthopedic surgeons, plastic surgeons, and infectious disease specialists is essential in addressing the most complex cases. Method. We conducted a retrospective study during six years (2018-2023) at our university center. Focusing on the most challenging cases, we included patients with bone infections in the leg and/or foot requiring free flap reconstruction. Each patient underwent simultaneous bone debridement and reconstruction by the orthopedic team, alongside soft tissue debridement and free flap reconstruction by the plastic surgery team. Targeted antibiotic therapy for either 6 weeks (acute) or 12 weeks (chronic osteitis) was initiated based on intraoperative cultures. Additional procedures such as allografts, arthrodesis, or autografts were performed if necessary. We analyzed the rates of bone union, infection resolution, and limb preservation. Results. Forty-five patients were enrolled. Twenty-four patients (53.3%) had urgent indications (e.g., open infected fractures, osteitis, acute osteoarthritis, or wound dehiscence), while 21 (46.7%) underwent elective surgery (e.g., septic pseudarthrosis or chronic osteitis). Two patients underwent amputation due to flap failure (4.4%), and one patient was lost to follow-up. Follow-up of the remaining 42 patients averaged 28 months (range: 6–60 months). During this period, 35 patients (83.4%) experienced no recurrence of infection. Similarly, 35 patients (83.4%) achieved bone union. Overall, the rate of lower limb preservation was 93.3%. Conclusions. Managing bone infection coupled with soft tissue defects brings significant challenges. Although the majority of patients treated here belong to a complex framework based on the BACH classification, the outcomes achieved here appear to align with those of the simpler cases, thanks to optimal care with a dedicated septic ortho-plastic team. Our study demonstrates a notable success rate in treating infection, achieving bone consolidation, and preserving lower limb function


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 62 - 62
22 Nov 2024
Mueller MM Kowald B Gerlach U Grimme C Schulz A Frosch K Schoop-Schmetgens R
Full Access

Aim. Aim of this study was to establish the first clinical results after implantation of ultrathin silver-polysiloxane-coated. 1. plates in the treatment of infected non-union of the femoral shaft. Method. As part of the REFECT study, a prospective, non-interventional analysis was conducted encompassing all patients who received internal stabilization with a silver-coated. 1. plate from 01/2023 to 09/2024 as part of the treatment for infected non-union of the femur. Standardized clinical follow-ups including PROMs (WOMAC-Index, LEF-S, EQ-5D, VAS) and X-rays were performed 3, 6, 12 (and 24) months postoperatively. For comparison, a retrospective analysis of 76 patients with infected femoral non-union, who had received a stabilization with an uncoated plate in the past 10 years, was performed. Results. The mean follow-up of the 8 included patients (mean bone defect: 3.6 cm) was 9 months (as of 04/24). Multiresistant bacteria were found in the intraoperative samples of 5 patients. The concentration of silver ions in blood serum reached a maximum of 0.014 mg/l in the laboratory controls. All patients showed a positive healing process with no sign of re-infection and no adverse procedure-associated events. Full weight bearing was achieved after an average of 4 months (n=6) with improved WOMAC-, LEF-S-, EQ-5D and VAS-score at 1-year FU. In the reference group (uncoated, mean FU: 3.5 years), there was a re-infection rate of 25 %, mostly in the first 2 years. Difficult-to-treat bacteria were detected in 22%, multiresistant Staph. epidermidis in 28% of cases. Conclusions. -. The silver-coated. 1. implants showed good biocompatibility with no evidence of procedure-associated complications. -. The use of silver-coated. 1. implants could reduce the risk of re-infection. -. Further clinical data with longer follow-up are needed to assess the long-term value of the procedure


Bone & Joint Open
Vol. 5, Issue 11 | Pages 1041 - 1048
19 Nov 2024
Delgado C Martínez-Rodríguez JM Candura D Valencia M Martínez-Catalán N Calvo E

Aims

The Bankart and Latarjet procedures are two of the most common surgical techniques to treat anterior shoulder instability with satisfactory clinical and functional outcomes. However, the outcomes in the adolescent population remain unclear, and there is no information regarding the arthroscopic Latarjet in this population. The purpose of this study was to evaluate the outcomes of the arthroscopic Bankart and arthroscopic Latarjet procedures in the management of anterior shoulder instability in adolescents.

