Advertisement for orthosearch.org.uk
Results 1 - 20 of 364
Results per page:
Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 3 - 3
22 Nov 2024
Samuel BJ Horbert V Jin Z Brauer DS Matziolis G
Full Access

Aim. Biomaterial-associated infections (BAI) present a formidable clinical challenge. Bioactive glasses (BG) have proven highly successful in diverse clinical applications, especially in dentistry and orthopaedics. In this study, we aimed to determine the effect of three commonly used BG composition and particle sizes on cell and bacterial attachment and growth. Our focus is on understanding the changes in pH and osmotic pressure in the surrounding environment during glass degradation. Method. First, three different melt-derived glasses were characterized by analyzing particle size and glass network structure using Raman and NMR. The different glasses were then tested in vitro by seeding 4x 10. 4. cells/well (SaOS Cell line) in a 48 well plate. After a pre-incubation period of 72 hours, the different BGs and particle sizes were added to the cells and the pH value, ion release and live/dead staining was measured every hour. The effect of BG against bacteria (S. epidermidis) was analyzed after 24 and 72 hours of treatment by using XTT viability assay and CFU counting by plating out the treated aliquot agar to estimate the viable bacteria cells. Results. All three BG compositions tested showed a significant increase in pH, which was highest in BG composition 45S5 with a value of 11 compared to the other BG compositions 10 and 9 in S53P4 and 13-93 respectively. This strong increase in the pH in all BG samples tested results in a strongly reduced cell viability rate of more than 75% compared to the untreated control and 6-fold reduction in bacterial viability compared to the untreated control. The live/ dead assay also showed an increased cell viability with increasing glass particle size (i. e smallest glass particle < 25% viable cell and largest glass particle> 65% viable cell). The ion release concentration over 50 h showed an increase in sodium ions to 0.25 mol/L, calcium to 0.003 mol/L and a decrease in phosphorus. Conclusions. These results show that the composition of the bioactive glass and the choice of particle size have a major influence on subsequent applications. In addition to the different compositions of the BG, particle size and additional medium change also influence the pH and ion release, and therefore also on cells or bacteria viability. The sizes of the bioactive glass particle are inversely proportional to it. Further tests are necessary to develop custom design BG compositions, which simultaneously stimulate osteoblasts proliferation and prevent microbial adhesion


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_19 | Pages 14 - 14
22 Nov 2024
Gómez MM Guembe M Díaz-Navarro M Peinado LP Matas-Díaz J Ruiz PS
Full Access

Aim. Chemical debridement is a fundamental step during Periprosthetic joint infection (PJI) surgery. Antiseptic solutions are commonly used, but evidence on the optimal antiseptic, concentration, and irrigation time is lacking. The aim of this study is to analyze and compare the anti-biofilm capacity of povidone iodine, H. 2. 0. 2. , acetic acid and Bactisure™ after different exposure times, as well as their combinations. Method. Surgical steel discs inoculated with methicillin susceptible (MSSA) and resistant S. aureus (MRSA), P. aeruginosa, and S. epidermidis were exposed to the following antiseptic solutions: 0.3% (PI0.3) and 10% povidone iodine (PI10), H. 2. 0. 2. , 3% Acetic acid (AA3) and Bactisure™. Combinations included AA3, H. 2. 0. 2. , and PI10 in various orders. Exposure time for the antiseptics solutions was 1, 3 and 5 minutes, while combinations had a 9-minute total exposure, 3 minutes per antiseptic sequentially. All experiments were performed in triplicate and with a sterile saline control. nThe reduction in colony-forming units (CFU) was measured after sonication, and biofilm structure was analyzed via scanning electron microscopy. Results. PI showed the highest antibiofilm activity. PI0.3 eradicated bacteria on the discs after 3 and 5 minutes of exposure, but only achieved a 77.1% reduction after 1 minute. After PI10 treatment, we did not recover any bacteria regardless of exposure time. H. 2. 0. 2. , AA3, and Bactisure™ reached a significantly lower bacterial decrease at all exposure times compared to PI0.3 and PI10. AA3 was less effective against MSSA and S. epidermidis. H. 2. 0. 2. showed less activity against MRSA than PI0.3, PI10, and Bactisure™. Combinations of antiseptics starting with AA3 showed the best results in terms of CFU reduction and cell viability. Conclusions. We propose a sequential combination of AA3 + H. 2. 0. 2. + PI10 with an exposure time of 9 minutes for the chemical debridement in PJI surgery. First, AA3 performs debridement and disruption of the biofilm. Then, H. 2. 0. 2. has a bactericidal effect and increases the porosity of the cell wall, and PI10 has a final bactericidal effect. If combinations are unavailable, PI is a cost-effective alternative


