Advertisement for orthosearch.org.uk
Results 1 - 8 of 8
Results per page:
Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 89 - 89
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students.

A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group.

50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356).

In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts.


Orthopaedic Proceedings
Vol. 104-B, Issue SUPP_12 | Pages 9 - 9
1 Dec 2022
Koucheki R Lex J Morozova A Ferri D Hauer T Mirzaie S Ferguson P Ballyk B
Full Access

Novel immersive virtual reality (IVR) technologies are revolutionizing medical education. Virtual anatomy education using head-mounted displays allows users to interact with virtual anatomical objects, move within the virtual rooms, and interact with other virtual users. While IVR has been shown to be more effective than textbook learning and 3D computer models presented in 2D screens, the effectiveness of IVR compared to cadaveric models in anatomy education is currently unknown. In this study, we aim to compare the effectiveness of IVR with direct cadaveric bone models in teaching upper and lower limb anatomy for first-year medical students.

A randomized, double-blind crossover non-inferiority trial was conducted. Participants were first-year medical students from a single University. Exclusion criteria included students who undertook prior undergraduate or graduate degrees in anatomy. In the first stage of the study, students were randomized in a 1:1 ratio to IVR or cadaveric bone groups studying upper limb skeletal anatomy. All students were then crossed over and used cadaveric bone or IVR to study lower limb skeletal anatomy. All students in both groups completed a pre-and post-intervention knowledge test. The educational content was based on the University of Toronto Medical Anatomy Curriculum. The Oculus Quest 2 Headsets (Meta Technologies) and PrecisionOS Anatomy application (PrecisionOS Technology) were utilized for the virtual reality component. The primary endpoint of the study was student performance on the pre-and post-intervention knowledge tests. We hypothesized that student performance in the IVR groups would be comparable to the cadaveric bone group.

50 first-year medical students met inclusion criteria and were computer randomized (1:1 ratio) to IVR and cadaveric bone group for upper limb skeletal anatomy education. Forty-six students attended the study, 21 completed the upper limb modules, and 19 completed the lower limb modules. Among all students, average score on the pre-intervention knowledge test was 14.6% (Standard Deviation (SD)=18.2%) and 25.0% (SD=17%) for upper and lower limbs, respectively. Percentage increase in students’ scores between pre-and post-intervention knowledge test, in the upper limb for IVR, was 15 % and 16.7% for cadaveric bones (p = 0. 2861), and for the lower limb score increase was 22.6% in the IVR and 22.5% in the cadaveric bone group (p = 0.9356).

In this non-inferiority crossover randomized controlled trial, we found no significant difference between student performance in knowledge tests after using IVR or cadaveric bones. Immersive virtual reality and cadaveric bones were equally effective in skeletal anatomy education. Going forward, with advances in VR technologies and anatomy applications, we can expect to see further improvements in the effectiveness of these technologies in anatomy and surgical education. These findings have implications for medical schools having challenges in acquiring cadavers and cadaveric parts.


Bone & Joint Research
Vol. 5, Issue 6 | Pages 269 - 275
1 Jun 2016
Ono Y Woodmass JM Nelson AA Boorman RS Thornton GM Lo IKY

Objectives

This study evaluated the mechanical performance, under low-load cyclic loading, of two different knotless suture anchor designs: sutures completely internal to the anchor body (SpeedScrew) and sutures external to the anchor body and adjacent to bone (MultiFIX P).

Methods

Using standard suture loops pulled in-line with the rotator cuff (approximately 60°), anchors were tested in cadaveric bone and foam blocks representing normal to osteopenic bone. Mechanical testing included preloading to 10 N and cyclic loading for 500 cycles from 10 N to 60 N at 60 mm/min. The parameters evaluated were initial displacement, cyclic displacement and number of cycles and load at 3 mm displacement relative to preload. Video recording throughout testing documented the predominant source of suture displacement and the distance of ‘suture cutting through bone’.


The Bone & Joint Journal
Vol. 98-B, Issue 1_Supple_A | Pages 6 - 9
1 Jan 2016
Fillingham Y Jacobs J

The continual cycle of bone formation and resorption is carried out by osteoblasts, osteocytes, and osteoclasts under the direction of the bone-signaling pathway. In certain situations the host cycle of bone repair is insufficient and requires the assistance of bone grafts and their substitutes. The fundamental properties of a bone graft are osteoconduction, osteoinduction, osteogenesis, and structural support. Options for bone grafting include autogenous and allograft bone and the various isolated or combined substitutes of calcium sulphate, calcium phosphate, tricalcium phosphate, and coralline hydroxyapatite. Not all bone grafts will have the same properties. As a result, understanding the requirements of the clinical situation and specific properties of the various types of bone grafts is necessary to identify the ideal graft. We present a review of the bone repair process and properties of bone grafts and their substitutes to help guide the clinician in the decision making process.