Methods

We present a retrospective, matched-pair study of teenagers with anterior glenohumeral instability treated with an arthroscopic Bankart repair (ABR) or an arthroscopic Latarjet (AL) procedure with a minimum two-year follow-up. Preoperative demographic and clinical features, factors associated with dislocation, and complications were collected. Recurrence, defined as dislocation or subluxation, was established as the primary outcome. Clinical and functional outcomes were analyzed using objective (Rowe), and subjective (Western Ontario Shoulder Instability Index (WOSI) and Single Assessment Numeric Evaluation (SANE)) scores. Additionally, the rate of return to sport was assessed.


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 113 - 113
14 Nov 2024
Giger N Schröder M Arens D Gens L Zeiter S Stoddart M Wehrle E
Full Access

Background. The molecular mechanisms underlying non-union bone fractures largely remain elusive. Recently, spatial transcriptomics approaches for musculoskeletal tissue samples have been developed requiring direct placement of histology sections on barcoded slides. However, Formalin-Fixed-Paraffin-Embedded (FFPE) bone sections have been associated with limited RNA quality and read depth compared to soft tissue. Here, we test spatial transcriptomics workflows based on transcriptomic probe transfer to characterize molecular features discriminating non-union and union bone fractures in mice. Method. Histological sections (n=8) used for spatial transcriptomics (Visium CytAssist FFPE; 10x Genomics, n=4 on glass slides, n=4 on hydrogel-coated slides) were obtained from a fracture healing study in female 20-week-old C57BL/6J mice receiving either a femur osteotomy (0.7mm) or a segmental defect (2.4mm) (license 22/2022, Grisons CH). Sequence alignment and manual segmentation of different tissues (bone, defect region/callus, bone marrow, muscle) were performed using SpaceRanger and LoupeBrowser (10x Genomics). Differential gene expression was performed using DESeq2 (Seurat) followed by Gene-Set-Enrichment-Analysis (GSEA) of Gene Ontology (ClusterProfiler). Group comparison of quality measures was done using a Welch's t-test. Results are given as mean±standard deviation. Result. The quality measures, mean counts, and genes per spot, were significantly ~10× higher for sections on hydrogel slides (counts: 4700±1796, genes: 2389±1170) compared to glass slides (counts: 463±415, genes: 250±223). In challenging tissues like cortical bone, we reached high counts+genes in comparison to published data. Direct comparison of a non-union and union section showed a total of 432 differentially regulated genes, 538 in the defect region/callus. GSEA revealed differential regulation of pathways involved in muscle organ morphogenesis, cartilage development and endochondral ossification. Conclusions. Optimized spatial transcriptomics workflows based on transcriptomic probe transfer enable for improved read depth in musculoskeletal tissue enabling the characterization of molecular features discriminating non-union and union bone fractures. Acknowledgements. AO Foundation (AOTRAUMA), SNSF (PhD salary)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 72 - 72
14 Nov 2024
Uvebrant K Andersen C Lim HC Vonk L Åkerlund EL
Full Access

Introduction. Homogenous and consistent preparations of mesenchymal stem cells (MSCs) can be acquired by selecting them for integrin α10β1 (integrin a10-MSCs). Safety and efficacy of intra-articular injection of allogeneic integrin a10-MSCs were shown in two post-traumatic osteoarthritis horse studies. The current study investigated immunomodulatory capacities of human integrin a10-MSCs in vitro and their cell fait after intra-articular injection in rabbits. Method. The concentration of produced immunomodulatory factors was measured after licensing integrin a10-MSCs with pro-inflammatory cytokines. Suppression of T-cell proliferation was determined in co-cultures with carboxyfluorescein N-succinimidyl ester (CFSE) labelled human peripheral blood mononuclear cells (PBMCs) stimulated with anti-CD3/CD28 and measuring the CFSE intensity of CD4+ cells. Macrophage polarization was assessed in co-cultures with differentiated THP-1 cells stimulated with lipopolysaccharide and analysing the M2 macrophage cell surface markers CD163 and CD206. In vivo homing and regeneration were investigated by injecting superparamagnetic iron oxide nanoparticles conjugated with Rhodamine B-labeled human integrin a10-MSCs in rabbits with experimental osteochondral defects. MSC distribution in the joint was followed by MRI and fluorescence microscopy. Result. The production of the immunomodulatory factors indoleamine 2,3-dioxygenase and prostaglandin E2 was increased after inflammatory licensing integrin a10-MSCs. Co-cultures with integrin a10-MSCs suppressed T-cell proliferation and increased the frequency of M2 macrophages. In vivo injected integrin a10-MSCs homed to osteochondral defects and were detected in the repair tissue of the defects up to 10 days after injection, colocalized with aggrecan and type II collagen. Conclusion. This study showed that human integrin a10-MSCs have immunomodulatory capacities and in vivo can home to the site of osteochondral damage and directly participate in cartilage regeneration. This suggests that human integrin α10β1-selected MSCs may be a promising therapy for osteoarthritis with dual mechanisms of action consisting of immunomodulation and homing to damage followed by early engraftment and differentiation into chondrocyte-like cells that deposit hyaline cartilage matrix molecules


