Critical size bone defects deriving from large bone loss are an unmet clinical challenge1. To account for disadvantages with clinical treatments, researchers focus on designing biological substitutes, which mimic endogenous healing through osteogenic differentiation promotion. Some studies have however suggested that this notion fails to consider the full complexity of native bone with respect to the interplay between osteoclast and osteoblasts, thus leading to the regeneration of less functional tissue2. The objective of this research is to assess the ability of our laboratory's previously developed 6-Bromoindirubin-3’-Oxime (BIO) incorporated guanosine diphosphate crosslinked chitosan scaffold in promoting multilineage differentiation of myoblastic C2C12 cells and monocytes into osteoblasts and osteoclasts1, 3, 4. BIO addition has been previously demonstrated to promote osteogenic differentiation in cell cultures5, but implementation of a co-culture model here is expected to encourage crosstalk thus further supporting differentiation, as well as the secretion of regulatory molecules and cytokines2. Biocompatibility testing of both cell types is performed using AlamarBlue for metabolic activity, and nucleic acid staining for distribution. Osteoblastic differentiation is assessed through quantification of ALP and osteopontin secretion, as well as osteocalcin and mineralization staining. Differentiation into osteoclasts is verified using SEM and TEM, qPCR, and TRAP staining. Cellular viability of C2C12 cells and monocytes was maintained when cultured separately in scaffolds with and without BIO for 21 days. Both scaffold variations showed a characteristic increase in ALP secretion from day 1 to 7, indicating early differentiation but BIO-incorporated sponges yielded higher values compared to controls. SEM and TEM imaging confirmed initial aggregation and fusion of monocytes on the scaffold's surface, but BIO addition appeared to result in smoother cell surfaces indicating a change in morphology. Late-stage differentiation assessment and co-culture work in the scaffold are ongoing, but initial results show promise in the material's ability to support multilineage differentiation. Acknowledgements: The authors would like to acknowledge the financial support of the
Sarcopenia is an age-related geriatric syndrome which is associated with subsequent disability and morbidity. Currently there is no promising therapy approved for the treatment of sarcopenia. The receptor activator of nuclear factor NF-κB ligand (RANKL) and its receptor (RANK) are expressed in bone and skeletal muscle. Activation of the NF-κB pathway mainly inhibits myogenic differentiation, which leads to skeletal muscle dysfunction and loss. LYVE1 and CD206 positive macrophage has been reported to be associated with progressive impairment of skeletal muscle function with aging. The study aims to investigate the effects of an anti-RANKL treatment on sarcopenic skeletal muscle and explore the related mechanisms on muscle inflammation and the polarization status of macrophages. Sarcopenic senescence-accelerated mouse P8 (SAMP8) mice at month 8 were treated intraperitoneally with 5mg/kg anti-RANKL (IK22/5) or isotype control (2A3; Bio X Cell) antibody every 4 weeks and harvested at month 10. Senescence accelerated mouse resistant-1 (SAMR1) were collected at month 10 as the age-matched non-sarcopenic group. Ex-vivo functional assessment, grip strength and immunostaining of C/EBPa, CD206, F4/80, LYVE1 and PAX7 were performed. Data analysis was done with one-way ANOVA, and the significant level was set at p≤0.05. At month 10, tetanic force/specific tetanic force, twitch force/specific twitch force in anti-RANKL group were significantly higher than control group (all p<0.01). The mice in the anti-RANKL treatment group also showed significantly higher grip strength than Con group (p<0.001). The SAMP8 mice at month 10 expressed significantly more C/EBPa, CD206 and LYVE1 positive area than in SAMR1, while anti-RANKL treatment significantly decreased C/EBPa, CD206 and LYVE1 positive area. The anti-RANKL treatment protected against skeletal muscle dysfunctions through suppressing muscle inflammation and modulating M2 macrophages, which may represent a novel therapeutic approach for sarcopenia. Acknowledgment:
Understanding of open fracture management is skewed due to reliance on small-number lower limb, specialist unit reports and large, unfocused registry data collections. To address this, we carried out the Open Fracture Patient Evaluation Nationwide (OPEN) study, and report the demographic details and the initial steps of care for patients admitted with open fractures in the UK. Any patient admitted to hospital with an open fracture between 1 June 2021 and 30 September 2021 was included, excluding phalanges and isolated hand injuries. Institutional information governance approval was obtained at the lead site and all data entered using Research Electronic Data Capture. Demographic details, injury, fracture classification, and patient dispersal were detailed.Aims