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 16 - 16
14 Nov 2024
Mei J Pasoldt A Matalova E Graessel S
Full Access

Introduction. Osteoarthritis (OA) is a prevalent joint disorder characterized by cartilage degeneration, inflammation, and pain. Current treatments provide only symptomatic relief, necessitating novel molecular targets. The caspase family, known for its roles in apoptosis and inflammation regulation, may additionally influence crucial processes for cartilage homeostasis such as differentiation and proliferation. However, the specific roles of individual caspases in OA pathogenesis remain unclear. This study aims to investigate the involvement of the caspase family in OA and as potential targets for therapy, with a focus on caspase-1 and -8. Method. Chondrocytes from both healthy and OA donors were cultured in 2D and 3D culture models and stimulated with TNF-α or IL-1β. The expression and activation of caspase-1 and -8 was assessed using RT-PCR, ELISA. Transcriptome analysis of OA and healthy cartilage samples, along with Mendelian randomization (MR) analysis were conducted to explore the involvement of caspase family in OA and to assess its potential as therapeutic targets. Result. Higher expression levels of caspase-1, -8 were observed in OA cartilage compared to healthy cartilage. TNF-α stimulation increased their expression in both healthy and OA chondrocytes, while IL-1β had limited impact. Caspase-8 expression was causally associated with knee OA in MR analysis, suggesting a potential therapeutic target. The caspase-1 inhibitor VX-765 mildly reduced chondrocyte viability, with no significant effect in the presence of TNF-α. While the caspase-8 inhibitor Z-IETD-FMK exhibited slight enhancements in cell viability, these improvements were not statistically significant. Nevertheless, its effectiveness significantly increased in the presence of TNF-α. Conclusion. This study highlights the involvement of caspase-1 and caspase-8 in OA pathology, with caspase-8 emerging as a potential therapeutic target for knee OA treatment. Further investigation into the roles of caspase-1 and -8 in OA pathophysiology, including the efficacy and potential side effects of their corresponding inhibitors, is warranted. Acknowledgements. Funding Inter-Action/Inter-Excellence project (BTHA-JC-2022-36/LUABA22019)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 83 - 83
14 Nov 2024
Llucia A Espinosa SC
Full Access

Introduction. Tendon ruptures represent one of the most common acute tendon injuries in adults worldwide, affecting millions of people anually and becoming more prevalent due to longer life expectancies and sports activities. Current clinical treatments for full tears are unable to completely restore the torn tendons to their native composition, structure and mechanical properties. To address this clinical challenge, tissue-engineered substitutes will be developed to serve as functional replacements for total tendon ruptures that closely resemble the original tissue, restoring functionality. Method. Water borne polyurethanes (WBPU) containing acrylate groups, specifically polyethylene glycol methacrylate (PEGMA) or 2-hydroxyethyl methacrylate (HEMA), were combined with mouse mesenchymal stem cells (MoMSCs) and heparin sodium to formulate bioinks for the fabrication of scaffolds via extrusion-based 3D bioprinting. Result. The biocompatibility of acrylated-WBPUs was confirmed in 2D with MoMSCs using lactate dehydrogenase assay, DNA assay and live/dead assays. Cell-laden scaffolds were 3D-bioprinted by encapsulating MoMSCs at varying cell densities within the acrylated WBPUs. The resulting 3D structures support cell viability and proliferation within the scaffolds, as confirmed by live/dead assay, lactate dehydrogenase assay and DNA assays. Differentiation studies in the 3D-bioprinted scaffolds demonstrated the phenotype transition of MoMSCs toward tenocytes through gene expression and protein deposition analysis. The inclusion of sodium heparin in the bioinks revealed increased synthesis of matrix assembly proteins within the 3D-bioprinted constructs. Conclusion. The developed bioinks were biocompatible and printable, supporting cell viability within the 3D-bioprinted scaffold. The fabricated cell-laden constructs sustained cell proliferation, differentiation, and tissue formation. The addition of heparin sodium enhanced tissue formation and organization, showing promising results for the regeneration of tendon total ruptures. Principio del formularioThis work was supported by the Spanish State Research Agency (AEI) under grant No CPP2021-008754. The authors would like to thank their partners in the project, which are in charge of the synthesis of heparin sodium and acrylated-WBPUs


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 95 - 95
14 Nov 2024
Machain TC Kharchenko A Hostettler R Lippl J Mouthuy PA
Full Access

Introduction. Supraspinatus tears comprise most rotator cuff injuries, the leading cause of shoulder pain and an increasing problem with ageing populations. Surgical repair of considerable or persistent damages is customary, although not invariably successful. Tissue engineering presents a promising alternative to generate functional tissue constructs with improved healing capacities. This study explores tendon tissue constructs’ culture in a platform providing physiological mechanical stimulation and reports on the effect of different loading regimes on the viability of human tendon cells. Method. Porcine decellularized tendon scaffolds were fixed into flexible, self-contained bioreactor chambers, seeded with human tenocytes, allocated in triplicates to either static control, low (15±0.8Newtons [N]), medium (26±0.5N), or high (49±2.1N)-force-regime groups, connected to a perfusion system and cultured under standard conditions. A humanoid robotic arm provided 30-minute adduction/abduction stimulation to chambers daily over a week. A metabolic activity assay served to assess cell viability at four time points. Statistical significance = p<0.05. Result. One day after beginning mechanical stimulation, chambers in the medium and high-force regimes displayed a rise in metabolic activity by 3% and 5%, respectively. By the last experimental day, all mechanical stimulation regimes had induced an augment in cell viability (15%, 57% and 39% with low, medium, and high loads, respectively) matched against the static controls. Compared to all other conditions, the medium-force regime prompted an increased relative change in metabolic activity for every time point set against day one (p<0.05). Conclusion. Human tenocytes’ viability reflected by metabolic activity in a physiologically relevant bioreactor system is enhanced by loading forces around 25N when mechanically stimulating using adduction/abduction motions. Knowing the most favourable load regime to stimulate tenocyte growth has informed the ongoing exploration of the distinctive effect of different motions on tendon regeneration towards engineering tissue grafts. This work was supported by the Engineering and Physical Sciences Research Council EP/S003509/1


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 74 - 74
14 Nov 2024
Durach A Kunisch E Renkawitz T Westhauser F Brauer D Hohenbild F
Full Access

Introduction. Bioactive glasses (BGs) promote osteogenic differentiation of bone progenitor cells by releasing therapeutically active ions. The well-described 45S5-BG (in mol%: SiO. 2. 46.13; P. 2. O. 5. 2.60; CaO 26.91; Na. 2. O 24.35) was supplemented with CaF. 2. and NaF being added to the batch at nominal 5 (F5-BG) and 25 mol% (F25-BG), respectively. While the effect on physical and chemical properties has already been characterized, the biological properties require further studies. This study investigates the effects of fluoride-supplemented BGs on the osteogenic and angiogenic properties of human bone marrow mesenchymal stromal cells (BMSCs) in vitro. Method. BMSCs were co-cultured with melt-derived 45S5-BG, F5-BG, or F25-BG in ascending concentrations (1, 2 and 3 mg/ml). At 7 days, cell number was determined by 4,6-diamidine-2-phenylindole (DAPI) staining and cell viability by fluorescein diacetate (FDA) assay. The osteogenic potential of the BGs was evaluated through alkaline phosphatase (ALP) gene expression and activity, along with bone morphogenetic protein-2 (BMP2) gene expression and protein concentration. Vascular endothelial growth factor (VEGF) gene expression and protein concentration assessed angiogenic potential. As control, BMSCs were cultured without BG exposure. Result. All BGs significantly promoted cell number and viability, with F25-BG showing the highest count at 3 mg/ml. Osteogenic markers showed a significant decrease in ALP gene expression and activity, especially at higher concentrations. All BG groups demonstrated increased BMP2 protein concentration and gene expression compared to the control, with higher BG and fluoride concentrations correlating with greater increases in BMP2. VEGF gene expression increased in all analysed BGs. The fluoride-free BG group had the highest VEGF protein concentrations, while the F25 BG group showed the highest VEGF gene expression. Conclusion. The fluoride-substituted BGs exhibit excellent cytocompatibility, enhance BMSC proliferation and positively affect BMP2 gene expression and levels, suggesting their potential for osteogenic differentiation. Further research is necessary to assess their proangiogenic effect and potential advantages over 45S5-BG


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_18 | Pages 77 - 77
14 Nov 2024
Zevgolis D
Full Access

Introduction. Bereft of their optimal tissue context, cells lose their phenotype, function and therapeutic potential during in vitro culture. Despite the fact that in vivo cells are exposed simultaneously to multiple signals, traditional ex vivo cultures are monofactorial. With these in mind, herein we assessed the combined effect of surface topography, substrate rigidity, collagen type I coating and macromolecular crowding in human tenocyte, skin fibroblast and bone marrow mesenchymal stromal cell cultures. Methods. Thermal imprinted was used to pattern (groove depth: 2,000 nm, groove width: 2,000 nm, line width: 2,000 nm) polydimethylsiloxane substrates of different rigidity (50 kPa, 130 kPa, 1,000 kPa). Grooved and planar substrates were subsequently coated with collagen type I and used to culture the aforementioned cell populations without and with macromolecular crowding (100 μg/ml carrageenan). After 3, 7 and 14 days in culture, cell morphology, viability, metabolic activity, proliferation, protein synthesis and deposition and gene expression analyses were conducted. Results. None of the variables assessed affected cell viability, metabolic activity and proliferation. Surface topography was found to be a potent regulator of cell morphology. Macromolecular crowding significantly increased extracellular matrix deposition, albeit in globular manner independently on whether grooved or planar substrates were used, possibly due to the low dimensionality of the grooves. Gene expression analysis made apparent that the 130 kPa and the 1,000 kPa grooved substrates under macromolecular crowding conditions maintained human tenocyte phenotype and directed human bone marrow mesenchymal stromal cells towards tendon-like lineage, respectively. None of the conditions assessed dramatically affected human skin fibroblast fate. Conclusions. Collectively, our data indicate that the physicochemical in vitro microenvironment modulators assessed herein are capable of maintaining human tenocyte phenotype and differentiating human bone marrow mesenchymal stromal cells towards tenogenic lineage, but not in trans-differentiating human skin fibroblasts


Bone & Joint Research
Vol. 13, Issue 10 | Pages 559 - 572
8 Oct 2024
Wu W Zhao Z Wang Y Liu M Zhu G Li L

Aims

This study aimed to demonstrate the promoting effect of elastic fixation on fracture, and further explore its mechanism at the gene and protein expression levels.

Methods

A closed tibial fracture model was established using 12 male Japanese white rabbits, and divided into elastic and stiff fixation groups based on different fixation methods. Two weeks after the operation, a radiograph and pathological examination of callus tissue were used to evaluate fracture healing. Then, the differentially expressed proteins (DEPs) were examined in the callus using proteomics. Finally, in vitro cell experiments were conducted to investigate hub proteins involved in this process.


Bone & Joint Research
Vol. 13, Issue 7 | Pages 332 - 341
5 Jul 2024
Wang T Yang C Li G Wang Y Ji B Chen Y Zhou H Cao L

Aims

Although low-intensity pulsed ultrasound (LIPUS) combined with disinfectants has been shown to effectively eliminate portions of biofilm in vitro, its efficacy in vivo remains uncertain. Our objective was to assess the antibiofilm potential and safety of LIPUS combined with 0.35% povidone-iodine (PI) in a rat debridement, antibiotics, and implant retention (DAIR) model of periprosthetic joint infection (PJI).

Methods

A total of 56 male Sprague-Dawley rats were established in acute PJI models by intra-articular injection of bacteria. The rats were divided into four groups: a Control group, a 0.35% PI group, a LIPUS and saline group, and a LIPUS and 0.35% PI group. All rats underwent DAIR, except for Control, which underwent a sham procedure. General status, serum biochemical markers, weightbearing analysis, radiographs, micro-CT analysis, scanning electron microscopy of the prostheses, microbiological analysis, macroscope, and histopathology evaluation were performed 14 days after DAIR.


Aims

In this investigation, we administered oxidative stress to nucleus pulposus cells (NPCs), recognized DNA-damage-inducible transcript 4 (DDIT4) as a component in intervertebral disc degeneration (IVDD), and devised a hydrogel capable of conveying small interfering RNA (siRNA) to IVDD.

Methods

An in vitro model for oxidative stress-induced injury in NPCs was developed to elucidate the mechanisms underlying the upregulation of DDIT4 expression, activation of the reactive oxygen species (ROS)-thioredoxin-interacting protein (TXNIP)-NLRP3 signalling pathway, and nucleus pulposus pyroptosis. Furthermore, the mechanism of action of small interfering DDIT4 (siDDIT4) on NPCs in vitro was validated. A triplex hydrogel named siDDIT4@G5-P-HA was created by adsorbing siDDIT4 onto fifth-generation polyamidoamine (PAMAM) dendrimer using van der Waals interactions, and then coating it with hyaluronic acid (HA). In addition, we established a rat puncture IVDD model to decipher the hydrogel’s mechanism in IVDD.


Bone & Joint Research
Vol. 13, Issue 4 | Pages 157 - 168
4 Apr 2024
Lin M Chen G Yu H Hsu P Lee C Cheng C Wu S Pan B Su B

Aims. Osteosarcoma is the most common primary bone malignancy among children and adolescents. We investigated whether benzamil, an amiloride analogue and sodium-calcium exchange blocker, may exhibit therapeutic potential for osteosarcoma in vitro. Methods. MG63 and U2OS cells were treated with benzamil for 24 hours. Cell viability was evaluated with the MTS/PMS assay, colony formation assay, and flow cytometry (forward/side scatter). Chromosome condensation, the terminal deoxynucleotidyl transferase dUTP nick end labelling (TUNEL) assay, cleavage of poly-ADP ribose polymerase (PARP) and caspase-7, and FITC annexin V/PI double staining were monitored as indicators of apoptosis. Intracellular calcium was detected by flow cytometry with Fluo-4 AM. The phosphorylation and activation of focal adhesion kinase (FAK) and signal transducer and activator of transcription 3 (STAT3) were measured by western blot. The expression levels of X-linked inhibitor of apoptosis protein (XIAP), B-cell lymphoma 2 (Bcl-2), B-cell lymphoma-extra large (Bcl-xL), SOD1, and SOD2 were also assessed by western blot. Mitochondrial status was assessed with tetramethylrhodamine, ethyl ester (TMRE), and intracellular adenosine triphosphate (ATP) was measured with BioTracker ATP-Red Live Cell Dye. Total cellular integrin levels were evaluated by western blot, and the expression of cell surface integrins was assessed using fluorescent-labelled antibodies and flow cytometry. Results. Benzamil suppressed growth of osteosarcoma cells by inducing apoptosis. Benzamil reduced the expression of cell surface integrins α5, αV, and β1 in MG63 cells, while it only reduced the expression of αV in U2OS cells. Benzamil suppressed the phosphorylation and activation of FAK and STAT3. In addition, mitochondrial function and ATP production were compromised by benzamil. The levels of anti-apoptotic proteins XIAP, Bcl-2, and Bcl-xL were reduced by benzamil. Correspondingly, benzamil potentiated cisplatin- and methotrexate-induced apoptosis in osteosarcoma cells. Conclusion. Benzamil exerts anti-osteosarcoma activity by inducing apoptosis. In terms of mechanism, benzamil appears to inhibit integrin/FAK/STAT3 signalling, which triggers mitochondrial dysfunction and ATP depletion. Cite this article: Bone Joint Res 2024;13(4):157–168


Bone & Joint Research
Vol. 13, Issue 3 | Pages 110 - 123
7 Mar 2024
Xu J Ruan Z Guo Z Hou L Wang G Zheng Z Zhang X Liu H Sun K Guo F

Aims

Osteoarthritis (OA) is the most common chronic pathema of human joints. The pathogenesis is complex, involving physiological and mechanical factors. In previous studies, we found that ferroptosis is intimately related to OA, while the role of Sat1 in chondrocyte ferroptosis and OA, as well as the underlying mechanism, remains unclear.

Methods

In this study, interleukin-1β (IL-1β) was used to simulate inflammation and Erastin was used to simulate ferroptosis in vitro. We used small interfering RNA (siRNA) to knock down the spermidine/spermine N1-acetyltransferase 1 (Sat1) and arachidonate 15-lipoxygenase (Alox15), and examined damage-associated events including inflammation, ferroptosis, and oxidative stress of chondrocytes. In addition, a destabilization of the medial meniscus (DMM) mouse model of OA induced by surgery was established to investigate the role of Sat1 inhibition in OA progression.


Bone & Joint Research
Vol. 13, Issue 3 | Pages 91 - 100
1 Mar 2024
Yamamoto Y Fukui T Sawauchi K Yoshikawa R Takase K Kumabe Y Maruo A Niikura T Kuroda R Oe K

Aims. Continuous local antibiotic perfusion (CLAP) has recently attracted attention as a new drug delivery system for orthopaedic infections. CLAP is a direct continuous infusion of high-concentration gentamicin (1,200 μg/ml) into the bone marrow. As it is a new system, its influence on the bone marrow is unknown. This study aimed to examine the effects of high-concentration antibiotics on human bone tissue-derived cells. Methods. Cells were isolated from the bone tissue grafts collected from six patients using the Reamer-Irrigator-Aspirator system, and exposed to different gentamicin concentrations. Live cells rate, apoptosis rate, alkaline phosphatase (ALP) activity, expression of osteoblast-related genes, mineralization potential, and restoration of cell viability and ALP activity were examined by in vitro studies. Results. The live cells rate (the ratio of total number of cells in the well plate to the absorbance-measured number of live cells) was significantly decreased at ≥ 500 μg/ml of gentamicin on day 14; apoptosis rate was significantly increased at ≥ 750 μg/ml, and ALP activity was significantly decreased at ≥ 750 μg/ml. Real-time reverse transcription-polymerase chain reaction results showed no significant decrease in the ALP and activating transcription factor 4 transcript levels at ≥ 1,000 μg/ml on day 7. Mineralization potential was significantly decreased at all concentrations. Restoration of cell viability was significantly decreased at 750 and 1,000 μg/ml on day 21 and at 500 μg/ml on day 28, and ALP activity was significantly decreased at 500 μg/ml on day 28. Conclusion. Our findings suggest that the exposure concentration and duration of antibiotic administration during CLAP could affect cell functions. However, further in vivo studies are needed to determine the optimal dose in a clinical setting. Cite this article: Bone Joint Res 2024;13(3):91–100


Bone & Joint Research
Vol. 13, Issue 2 | Pages 52 - 65
1 Feb 2024
Yao C Sun J Luo W Chen H Chen T Chen C Zhang B Zhang Y

Aims

To investigate the effects of senescent osteocytes on bone homeostasis in the progress of age-related osteoporosis and explore the underlying mechanism.

Methods

In a series of in vitro experiments, we used tert-Butyl hydroperoxide (TBHP) to induce senescence of MLO-Y4 cells successfully, and collected conditioned medium (CM) and senescent MLO-Y4 cell-derived exosomes, which were then applied to MC3T3-E1 cells, separately, to evaluate their effects on osteogenic differentiation. Furthermore, we identified differentially expressed microRNAs (miRNAs) between exosomes from senescent and normal MLO-Y4 cells by high-throughput RNA sequencing. Based on the key miRNAs that were discovered, the underlying mechanism by which senescent osteocytes regulate osteogenic differentiation was explored. Lastly, in the in vivo experiments, the effects of senescent MLO-Y4 cell-derived exosomes on age-related bone loss were evaluated in male SAMP6 mice, which excluded the effects of oestrogen, and the underlying mechanism was confirmed.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 40 - 51
11 Jan 2024
Lin J Suo J Bao B Wei H Gao T Zhu H Zheng X

Aims

To investigate the efficacy of ethylenediaminetetraacetic acid-normal saline (EDTA-NS) in dispersing biofilms and reducing bacterial infections.

Methods

EDTA-NS solutions were irrigated at different durations (1, 5, 10, and 30 minutes) and concentrations (1, 2, 5, 10, and 50 mM) to disrupt Staphylococcus aureus biofilms on Matrigel-coated glass and two materials widely used in orthopaedic implants (Ti-6Al-4V and highly cross-linked polyethylene (HXLPE)). To assess the efficacy of biofilm dispersion, crystal violet staining biofilm assay and colony counting after sonification and culturing were performed. The results were further confirmed and visualized by confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). We then investigated the efficacies of EDTA-NS irrigation in vivo in rat and pig models of biofilm-associated infection.


Bone & Joint Research
Vol. 13, Issue 1 | Pages 28 - 39
10 Jan 2024
Toya M Kushioka J Shen H Utsunomiya T Hirata H Tsubosaka M Gao Q Chow SK Zhang N Goodman SB

Aims

Transcription factor nuclear factor kappa B (NF-κB) plays a major role in the pathogenesis of chronic inflammatory diseases in all organ systems. Despite its importance, NF-κB targeted drug therapy to mitigate chronic inflammation has had limited success in preclinical studies. We hypothesized that sex differences affect the response to NF-κB treatment during chronic inflammation in bone. This study investigated the therapeutic effects of NF-κB decoy oligodeoxynucleotides (ODN) during chronic inflammation in male and female mice.

Methods

We used a murine model of chronic inflammation induced by continuous intramedullary delivery of lipopolysaccharide-contaminated polyethylene particles (cPE) using an osmotic pump. Specimens were evaluated using micro-CT and histomorphometric analyses. Sex-specific osteogenic and osteoclastic differentiation potentials were also investigated in vitro, including alkaline phosphatase, Alizarin Red, tartrate-resistant acid phosphatase staining, and gene expression using reverse transcription polymerase chain reaction (RT-PCR).


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 51 - 51
2 Jan 2024
Grad S
Full Access

Mechanical loading is important to maintain the homeostasis of the intervertebral disc (IVD) under physiological conditions but can also accelerate cell death and tissue breakdown in a degenerative state. Bioreactor loaded whole organ cultures are instrumental for investigating the effects of the mechanical environment on the IVD integrity and for preclinical testing of new therapies under simulated physiological conditions. Thereby the loading parameters that determine the beneficial or detrimental reactions largely depend on the IVD model and its preparation. Within this symposium we are discussing the use of bovine caudal IVD culture models to reproduce tissue inflammation or matrix degradation with or without bioreactor controlled mechanical loading. Furthermore, the outcome parameters that define the degenerative state of the whole IVD model will be outlined. Besides the disc height, matrix integrity, cell viability and phenotype expression, the tissue secretome can provide indications about potential interactions of the IVD with other cell types such as neurons. Finally, a novel multiaxial bioreactor setup capable of mimicking the six degrees-of-freedom loading environment of IVDs will be introduced that further advances the relevance of preclinical ex-vivo testing


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_2 | Pages 136 - 136
2 Jan 2024
Manferdini C Gabusi E Dolzani P Trucco D Lenzi E D'Atri G Vannozzi L Cafarelli A Ricotti L Lisignoli G
Full Access