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 126 - 126
14 Nov 2024
Lu C Lian W Wu R Lin Y Su C Chen C Tai M Chen Y Wang S Wang F
Full Access

Introduction. Cartilage damage is a critical aspect of osteoarthritis progression, but effective imaging strategies remain limited. Consequently, multimodal imaging approaches are receiving increased attention. Gold nanomaterials, renowned for their therapeutic and imaging capabilities, hold promise in drug development. However, their potential for cartilage imaging is rarely discussed. Here, we developed a versatile nanomaterial, AuNC@BSA-Gd-I, for cartilage detection. By leveraging electrostatic interactions with sulfated glycosaminoglycans (sGAG), the AuNC@BSA-Gd-I can effectively penetrate damaged cartilage while accumulating minimally in healthy cartilage. This probe can be visualized or detected using CT, MRI, IVIS, and a gamma counter, providing a comprehensive approach to cartilage imaging. Additionally, we compared the imaging abilities, cartilage visualization capacities, and versatility of currently disclosed multimodal gold nanomaterials with those of AuNC@BSA-Gd-I. Method. The physicochemical properties of nanomaterials were measured. The potential for cartilage visualization of these nanomaterials was assessed using an in vitro porcine model. The sGAG content in cartilage was determined using the dimethylmethylene blue (DMMB) assay to establish the correlation between sGAG concentration and imaging intensity acquired at each modality. Results. The cartilage imaging abilities of AuNC@BSA-Gd-I for CT, MRI, and optical imaging were verified, with each imaging intensity demonstrating a strong correlation with the sGAG content (MRI; R2=0.93, CT; R2=0.83, IVIS; R2=0.79). Furthermore, AuNC@BSA-Gd-. 131. I effectively accumulated in defective cartilage tissue compared to healthy cartilage (23755.38 ± 5993.61 CPM/mg vs. 11699.97 ± 794.93 CPM/mg). Additionally, current gold nanomaterials excelled in individual imaging modalities but lacked effective multimodal imaging ability. Conclusion. Compared to current multimodal gold nanomaterials, AuNC@BSA-Gd-I demonstrates the potential to image cartilage across multiple medical instruments, providing investigators with a more powerful, visible, and convenient approach to detect cartilage defects. Acknowledgements. This work was financially supported by the National Health Research Institute, Taiwan (NHRI-EX112-11029SI), the National Science and Technology Council (NSTC 112-2314-B-182A-105-MY3), and Chang Gung Memorial Hospital, Taiwan (CMRPG8N0781 and CMRPG8M1281-3)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 81 - 81
14 Nov 2024
Ahmed NA Narendran K Ahmed NA
Full Access

Introduction. Anterior shoulder instability results in labral and osseous glenoid injuries. With a large osseous defect, there is a risk of recurrent dislocation of the joint, and therefore the patient must undergo surgical correction. An MRI evaluation of the patient helps to assess the soft tissue injury. Currently, the volumetric three-dimensional (3D) reconstructed CT image is the standard for measuring glenoid bone loss and the glenoid index. However, it has the disadvantage of exposing the patient to radiation and additional expenses. This study aims to compare the values of the glenoid index using MRI and CT. Method. The present study was a two-year cross-sectional study of patients with shoulder pain, trauma, and dislocation in a tertiary hospital in Karnataka. The sagittal proton density (PD) section of the glenoid and enface 3D reconstructed images of the scapula were used to calculate glenoid bone loss and the glenoid index. The baseline data were analyzed using descriptive statistics, and the Chi-square test was used to test the association of various complications with selected variables of interest. Result. The glenoid index calculated in the current study using 3D volumetric CT images and MR sagittal PD images was 0.95±0.01 and 0.95±0.01, respectively. The CT and MRI glenoid bone loss was 5.41±0.65% and 5.38±0.65%, respectively. When compared, the glenoid index and bone loss calculated by MRI and CT revealed a high correlation and significance with a p-value of <0.001. Conclusions. The study concluded that MRI is a reliable method for glenoid measurement. The sagittal PD sequence combined with an enface glenoid makes it possible to identify osseous defects linked to glenohumeral joint damage and dislocation. The values derived from 3D CT are identical to the glenoid index and bone loss determined using the sagittal PD sequence in MRI


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 82 - 82
14 Nov 2024
Kühl J Grocholl J Seekamp A Klüter T Fuchs S
Full Access

Introduction. The surgical treatment of critical-sized bone defects with complex three-dimensional (3D) geometries is a challenge for the treating surgeon. Additive manufacturing such as 3D printing enables the production of highly individualized bone implants meeting the shape of the patient's bone defect and including a tunable internal structure. In this study, we showcase the design process for patient-specific implants with critical-sized tibia defects. Methods. Two clinical cases of patients with critical tibia defects (size 63×20×21 mm and 50×24×17 mm) were chosen. Brainlab software was used for segmentation of CT data generating 3D models of the defects. The implant construction involves multiple stages. Initially, the outer shell is precisely defined. Subsequently, the specified volume is populated with internal structures using Voronoi, Gyroid, and NaCl crystal structures. Variation in pore size (1.6 mm and 1.0 mm) was accomplished by adjusting scaffold size and material thickness. Results. An algorithmic design process in Rhino and Grasshopper was successfully applied to generate model implants for the tibia from Ct data. By integrating a precise mesh into an outer shell, a scaffold with controlled porosity was designed. In terms of the internal design, both Voronoi and Gyroid form macroscopically homogeneous properties, while NaCl, exhibits irregularities in density and consequently, in the strength of the structure. Data implied that Voronoi and Gyroid structures adapt more precisely to complex and irregular outer shapes of the implants. Conclusion. In proof-of-principle studies customized tibia implants were successfully generated and printed as model implants based on resin. Further studies will include more patient data sets to refine the workflows and digital tools for a broader spectrum of bone defects. The algorithm-based design might offer a tremendous potential in terms of an automated design process for 3D printed implants which is essential for clinical application


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 14 - 14
14 Nov 2024
Gögele CL Fleischmann N Müller S Liesenberg T Pizzadili G Wiltzsch S Gerdes T Schaefer-Eckart K Lenhart A Schulze-Tanzil G
Full Access

Introduction. Articular cartilage has a low self-regeneration capacity. Cartilage defects have to be treated to minimize the risk of the onset of osteoarthritis. Bioactive glass (BG) is a promising source for cartilage tissue engineering. Until now, conventional BGs (like BG1393) have been used, mostly for bone regeneration, as they are able to form a hydroxyapatite layer and are therefore, less suited for cartilage reconstruction. The aim of this study is to study the effect of 3D printed hydrogel scaffolds supplemented with spheres of the BG CAR12N to improve the chondrogenesis of mesenchymal stem cells (MSCs). Method. Based on our new glass composition (CAR12N), small BG spheres (25-40 µm) were produced and mixed with hydrogel and primary human (h) MSCs. Grid printed scaffolds were cultivated up to 21 days in expansion or chondrogenic differentiation medium. Macroscopical images of the scaffolds were taken to observe surface changes. Vitality, DNA and sulfated glycosaminoglycan (GAG) content was semiquantitatively measured as well as extracellular matrix gene transcription. Result. It was possible to print grid shaped hydrogel scaffolds with BG spheres and hMSCs. No significant changes in scaffold shape, surface or pore size were detected after 21 days in culture. The BG spheres were homogeneously distributed inside the grids. Vitality was significantly higher in grids with CAR12N spheres in comparison to those without. The DNA content remained constant over three weeks, but was higher in the sphere containing scaffolds than in those without BG spheres. GAG content in the grids increased not only with additional cultivation time but especially in grids with BG spheres in chondrogenic medium. Aggrecan and type II collagen gene expression was significantly higher grids cultured in the chondrogenic differentiation medium. Conclusion. This developed 3D model, is very interesting to study the effect of BG on hMSCs and to understand the influence of leaking ions on chondrogenesis


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 109 - 109
14 Nov 2024
Weiden GVD Egmond NV Karperien M Both S Mastbergen S Emans P Caron J Custers R
Full Access

Introduction. The ACTIVE(Advanced Cartilage Treatment with Injectable-hydrogel Validation of the Effect) study investigates safety and performance of a novel dextran-tyramine hydrogel implant for treatment of small cartilage defects in the knee (0.5-2.0cm2). The hydrogel is composed of a mixture of natural polymer conjugates that are mixed intra-operatively and which cross-link in situ through a mild enzymatic reaction, providing a cell-free scaffold for cartilage repair. Method. The ACTIVE study is split into a safety (n=10) and a performance cohort (n=36). The Knee Injury and Osteoarthritis Outcome Score (KOOS), pain (numeric rating scale, NRS), Short-Form Health Survey (SF-36) were compared at baseline and 3, 6, and 12 months after surgery. The primary performance hypothesis is an average change in the KOOS from baseline to 12 months (ΔKOOS) greater than a minimal clinically important change (MIC) of 10. No statistical tests were performed as these are preliminary data on a smaller portion of the total study. Result. All patients of the safety cohort (n=10, mean age±SD, 30±9 years) were treated with the hydrogel for a symptomatic (NRS≥4) cartilage defect on the femoral condyle or trochlear groove (mean size±SD, 1.2±0.4cm2). No signs of an adverse foreign tissue reaction or serious adverse events were recorded within the safety cohort. At final follow-up mean KOOS±SD was 66.9±23.5, mean NRS resting±SD was 1.3±1.9, NRS activity±SD was 3.8±2.9 and mean SF-36±SD was 72.0±10.9. ΔKOOS was 21. One patient sustained new knee trauma prior to final follow-up, affecting final scores considerably. When excluded, ΔKOOS was 24(n=9). Conclusion. These promising initial findings provide a solid basis for continuation and expansion of this unique cartilage treatment. The MIC of 10 was surpassed. Though, results should be interpreted cautiously as they are based solely on preliminary data of the first 10 patients. Acknowledgements. Study is sponsored by Hy2Care, producer of the CartRevive®(dextran-tyramine) Hydrogel implant


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 115 - 115
14 Nov 2024
Zargarbashi R Vosoughi F Shaker F Mirbeyk M Seifi M Vafaee AR
Full Access

Introduction. The management of pathologic fractures (PF) following osteomyelitis (especially acute subtype) has not been widely investigated. This is challenging due to the infection-induced destructive process causing bone architecture defects. Therefore, this study aims to assess a stepwise treatment plan for the acute incidence of PF in long bone following pediatric acute Hematogenous osteomyelitis(AHO) (the most common mechanism in children). Method. This case series was conducted in a tertiary pediatric center. Patients with fracture incidence within the first 10 days after AHO diagnosis were included. Patients’ characteristics were retrospectively reviewed. Result. Nine patients (7 boys, involved bone: the femur(4), tibia(3), Radius(1), and Ulna(1)) were included, with a mean age of 52.56±66.18 months (7-216) and a follow-up time of 11.62±3.61 years (6.5-16 years). The etiology in all patients was hematological(Methicillin-resistant Staphylococcus aureus). Our stepwise treatment plan was as follows:. 1. Intravenous antibiotics until ESR<20, then oral to ESR<5. 2. Debridemnt surgery was performed if abscesses were detected. 3. Fracture type determined initial fixation: external fixation (4 patients, 2 unions) or casting (2 patients, both unions). 4. If the union was not obtained, internal fixation (with (2 patients) or without (2 patients) bone graft) was applied (all obtained union). 5. Circular external fixation was applied if the union was not obtained or leg length discrepancy occurred (1 case). A mean of 3.2 surgical procedures (1-6) was required to control the infection, and 1.4 surgical procedures (0-4) were required to obtain union. Except for one patient who died of septic shock, all other patients (88.8%) reached complete recovery (average length of hospital stay of 19.2 days (5-35).), and the union was obtained (the average union time of 17.25 months(4-36)) without long-term sequelae of osteomyelitis. Conclusion. The outcome of the stepwise plan in this study suggests that acute PF following AHO in pediatrics can be managed efficiently


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 30 - 30
14 Nov 2024
Schröder M Gens L Arens D Giger N Gehweiler D Nehrbass D Zderic I Zeiter S Stoddart M Wehrle E
Full Access

Introduction. Immunomodulation represents a novel strategy to improve bone healing in combination with low doses of bone morphogenetic growth factors like BMP-2. This study aims to investigate the effect and timing of monoclonal anti-IL-1ß antibody administration with 1μg BMP-2 on bone healing over 14 weeks in a rat femur segmental defect model. Method. 2 mm femoral defects were created in 22-27 weeks-old female Fischer F344 rats, internally fixed with a plate (animal license: GR/19/2022) using established protocols for analgesia and anesthesia. Animals (n=4/group) received either a collagen sponge, a collagen sponge+1μg BMP-2 (InductOs, Medtronic) or a collagen sponge+1μg BMP-2 with a monoclonal anti-IL-1ß antibody (BioXCell, 10 mg/ml), administered intravenously under anesthesia every third day until day 15, from day 0 or 3. In vivo micro-CT was performed after surgery and at 2, 3, 4, 6, 8, 10 and 14-weeks post-OP. Mechanical properties of the operated femurs were assessed by 4-point bending (Instron5866) and compared to contralateral femurs (one-way ANOVA, GraphPad Prism8). Histopathological analysis was performed semi-quantitatively on Giemsa-Eosin-stained sections (Olympus BX63) using a six-grade severity grading scale. Result. Operated femurs with BMP-2 reached an average stiffness of 91±37% of contralateral femurs, femurs in IL-1ß groups 105±11% (day 0) and 111±12% (day 3). Administration of anti-IL-1ß+1μg BMP-2 led to faster cortical bridging (3/4 femurs bridged by week 4 for day 0, 4/4 for day 3) than 1μg BMP-2 alone (0/4 by week 4). Micro-CT results confirmed histopathological evaluation, as collagen sponge alone led to non-union, complete bicortical bridging was observed for 3/4 femurs in the BMP-2 group and for 4/4 femurs in the IL-1β groups after 14 weeks. Conclusion. Anti-IL-1ß had a beneficial effect on late fracture healing with faster cortical bridging and new bone formation than 1μg BMP-2 alone. Acknowledgments. AO foundation. We thank Andrea Furter, Alisa Hangartner and Thomas Krüger for technical support


Aims

For rare cases when a tumour infiltrates into the hip joint, extra-articular resection is required to obtain a safe margin. Endoprosthetic reconstruction following tumour resection can effectively ensure local control and improve postoperative function. However, maximizing bone preservation without compromising surgical margin remains a challenge for surgeons due to the complexity of the procedure. The purpose of the current study was to report clinical outcomes of patients who underwent extra-articular resection of the hip joint using a custom-made osteotomy guide and 3D-printed endoprosthesis.

Methods

We reviewed 15 patients over a five-year period (January 2017 to December 2022) who had undergone extra-articular resection of the hip joint due to malignant tumour using a custom-made osteotomy guide and 3D-printed endoprosthesis. Each of the 15 patients had a single lesion, with six originating from the acetabulum side and nine from the proximal femur. All patients had their posterior column preserved according to the surgical plan.


Bone & Joint Open
Vol. 5, Issue 11 | Pages 999 - 1003
7 Nov 2024
Tan SHS Pei Y Chan CX Pang KC Lim AKS Hui JH Ning B

Aims

Congenital pseudarthrosis of the tibia (CPT) has traditionally been a difficult condition to treat, with high complication rates, including nonunion, refractures, malalignment, and leg length discrepancy. Surgical approaches to treatment of CPT include intramedullary rodding, external fixation, combined intramedullary rodding and external fixation, vascularized fibular graft, and most recently cross-union. The current study aims to compare the outcomes and complication rates of cross-union versus other surgical approaches as an index surgery for the management of CPT. Our hypothesis was that a good index surgery for CPT achieves union and minimizes complications such as refractures and limb length discrepancy.

Methods

A multicentre study was conducted involving two institutions in Singapore and China. All patients with CPT who were surgically managed between January 2009 and December 2021 were included. The patients were divided based on their index surgery. Group 1 included patients who underwent excision of hamartoma, cross-union of the tibia and fibula, autogenic iliac bone grafting, and internal fixation for their index surgery. Group 2 included patients who underwent all other surgical procedures for their index surgery, including excision of hamartoma, intramedullary rodding, and/or external fixation, without cross-union of the tibia and fibula. Comparisons of the rates of union, refracture, limb length discrepancy, reoperations, and other complications were performed between the two groups.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1301 - 1305
1 Nov 2024
Prajapati A Thakur RPS Gulia A Puri A

Aims

Reconstruction after osteoarticular resection of the proximal ulna for tumours is technically difficult and little has been written about the options that are available. We report a series of four patients who underwent radial neck to humeral trochlea transposition arthroplasty following proximal ulnar osteoarticular resection.

