Highly cross-linked polyethylene (HXLPE) greatly reduces wear in total hip arthroplasty, compared to conventional polyethylene (CPE). Cross-linking is commonly achieved by irradiation. This study aimed to compare the degree of cross-linking and in vitro wear rates across a cohort of retrieved and unused polyethylene cups/liners from various brands. Polyethylene acetabular cups/liners were collected at one centre from 1 April 2021 to 30 April 2022. The trans-vinylene index (TVI) and oxidation index (OI) were determined by Fourier-transform infrared spectrometry. Wear was measured using a pin-on-disk test.Aims
Methods
Background. Lisfranc fracture dislocations are uncommon injuries, which frequently require surgical intervention. Currently, there is varying evidence on the diagnostic utility of plain radiographs (XR) and CT in identifying Lisfranc injuries and concomitant fractures. Our aim was to identify the utility of XR as compared to CT, with the nul hypothesis that there was no difference in fracture identification. Methods. A retrospective assessment of patients who had sustained a Lisfranc injury between 2013 and 2022 across two trauma centres within the United Kingdom who underwent surgery. Pre-operative XR and CT images were reviewed independently by 2 reviewers to identify the presence of associated fractures. Results. A total of 175 patients were included. Our assessment identified that XR images significantly under-diagnosed all metatarsal and midfoot fractures. The largest discrepancies between XR and CT in their rates of detection were in fractures of the
Introduction. Charcot neuroarthropathy is a limb threatening condition and the optimal surgical strategy for limb salvage in gross foot deformity remains unclear. We present our experience of using fine wire frames to correct severe midfoot deformity, followed by internal beaming to maintain the correction. Materials and Methods. Nine patients underwent this treatment between 2020–2023. Initial deformity correction by Ilizarov or hexapod butt frame was followed by internal beaming with a mean follow up of 11 months. A retrospective analysis of radiographs and electronic records was performed. Meary's angle, calcaneal pitch,
Aims. The Chopart joint complex is a joint between the midfoot and hindfoot. The static and dynamic support system of the joint is critical for maintaining the medial longitudinal arch of the foot. Any dysfunction leads to progressive collapsing flatfoot deformity (PCFD). Often, the tibialis posterior is the primary cause; however, contrary views have also been expressed. The present investigation intends to explore the comprehensive anatomy of the support system of the Chopart joint complex to gain insight into the cause of PCFD. Methods. The study was conducted on 40 adult embalmed cadaveric lower limbs. Chopart joint complexes were dissected, and the structures supporting the joint inferiorly were observed and noted. Results. The articulating bones exhibit features like a
The December 2023 Foot & Ankle Roundup360 looks at: Subchondral bone cysts remodel after correction of varus deformity in ankle arthritis; 3D-printed modular endoprosthesis reconstruction following total calcanectomy; Percutaneous partial bone excision in the management of diabetic toe osteomyelitis; Hemiepiphysiodesis is a viable surgical option for Juvenile hallux valgus; Ankle arthroplasty vs arthrodesis: which comes out on top?; Patient-related risk factors for poorer outcome following total ankle arthroplasty; The Outcomes in Ankle Replacement Study.
Aim. The aim of this paper is to analyse the cause of neuropathic diabetic foot ulcers and discuss their preventive measures. Methods. Review of patients with foot ulcers managed in our diabetic MDT clinics since Feb 2018 were analysed. Based on this observation and review of pertinent literature, following observations were made. Results. Forefoot. Progressive hindfoot equinus from contraction of gastroc-soleus-tendo-Achilles complex, with additional contraction of tibialis posterior and peroneal longus muscles and, progressive plantar flexed metatarsal heads secondary to claw toe deformity results in increased forefoot plantar pressures. In patients with insensate feet, this result in ulcer formation under the metatarsal heads from shear stress when walking. Callosity under the metatarsal heads is the earliest clinical sign. Most patients by this time have fixed tightness of the muscle groups as assessed by negative Silfverskiold test. Percutaneous tendo-Achilles lengthening (TAL) has shown to reduce the mid-forefoot plantar pressures by 32% and ulcer healing in 96% of patients within 10 weeks (± 4 weeks). Additional z-lengthening of peroneal longus and tibialis posterior tendons helped in patients with big-toe and 5. th. metatarsal head ulcers. Proximal metatarsal osteotomies further reduce the forefoot pressures to near normality. Midfoot. Midfoot ulcers are secondary to rocker-bottom deformity a consequence of Charcot neuroarthropathy (CN). Hindfoot equinus as described and relative osteopenia from neurally mediated increased blood flow (neurovascular theory) and repeated micro-trauma (neurotraumatic theory) result in failure of medial column osseo-ligamentous structures. As the disease progress to the lateral column, the
This study aimed to establish the optimal fixation methods for calcaneal tuberosity avulsion fractures with different fragment thicknesses in a porcine model. A total of 36 porcine calcanea were sawed to create simple avulsion fractures with three different fragment thicknesses (5, 10, and 15 mm). They were randomly fixed with either two suture anchors or one headless screw. Load-to-failure and cyclic loading tension tests were performed for the biomechanical analysis.Aims