Methods
The Open-Fracture Patient Evaluation Nationwide (OPEN) study was performed to provide clarity in open fracture management previously skewed by small, specialist centre studies and large, unfocused registry investigations. We report the current management metrics of open fractures across the UK. Patients admitted to hospital with an open fracture (excluding phalanges or isolated hand injuries) between 1 June 2021 and 30 September 2021 were included. Institutional information governance approval was obtained at the lead site and all data entered using Research Electronic Data Capture software. All domains of the British Orthopaedic Association Standard for Open Fracture Management were recorded.Aims
Method
The aim of this study was to describe the demographic details of patients who sustain a femoral periprosthetic fracture (PPF), the epidemiology of PPFs, PPF characteristics, and the predictors of PPF types in the UK population. This is a multicentre retrospective cohort study including adult patients presenting to hospital with a new PPF between 1 January 2018 and 31 December 2018. Data collected included: patient characteristics, comorbidities, anticoagulant use, social circumstances, level of mobility, fracture characteristics, Unified Classification System (UCS) type, and details of the original implant. Descriptive analysis by fracture location was performed, and predictors of PPF type were assessed using mixed-effects logistic regression models.Aims
Methods
Virtual fracture clinics (VFCs) are advocated by recent British Orthopaedic Association Standards for Trauma and Orthopaedics (BOASTs) to efficiently manage injuries during the COVID-19 pandemic. The primary aim of this national study is to assess the impact of these standards on patient satisfaction and clinical outcome amid the pandemic. The secondary aims are to determine the impact of the pandemic on the demographic details of injuries presenting to the VFC, and to compare outcomes and satisfaction when the BOAST guidelines were first introduced with a subsequent period when local practice would be familiar with these guidelines. This is a national cross-sectional cohort study comprising centres with VFC services across the UK. All consecutive adult patients assessed in VFC in a two-week period pre-lockdown (6 May 2019 to 19 May 2019) and in the same two-week period at the peak of the first lockdown (4 May 2020 to 17 May 2020), and a randomly selected sample during the ‘second wave’ (October 2020) will be eligible for the study. Data comprising local VFC practice, patient and injury characteristics, unplanned re-attendances, and complications will be collected by local investigators for all time periods. A telephone questionnaire will be used to determine patient satisfaction and patient-reported outcomes for patients who were discharged following VFC assessment without face-to-face consultation.Aims
Methods
As tumours of bone and soft tissue are rare, multicentre prospective collaboration is essential for meaningful research and evidence-based advances in patient care. The aim of this study was to identify barriers and facilitators encountered in large-scale collaborative research by orthopaedic oncological surgeons involved or interested in prospective multicentre collaboration. All surgeons who were involved, or had expressed an interest, in the ongoing Prophylactic Antibiotic Regimens in Tumour Surgery (PARITY) trial were invited to participate in a focus group to discuss their experiences with collaborative research in this area. The discussion was digitally recorded, transcribed and anonymised. The transcript was analysed qualitatively, using an analytic approach which aims to organise the data in the language of the participants with little theoretical interpretation.Objectives
Methods
The aim of this study was to review the role
of clinical trial networks in orthopaedic surgery. A total of two
electronic databases (MEDLINE and EMBASE) were searched from inception
to September 2013 with no language restrictions. Articles related
to randomised controlled trials (RCTs), research networks and orthopaedic
research, were identified and reviewed. The usefulness of trainee-led
research collaborations is reported and our knowledge of current
clinical trial infrastructure further supplements the review. Searching
yielded 818 titles and abstracts, of which 12 were suitable for
this review. Results are summarised and presented narratively under
the following headings: 1) identifying clinically relevant research
questions; 2) education and training; 3) conduct of multicentre
RCTs and 4) dissemination and adoption of trial results. This review
confirms growing international awareness of the important role research
networks play in supporting trials in orthopaedic surgery. Multidisciplinary
collaboration and adequate investment in trial infrastructure are crucial
for successful delivery of RCTs. Cite this article: