Advertisement for orthosearch.org.uk
Results 1 - 20 of 20
Results per page:
Bone & Joint Research
Vol. 13, Issue 4 | Pages 137 - 148
1 Apr 2024
Lu Y Ho T Huang C Yeh S Chen S Tsao Y

Aims

Pigment epithelium-derived factor (PEDF) is known to induce several types of tissue regeneration by activating tissue-specific stem cells. Here, we investigated the therapeutic potential of PEDF 29-mer peptide in the damaged articular cartilage (AC) in rat osteoarthritis (OA).

Methods

Mesenchymal stem/stromal cells (MSCs) were isolated from rat bone marrow (BM) and used to evaluate the impact of 29-mer on chondrogenic differentiation of BM-MSCs in culture. Knee OA was induced in rats by a single intra-articular injection of monosodium iodoacetate (MIA) in the right knees (set to day 0). The 29-mer dissolved in 5% hyaluronic acid (HA) was intra-articularly injected into right knees at day 8 and 12 after MIA injection. Subsequently, the therapeutic effect of the 29-mer/HA on OA was evaluated by the Osteoarthritis Research Society International (OARSI) histopathological scoring system and changes in hind paw weight distribution, respectively. The regeneration of chondrocytes in damaged AC was detected by dual-immunostaining of 5-bromo-2'-deoxyuridine (BrdU) and chondrogenic markers.


Bone & Joint Research
Vol. 11, Issue 2 | Pages 49 - 60
1 Feb 2022
Li J Wong RMY Chung YL Leung SSY Chow SK Ip M Cheung W

Aims

With the ageing population, fragility fractures have become one of the most common conditions. The objective of this study was to investigate whether microbiological outcomes and fracture-healing in osteoporotic bone is worse than normal bone with fracture-related infection (FRI).

Methods

A total of 120 six-month-old Sprague-Dawley (SD) rats were randomized to six groups: Sham, sham + infection (Sham-Inf), sham with infection + antibiotics (Sham-Inf-A), ovariectomized (OVX), OVX + infection (OVX-Inf), and OVX + infection + antibiotics (OVX-Inf-A). Open femoral diaphysis fractures with Kirschner wire fixation were performed. Staphylococcus aureus at 4 × 104 colony-forming units (CFU)/ml was inoculated. Rats were euthanized at four and eight weeks post-surgery. Radiography, micro-CT, haematoxylin-eosin, mechanical testing, immunohistochemistry (IHC), gram staining, agar plating, crystal violet staining, and scanning electron microscopy were performed.


Bone & Joint Research
Vol. 10, Issue 7 | Pages 437 - 444
27 Jul 2021
Yan F Feng J Yang L Shi C

Aims. The aim of our study is to investigate the effect induced by alternated mechanical loading on Notch-1 in mandibular condylar cartilage (MCC) of growing rabbits. Methods. A total of 64 ten-day-old rabbits were randomly divided into two groups according to dietary hardness: normal diet group (pellet) and soft diet group (powder). In each group, the rabbits were further divided into four subgroups by feeding time: two weeks, four weeks, six weeks, and eight weeks. Animals would be injected 5-bromo-2′-deoxyuridine (BrdU) every day for one week before sacrificing. Histomorphometric analysis of MCC thickness was performed through haematoxylin and eosin (HE) staining. Immunochemical analysis was done to test BrdU and Notch-1. The quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure expression of Notch-1, Jagged-1, and Delta-like 1 (Dll-1). Results. The thickness of MCC in the soft diet group was thinner than the one in normal diet group. Notch-1 was restricted in fibrous layer, proliferative layer, and hypertrophic layer. The expression of Notch-1 increased from two weeks to six weeks and then fell down. Notch-1 in normal diet group was higher than that in soft diet group in anterior part of MCC. The statistical differences of Notch-1 were shown at two, four, and six weeks (p < 0.05). The result of western blot and quantitative real-time PCR (qRT-PCR) showed the expression of Dll-1 and Jagged-1 rose from two to four weeks and started to decrease at four weeks. BrdU distributed in all layers of cartilage and subchondral bone. The number of BrdU-positive cells, which were less in soft diet group, was decreasing along with the experiment period. The significant difference was found at four, six, and eight weeks in anterior and posterior parts (p < 0.05). Conclusion. The structure and proliferation of MCC in rabbits were sensitive to dietary loading changes. The proper mechanical loading was essential for transduction of Notch signalling pathway and development of mandibular condylar cartilage. Cite this article: Bone Joint Res 2021;10(7):437–444