Methods
To systematically review the efficacy of split tendon transfer surgery on gait-related outcomes for children and adolescents with cerebral palsy (CP) and spastic equinovarus foot deformity. Five databases (CENTRAL, CINAHL, PubMed, Embase, Web of Science) were systematically screened for studies investigating split tibialis anterior or split tibialis posterior tendon transfer for spastic equinovarus foot deformity, with gait-related outcomes (published pre-September 2022). Study quality and evidence were assessed using the Methodological Index for Non-Randomized Studies, the Risk of Bias In Non-Randomized Studies of Interventions, and the Grading of Recommendations Assessment, Development and Evaluation.Aims
Methods
Osteoarthritis (OA) is prevalent among the elderly and incurable. Intra-articular parathyroid hormone (PTH) ameliorated OA in papain-induced and anterior cruciate ligament transection-induced OA models; therefore, we hypothesized that PTH improved OA in a preclinical age-related OA model. Guinea pigs aged between six and seven months of age were randomized into control or treatment groups. Three- or four-month-old guinea pigs served as the young control group. The knees were administered 40 μl intra-articular injections of 10 nM PTH or vehicle once a week for three months. Their endurance as determined from time on the treadmill was evaluated before kill. Their tibial plateaus were analyzed using microcalculated tomography (μCT) and histological studies.Aims
Methods
Tenosynovial giant cell tumour (TGCT) is one of the most common soft-tissue tumours of the foot and ankle and can behave in a locally aggressive manner. Tumour control can be difficult, despite the various methods of treatment available. Since treatment guidelines are lacking, the aim of this study was to review the multidisciplinary management by presenting the largest series of TGCT of the foot and ankle to date from two specialized sarcoma centres. The Oxford Tumour Registry and the Leiden University Medical Centre Sarcoma Registry were retrospectively reviewed for patients with histologically proven foot and ankle TGCT diagnosed between January 2002 and August 2019.Aims
Methods
We aimed to describe the epidemiological, biological, and bacteriological characteristics of osteoarticular infections (OAIs) caused by The medical charts of all children presenting with OAIs to our institution over a 13-year period (January 2007 to December 2019) were reviewed. Among these patients, we extracted those which presented an OAI caused by Aims
Methods
The treatment of tibial aplasia is controversial. Amputation represents the gold standard with good functional results, but is frequently refused by the families. In these patients, treatment with reconstructive limb salvage can be considered. Due to the complexity of the deformity, this remains challenging and should be staged. The present study evaluated the role of femoro-pedal distraction using a circular external fixator in reconstructive treatment of tibial aplasia. The purpose of femoro-pedal distraction is to realign the limb and achieve soft tissue lengthening to allow subsequent reconstructive surgery. This was a retrospective study involving ten patients (12 limbs) with tibial aplasia, who underwent staged reconstruction. During the first operation a circular hexapod external fixator was applied and femoro-pedal distraction was undertaken over several months. Subsequent surgery included reconstruction of the knee joint and alignment of the foot.Aims
Methods
The detailed biomechanical mechanism of annulus fibrosus under abnormal loading is still ambiguous, especially at the micro and nano scales. This study aims to characterize the alterations of modulus at the nano scale of individual collagen fibrils in annulus fibrosus after in-situ immobilization, and the corresponding micro-biomechanics of annulus fibrosus. An immobilization model was used on the rat tail with an external fixation device. Twenty one fully grown 12-week-old male Sprague-Dawley rats were used in this study. The rats were assigned to one of three groups randomly. One group was selected to be the baseline control group with intact intervertebral discs (n=7). In the other two groups, the vertebrae were immobilized with an external fixation device that fixed four caudal vertebrae (C7-C10) for 4 and 8 weeks, respectively. Four K-wires were fixed in parallel using two aluminum alloy
Implant infection is an increasing problem in orthopedic surgery, especially due to progressive antibiotic resistance and an aging population with rising numbers of implantations. As a consequence, new strategies for infection prevention are necessary. In the previous study it was hypothesized that laser-structured implant surfaces favor cellular adhesion while hindering bacterial ongrowth and therewith contribute to reduce implant infections.
To date there has been no material for endoprosthetics providing excellent resistance to abrasion and corrosion combined with great tensile strength, fracture toughness, and bending strength, as well as adequate biocompatibility. Carbon-fiber-reinforced silicon carbide (C/SiC, C/C-SiC or C/SiSiC) is as a ceramic compound a potentially novel biomaterial offering higher ductility and durability than comparable oxide ceramics. Aim of this investigation was to test the suitability of C/SiC ceramics as a new material for bearing couples in endoprosthetics. One essential quality that any new material must possess is biocompatibility. For this project the in-vitro biocompatibility was investigated by using