In cartilage tissue engineering (TE),new solutions are needed to effectively drive chondrogenic differentiation of mesenchymal stromal cells in both normal and inflammatory milieu. Ultrasound waves represent an interesting tool to facilitate chondrogenesis. In particular, low intensity pulsed ultrasound (LIPUS)has been shown to regulate the differentiation of adipose mesenchymal stromal cells. Hydrogels are promising biomaterials capable of encapsulating MSCs by providing an instructive biomimetic environment, graphene oxide (GO) has emerged as a promising nanomaterial for cartilage TE due to its chondroinductive properties when embedded in polymeric formulations, and piezoelectric nanomaterials, such as barium titanate nanoparticles (BTNPs),can be exploited as nanoscale transducers capable of inducing cell growth/differentiation. The aim of this study was to investigate the effect of dose-controlled LIPUS in counteracting inflammation and positively committing chondrogenesis of ASCs embedded in a 3D piezoelectric hydrogel. ASCs at 2*10. 6. cells/mL were embedded in a 3D VitroGel RGD. ®. hydrogel without nanoparticles (Control) or doped with 25 µg/ml of GO nanoflakes and 50 µg/ml BTNPs.The hydrogels were exposed to basal or inflammatory milieu (+IL1β 10ng/ml)and then to LIPUS stimulation every 2 days for 10 days of culture. Hydrogels were chondrogenic differentiated and analyzed after 2,10 and 28 days. At each time point cell viability, cytotoxicity, gene expression and immunohistochemistry (COL2, aggrecan, SOX9, COL1)and inflammatory cytokines were evaluated. Ultrasound stimulation significantly induced chondrogenic differentiation of ASCs loaded into 3D piezoelectric hydrogels under basal conditions: COL2, aggrecan and SOX9 were significantly overexpressed, while the fibrotic marker COL1 decreased compared to control samples. LIPUS also has potent anti-inflammatory effects by reducing IL6 and IL8 and maintaining its ability to boost chondrogenesis. These results suggest that the combination of LIPUS and piezoelectric hydrogels promotes the differentiation of ASCs encapsulated in a 3D hydrogel by reducing the inflammatory milieu, thus representing a promising tool in the field of cartilage TE. Acknowledgements: This work received funding from the European Union's Horizon 2020 research and innovation program, grant agreement No 814413, project ADMAIORA (AdvanceD nanocomposite MAterIals for in situ treatment and ultRAsound-mediated management of osteoarthritis)


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 40 - 40
2 Jan 2024
Lin J Chen P Tan ZJ Sun Y Tam W Ao D Shen W Leung V Cheung KMC To M
Full Access

Silver nanoparticles (AgNPs) possess anti-inflammatory activities and have been widely deployed for promoting tissue repair. Here we explored the efficacy of AgNPs on functional recovery after spinal cord injury (SCI). Our data indicated that, in a SCI rat model, local AgNPs delivery could significantly recover locomotor function and exert neuroprotection through reducing of pro-inflammatory M1 survival. Furthermore, in comparison with Raw 264.7-derived M0 and M2, a higher level of AgNPs uptake and more pronounced cytotoxicity were detected in M1. RNA-seq analysis revealed the apoptotic genes in M1 were upregulated by AgNPs, whereas in M0 and M2, pro-apoptotic genes were downregulated and PI3k-Akt pathway signaling pathway was upregulated. Moreover, AgNPs treatment preferentially reduced cell viability of human monocyte-derived M1 comparing to M2, supporting its effect on M1 in human. Overall, our findings reveal AgNPs could suppress M1 activity and imply its therapeutic potential in promoting post-SCI motor recovery


Orthopaedic Proceedings
Vol. 106-B, Issue SUPP_1 | Pages 61 - 61
2 Jan 2024
Graziani G
Full Access

Functionalization of biomimetic nanomaterials allows to reproduce the composition of native bone, permitting better regeneration, while nanoscale surface morphologies provide cues for cell adhesion, proliferation and differentiation. Functionalization of 3D printed and bioprinted constructs, by plasma-assisted deposition of calcium phosphates-based (CaP) nanostructured coatings and by nanoparticles, respectively, will be presented. Stoichiometric and ion doped CaP- based nanocoatings, including green materials (mussel seashells and cuttlefish bone), will be introduced to guide tissue regeneration. We will show interactions between biomimetic surfaces and MSCs to address bone regeneration and SAOS-2 cells for bone tumor models. Our results show that combining AM and nanostructured biomimetic films permits to reproduce the architecture and the mechanical and compositional characteristics of bone. Stability behavior of the coatings, as well as MSCs behavior strongly depend on the starting CaP material, with more soluble CaPs and ion-doped ones showing better biological behavior. Green materials appear promising, as biomimetic films can be successfully obtained upon conversion of the marine precursors into hydroxyapatite. Last-not-least, nanoparticles-loaded scaffolds could be bioprinting without loss of cell viability, but ink characteristics depend on ion-doping as demonstrated for SAOS-2 cells over 14 days of culture. Biomimetic nanomaterials for functionalization in AM is a promising approach for bone modelling and regeneration