Methods

Between July 2020 and July 2022, four patients with primary bone tumours of the ulna underwent radial neck to humeral trochlea transposition arthroplasty. Their mean age was 28 years (12 to 41). The functional outcome was assessed using the range of motion (ROM) of the elbow, rotation of the forearm and stability of the elbow, the Musculoskeletal Tumor Society score (MSTS), and the nine-item abbreviated version of the Disabilities of the Arm, Shoulder and Hand questionnaire (QuickDASH-9) score.


The Bone & Joint Journal
Vol. 106-B, Issue 11 | Pages 1240 - 1248
1 Nov 2024
Smolle MA Keintzel M Staats K Böhler C Windhager R Koutp A Leithner A Donner S Reiner T Renkawitz T Sava M Hirschmann MT Sadoghi P

Aims

This multicentre retrospective observational study’s aims were to investigate whether there are differences in the occurrence of radiolucent lines (RLLs) following total knee arthroplasty (TKA) between the conventional Attune baseplate and its successor, the novel Attune S+, independent from other potentially influencing factors; and whether tibial baseplate design and presence of RLLs are associated with differing risk of revision.

Methods

A total of 780 patients (39% male; median age 70.7 years (IQR 62.0 to 77.2)) underwent cemented TKA using the Attune Knee System) at five centres, and with the latest radiograph available for the evaluation of RLL at between six and 36 months from surgery. Univariate and multivariate logistic regression models were performed to assess associations between patient and implant-associated factors on the presence of tibial and femoral RLLs. Differences in revision risk depending on RLLs and tibial baseplate design were investigated with the log-rank test.


Bone & Joint Open
Vol. 5, Issue 10 | Pages 886 - 893
15 Oct 2024
Zhang C Li Y Wang G Sun J

Aims

A variety of surgical methods and strategies have been demonstrated for Andersson lesion (AL) therapy. In 2011, we proposed and identified the feasibility of stabilizing the spine without curettaging the vertebral or discovertebral lesion to cure non-kyphotic AL. Additionally, due to the excellent reunion ability of ankylosing spondylitis, we further came up with minimally invasive spinal surgery (MIS) to avoid the need for both bone graft and lesion curettage in AL surgery. However, there is a paucity of research into the comparison between open spinal fusion (OSF) and early MIS in the treatment of AL. The purpose of this study was to investigate and compare the clinical outcomes and radiological evaluation of our early MIS approach and OSF for AL.

Methods

A total of 39 patients diagnosed with AL who underwent surgery from January 2004 to December 2022 were retrospectively screened for eligibility. Patients with AL were divided into an MIS group and an OSF group. The primary outcomes were union of the lesion on radiograph and CT, as well as the visual analogue scale (VAS) and Oswestry Disability Index (ODI) scores immediately after surgery, and at the follow-up (mean 29 months (standard error (SE) 9)). The secondary outcomes were total blood loss during surgery, operating time, and improvement in the radiological parameters: global and local kyphosis, sagittal vertical axis, sagittal alignment, and chin-brow vertical angle immediately after surgery and at the follow-up.


The Bone & Joint Journal
Vol. 106-B, Issue 10 | Pages 1093 - 1099
1 Oct 2024
Ferreira GF Lewis TL Fernandes TD Pedroso JP Arliani GG Ray R Patriarcha VA Filho MV

Aims

A local injection may be used as an early option in the treatment of Morton’s neuroma, and can be performed using various medications. The aim of this study was to compare the effects of injections of hyaluronic acid compared with corticosteroid in the treatment of this condition.

Methods

A total of 91 patients were assessed for this trial, of whom 45 were subsequently included and randomized into two groups. One patient was lost to follow-up, leaving 22 patients (24 feet) in each group. The patients in the hyaluronic acid group were treated with three ultrasound-guided injections (one per week) of hyaluronic acid (Osteonil Plus). Those in the corticosteroid group were treated with three ultrasound-guided injections (also one per week) of triamcinolone (Triancil). The patients were evaluated before treatment and at one, three, six, and 12 months after treatment. The primary outcome measure was the visual analogue scale for pain (VAS). Secondary outcome measures included the American Orthopaedic Foot and Ankle Society (AOFAS) score, and complications.