Navigation devices are designed to improve a surgeon’s accuracy in positioning the acetabular and femoral components in total hip arthroplasty (THA). The purpose of this study was to both evaluate the accuracy of an optical computer-assisted surgery (CAS) navigation system and determine whether preoperative spinopelvic mobility (categorized as hypermobile, normal, or stiff) increased the risk of acetabular component placement error. A total of 356 patients undergoing primary THA were prospectively enrolled from November 2016 to March 2018. Clinically relevant error using the CAS system was defined as a difference of > 5° between CAS and 3D radiological reconstruction measurements for acetabular component inclination and anteversion. Univariate and multiple logistic regression analyses were conducted to determine whether hypermobile (Aims
Methods
Introduction. Acquiring adaptive soft-tissue balance is one of the most important factors in total knee arthroplasty (TKA). However, there have been few reports regarding to alteration of tolerability of varus/valgus stress between before and after TKA. In particular, there is no enough data about mid-flexion stability. Based on these backgrounds, it is hypothesized that alteration of varus/valgus tolerance may influence post-operative results in TKA. The purpose of this study is an investigation of in vivo kinematic analyses of tolerability of varus/valgus stress before and after TKA, comparing to clinical results. Materials and Methods. A hundred knees of 88 consecutive patients who had knees of osteoarthritis with varus deformity were investigated in this study. All TKAs (Triathlon, Stryker) were performed using
Restoring the overall mechanical alignment to neutral has been the gold standard since the 1970s and remains the current standard of knee arthroplasty today. Recently, there has been renewed interest in alternative alignment goals that place implants in a more “physiologic” position with the hope of improving clinical outcomes. Anywhere from 10 – 20% of patients are dissatisfied after knee replacement surgery and while the cause is multifactorial, some believe that it is related to changing native alignment and an oblique joint line (the concept of constitutional varus) to a single target of mechanical neutral alignment. In addition, recent studies have challenged the long held belief that total knee placed outside the classic “safe zone” of +/− 3 degrees increases the risk of mechanical failure which theoretically supports investigating alternative, more patient specific, alignment targets. From a biomechanical, implant retrieval, and clinical outcomes perspective, mechanical alignment should remain the gold standard for TKA. Varus tibias regardless of overall alignment pattern show increased polyethylene wear and varus loading increases the risk of posteromedial collapse. While recently questioned, the evidence states that alignment does matter. When you combine contemporary knee designs placed in varus with an overweight population (which is the majority of TKA patients) the failure rate increases exponentially when compared to neutral alignment. A recent meta-analysis on mechanical alignment and survivorship clearly demonstrated reduced survivorship for varus-aligned total knees. The only way to justify the biomechanical risks associated with placing components in an alternative alignment target is a significant clinical outcome benefit but the evidence is lacking. A randomised control trial comparing mechanical alignment (MA) and kinematic alignment (KA) found a significant improvement in clinical outcomes and knee function in KA patients at 2 year follow-up. In contrast, Young et al. recently published a randomised control trial comparing PSI KA and computer assisted mechanical TKA and found no difference in any clinical outcome measure. Why were the clinical outcomes scores in the MA patients so different: One potential explanation is that different surgical techniques were used. In the Dosset study, the femur was cut at 5 degrees valgus in all patients and femoral component rotation was always set at 3 degrees externally rotated to the posterior condylar axis. We know from several studies that this method leads to inaccuracies in both coronal plane and axial plane in some patients. Young et al. used
Introduction. Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed and widely used. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femoro-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femoro-tibial joint with use of CS polyethylene insert before and after PCL resction using
Background. Coronal malalignment has been proposed as a risk factor for mechanical failure after total knee arthroplasty (TKA). In response to these concerns, technologies that provide intraoperative feedback to the surgeon about component positioning have been developed with the goal of reducing rates of coronal plane malalignment and improving TKA longevity. Imageless hand-held portable accelerometer technology has been developed to address some the limitations associated with other
INTRODUCTION. Total knee replacement is mostly done with alignment rods in order to achieve a proper Varus / Valgus alignement. Other techniques are
Introduction. Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femolo-tibial joint as well as posterior-stabilized (PS) polyethylene insert, even if PCL is sacrificed after TKA. The purpose of this study is an investigation of in vivo kinematics of femolo-tibial joint with use of CS polyethylene insert before and after PCL resction using
Introduction. Total hip arthroplasty has become an increasingly common procedure. Improper cup position contributes to bearing surface wear, pelvic osteolysis, dislocations, and revision surgery. The incidence of cup malposition outside of the safe zone (40° ± 10° abduction and 15° ± 10° anteversion) using traditional techniques has been reported to be as high as 50%. Our hypothesis is that
Objective. To compare between the CAMISS-TLIF group and the OP-TLIF group in the clinical efficacy and radiographic manifest. Methods. This study was a registration study, selected 27 patients with lumbar spondylolisthesis from May 2011 to March 2014 in our hospital. Patients in one group are treated with
Background. Limb length discrepancy after total hip replacement is one of the possible complications of suboptimal positioning of the implant and cause of patients dissatisfaction.