Bone & Joint Research
Vol. 10, Issue 1 | Pages 10 - 21
1 Jan 2021
Zong Z Zhang X Yang Z Yuan W Huang J Lin W Chen T Yu J Chen J Cui L Li G Wei B Lin S

Aims

Ageing-related incompetence becomes a major hurdle for the clinical translation of adult stem cells in the treatment of osteoarthritis (OA). This study aims to investigate the effect of stepwise preconditioning on cellular behaviours in human mesenchymal stem cells (hMSCs) from ageing patients, and to verify their therapeutic effect in an OA animal model.

Methods

Mesenchymal stem cells (MSCs) were isolated from ageing patients and preconditioned with chondrogenic differentiation medium, followed by normal growth medium. Cellular assays including Bromodeoxyuridine / 5-bromo-2'-deoxyuridine (BrdU), quantitative polymerase chain reaction (q-PCR), β-Gal, Rosette forming, and histological staining were compared in the manipulated human mesenchymal stem cells (hM-MSCs) and their controls. The anterior cruciate ligament transection (ACLT) rabbit models were locally injected with two millions, four millions, or eight millions of hM-MSCs or phosphate-buffered saline (PBS). Osteoarthritis Research Society International (OARSI) scoring was performed to measure the pathological changes in the affected joints after staining. Micro-CT analysis was conducted to determine the microstructural changes in subchondral bone.


Orthopaedic Proceedings
Vol. 99-B, Issue SUPP_2 | Pages 14 - 14
1 Jan 2017
Lin D Alberton P Volkmer E Docheva D
Full Access

Previous studies have shown that Tnmd is important for tendon maturation and has key implications for the residing tendon stem/progenitor cells. The putative signaling in which Tnmd participates is just starting to be better understood (Dex et al. 2016). However, its exact functions during tendon healing process still remain elusive. Therefore, the aims of this study were to perform systematic review of the literature on Tnmd-related research and to investigate the role of Tnmd in early tendon healing by applying a tendon rupture model in Tnmd-deficient mice. First, we searched in the PubMed database for articles containing “tenomodulin” or its alternative names and abbreviations. After exclusion of papers only available in abstract form and foreign language, we grouped the remaining 128 full-text publications into four study types: 1) looking into functions of Tnmd; 2) using Tnmd as a tendon marker; 3) correlating Tnmd mutations to a variety of diseases; and 4) reviews. Following literature analysis, we carried out a pilot Achilles tendon injury model with Tnmd-knockout (KO) mouse strain. Adult Tnmd-KO (n = 8) and wild-type (WT) (n = 8) mice underwent unilateral surgery of Achilles tendon based on Palmes et al. 2002 and were compared at day 8 postoperatively by: 1) H&E staining for overall assessment; 2) immunohistochemical BrdU analysis for cell proliferation; and 3) Safranin O staining for endochondral formation. Our literature screen revealed that Tnmd has been strongly justified as the best tendon and ligament marker in more than 90 different studies. Moreover, in vivo and in vitro investigations have demonstrated its positive role on tendon cell proliferation and tissue functions. Our follow up surgical study showed a very different scar organization in Tnmd-KO with a clearly reduced cell density. BrdU analysis confirmed a lower number of proliferating cells in Tnmd-KO scar area. Interestingly, endochondral formation was not observed in the scar tissues in either of the genotypes at day 8. Taken together, we systematically summarized the current knowledge on Tnmd gene and highlighted several future research perspectives. Lack of studies on the role of Tnmd in tissue healing, motivated our pilot investigation on Achilles tendon rupture, which in turn suggested that loss of Tnmd results in inferior repair process


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_20 | Pages 14 - 14
1 Nov 2016
Ma Y Dalmia S Gao P Young J Liu C You L
Full Access