Cite this article: Bone Joint J 2016;98-B(1 Suppl A):6–9.


Bone & Joint Research
Vol. 2, Issue 5 | Pages 79 - 83
1 May 2013
Goffin JM Pankaj P Simpson AHRW Seil R Gerich TG

Objectives

Because of the contradictory body of evidence related to the potential benefits of helical blades in trochanteric fracture fixation, we studied the effect of bone compaction resulting from the insertion of a proximal femoral nail anti-rotation (PFNA).

Methods

We developed a subject-specific computational model of a trochanteric fracture (31-A2 in the AO classification) with lack of medial support and varied the bone density to account for variability in bone properties among hip fracture patients.


Orthopaedic Proceedings
Vol. 88-B, Issue SUPP_III | Pages 414 - 414
1 Oct 2006
Kakarala G Toms A Chue L Kuiper JH
Full Access

Introduction: Bio mechanical tests under realistic loading conditions of prostheses in bone can help to improve the design of joint implants. Cadaveric bones are most realistic but highly variable and difficult to obtain and conventional bone models have been used so far. Stereo lithography (SLA) techniques are used in industry to generate 3-D rapid prototypes. These techniques could serve to produce bones with complex geometries, but the material used is less stiff than cortical bone. Aim: The purpose of the study was to answer the following two questions? 1. Does stability of and cortical strains around implants in SLA-made bones matched those of conventional artificial bones? 2. Whether increasing cortical wall thickness brings these variables closer?. Methods: Four artificial cortical shells of proximal tibiae were made from resin (SL5170, 3D systems Europe Ltd., Hemel Hempstead, UK) using SLA process. Two third generation large composite tibiae #3302 (Sawbones Europe AB, Malmö, Sweden) were chosen and the polyurethane foam that represents the cancellous bone was removed. All six cortices were filled with polyurethane foam (Tripor 224, ABL (STEVENS), Cheshire, UK) with an average compressive modulus of 53.9±7.2 SD MPa. The tibiae were prepared to receive a standard size cemented tibial tray for all models. The models were loaded with 100 cycles of 2000 N at 1 Hz along the longitudinal axis, separately on the lateral and on the medial condyle. Medial cortical strain and tray migration during load was determined. Results: Cyclic loading gave a general pattern of cyclic movements, superimposed on a very small permanent movement. The first cycle gave most permanent displacement, after which further migration occurred at a decreasing rate. Permanent and cyclic migration of all four trays implanted in SLA-made tibiae fell within the range of those implanted in conventionally available tibiae. Strains at the proximal medial cortex were low and on the same order for all six tibiae. Strains more distally were approximately inversely proportional to the material stiffness and cortical thickness of the tibiae. Conclusion: The study concludes that migration of tibial trays in all SLA models was with in the range of those in conventional models. Hence these models can be used to test early mechanical stability of joint implants despite their lower stiffness. The small difference may be related to load bearing mechanism of tibial trays which is largely through cancellous bone and not cortical bone. The low strains at the proximal cortex in this study also suggest that the cortex carried little direct load. The polyurethane foam representing cancellous bone in our study was identical for each tibia, which may explain that movements of the trays were comparable. Distal cortical strains reflected the stiffness of the tibiae and were directly influenced by cortical thickness


The Journal of Bone & Joint Surgery British Volume
Vol. 46-B, Issue 3 | Pages 398 - 403
1 Aug 1964
Williams G

1. Fifteen cases of bone transplantation for fibrous union of fractures of long bones are described, using boiled minced cancellous bone from cadavers. One transplant became infected but the infection responded to treatment.

2. In one patient with non-union of the shaft of the humerus, bony union was not obtained, but a good functional result obviated further treatment.

3. It is suggested that this relatively simple method of bone transplantation could be used more widely if its potentialities were appreciated more fully.


The Journal of Bone & Joint Surgery British Volume
Vol. 34-B, Issue 3 | Pages 428 - 432
1 Aug 1952
Lloyd-Roberts GC