Alignment and soft tissue balance are two of the most important factors that influence early and long term outcome of total knee arthroplasty. Current clinical practice involves the use of plain radiographs for preoperative planning and conventional instrumentation for intra operative alignment. The aim of this study is to assess the Signature. TM. Personalised system using patient specific guides developed from MRI. The Signature. TM. system is used with the Vanguard. R. Complete Knee System. This system is compared with conventional instrumentation and
Introduction. The aim of this study is to verify the intra-rater and inter-rater reliability of intra-operative kinematics by hand in TKA using a
Background. When positioning and rotating the femoral cutting block (AP) on the femur it can either be done according to bony landmarks (measured resection) or by tensioning the flexion gap and positioning it parallel to the tibia (gap balanced technique.) Accurate rotation of the femoral component is essential to ensure a symmetric flexion gap to ensure optimal tibio-femoral kinematics and patello-femoral tracking. Methods. 74 consecutive total knee replacements were assessed intra-operatively for symmetry of the flexion gap by applying a varus and a valgus stress and digitally recording the opening with a
Objective:. Periacetabular spherical osteotomy for the treatment of dysplastic hip is effective but technically demanding. To help surgeons perform this difficult procedure reliably and safely, a
Introduction:. Total knee arthroplasty (TKA) is an effective operation for the management of osteoarthritis of the knee. Conventional technique utilizing manual instrumentation (MI) allows for reproducible and accurate execution of the procedure. The most common techniques make use of intramedullary femoral guides and either extrameduallary or intrameduallary tibial guides. While these methods can achieve excellent results in the majority of patients, those with ipsilateral hardware, post-traumatic deformity or abnormal anatomy may preclude the accurate use of these techniques. Patient-specific instrumentation (PSI) is an alternative innovation for total knee arthroplasty. Utilizing magnetic resonance imaging (MRI) or computed tomography (CT), custom guide blocks are fabricated based on a patient's unique anatomy. This allows for the benefits of
Introduction. Limb alignment after unicondylar knee arthroplasty (UKA) has a significant impact on surgical outcomes. The literature lacks studies that evaluate the limb alignment after lateral UKA or compare alignment outcomes between medial and lateral UKA. In this study, we retrospectively compare a single surgeon's alignment outcomes between medial and lateral UKA using a robotic-guided protocol. Methods. All surgeries were performed by a single surgeon using the same planning software and robotic guidance for execution of the surgical plan. The senior surgeon's prospective database was reviewed to identify patients who had 1) undergone medial or lateral UKA for unicompartmental osteoarthritis; and 2) had adequate pre- and post-operative full-length standing radiographs. There were 229 medial UKAs and 37 lateral UKAs in this study. Mechanical limb alignment was measured in standing long limb radiographs both pre- and post-operatively. Intra-operatively, limb alignment was measured using the
Introduction. Recently, tibial insert design of cruciate-substituting (CS) polyethylene insert is employed. However, in vivo kinematics of using CS polyethylene insert is still unclear. In this study, it is hypothesized that CS polyethylene insert leads to stability of femolo-tibial joint as well as posterior-stabilized polyethylene insert, even if posterior cruciate ligament (PCL) is sacrificed after total knee arthroplasty (TKA). The purpose of this study is an investigation of in vivo kinematics of three different tibial insert designs using
The surgical management of musculoskeletal tumours is a challenging problem, particularly in pelvic and diaphyseal tumour resection where accurate determination of bony transection points is extremely important to optimise oncologic, functional and reconstructive options. The use of
Variations in the pivot shift test have been proposed by many authors, though, a test comprised of rotatory and valgus tibial forces with accompanied knee range of motion is frequently utilised. Differences in applied forces between practitioners and patient guarding have been observed as potentially decreasing the reproducibility and reliability of the pivot shift test. We hypothesise that a low-profile pivot shift test (LPPST) consisting of practitioner induced internal rotatory and anterior directed tibial forces with accompanied knee range of motion can elicit significant differences in internal tibial rotation and anterior tibial translation between the anterior cruciate ligament (ACL) deficient and ACL sufficient knee. Fresh, frozen cadaver knees were used for this study. Four practitioners performed the LPPST on each ACL sufficient knee. The ACL of each knee was subsequently resected and each practitioner performed the LPPST on each ACL deficient knee. Our quantitative assessment utilised
The surgical management of musculoskeletal tumours is a challenging problem, particularly in pelvic and diaphyseal tumour resection where accurate determination of bony transection points is extremely important to optimise oncologic, functional and reconstructive options. The use of