Bone metastases are common and severe complications of cancers. It is estimated to occur in 65–75% of breast and prostate cancer patients and cause 80% of breast cancer-related deaths. Metastasised cancer cells have devastating impacts on bone due to their ability to alter bone remodeling by interacting with osteoblasts and osteoclasts. Exercise, often used as an intervention for cancer patients, regulates bone remodeling via osteocytes. Therefore, we hypothesise that bone mechanical loading may regulate bone metastases via osteocytes. This provides novel insights into the impact of exercises on bone metastases. It will assist in designing cancer intervention programs that lowers the risk for bone metastases. Investigating the mechanisms for the observed effects may also identify potential drug targets. MLO-Y4 osteocyte-like cells (gift of Dr. Bonewald, University of Missouri-Kansas City) on glass slides were placed in flow chambers and subjected to oscillatory fluid flow (1Pa; 1Hz; 2 hours). Media were extracted (conditioned media; CM) post-flow. RAW264.7 osteoclast precursors were conditioned in MLO-Y4 CM for 7 days. Migration of MDA-MB-231 breast cancer cells and PC3 prostate cancer cells towards CM was assayed using Transwell. Viability, apoptosis, and proliferation of the cancer cells in the CM were measured with Fixable Viability Dye eFluor 450, APOPercentage, and BrDu, respectively. P-values were calculated using Student's t-test. Significantly more MDA-MB-231 and PC3 cells migrated towards the CM from MLO-Y4 cells with exposure to flow in comparison to CM from MLO-Y4 cells not exposed to flow. The preferential migration is abolished with anti-VEGF antibodies. MDA-MB-231 cells apoptosis rate was slightly lower in CM from MLO-Y4 cells exposed to flow, while proliferation rate was slightly higher. The current data showed no difference in cancer cells viability and adhesion to collagen between any two groups. On the other hand, it was observed that less MDA-MB-231 cells migrated towards CM from RAW264.7 cells conditioned in CM from MLO-Y4 cells stimulated with flow in comparison to those conditioned in CM from MLO-Y4 cells not stimulated with flow. TRAP staining results confirmed that there were less differentiated osteoclasts when RAW264.7 cells were cultured in CM from MLO-Y4 cells exposed to flow. Overall, this study suggests that when only osteocytes and cancer cells are involved, osteocytes subjected to mechanical loading can promote metastases due to the increased secretion of VEGF. However, with the incorporation of osteoclasts, mechanical loading on osteocytes seems to reduce MDA-MB-231 cell migration. This is likely because osteocytes reduce osteoclastogenesis in response to mechanical stimulation, and osteoclasts have been shown to support cancer cells. Animal studies will also be conducted to verify the pro- or anti-metastatic effect of mechanical loading that is observed in the in vitro part of this study


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 3 - 3
1 Oct 2016
Lewis N Lewis E Dalby M Berry CC
Full Access

Hematopoietic stem cells (HSCs) reside within a specialised niche area in the bone marrow (BM). They have tremendous clinical relevance, although HSC expansion and culture ex vivo is not currently possible, reducing BM transplant success. This project expands a novel 3D MSC niche model developed in our lab to include HSCs. MSCs were loaded with green fluorescent magnetic iron oxide (FeO. 3. ) nanoparticles (200 nm diameter) at a concentration of 0.1 mg ml. −1. , and incubated for 30 min over a magnet to enhance cellular uptake. The cells were washed, detached and resuspended, then transferred to a plate with magnets above. Spheroids formed within hours and were implanted into 2 mg ml. −1. collagen gel. HSCs were loaded with nanoparticles via incubation with suspension, and then introduced to the gel containing the spheroid. Immunostaining, BrdU and Calcein/ ethidium homodimer viability assays were performed to characterise the cells. Cells in both monolayers and spheroids remain viable up to 7 days in culture. MSCs in monolayers and spheroids were stained with antibodies for: STRO-1, an MSC marker; SDF-1 (CXCL-12), a secreted HSC homing factor; and nestin, a marker for HSC-supportive MSCs in vitro. MSCs in spheroids retain a higher level of expression of all three for 7 days compared to MSCs in monolayers. BrdU assay results show that the MSCs are more quiescent in spheroids compared to monolayers. Proof of principle studies are promising for the success of the proposed niche model. MSCs express a higher level of MSC markers and retain quiescence when they are in spheroids as compared to monolayers. They also express a higher level of HSC niche factor SDF-1α, which facilitates HSC migration and retention


Orthopaedic Proceedings
Vol. 98-B, Issue SUPP_16 | Pages 22 - 22
1 Oct 2016
Ramakrishnan P Maclean M MacGregor SJ Anderson J Grant MH
Full Access

Healthcare associated infections (HAI) pose a major threat to patients admitted to hospitals, and infection rates following orthopaedic arthroplasty surgery are as high as 4%, while the infection rates are even higher after revision surgery. 405 nm High-Intensity Narrow Spectrum (HINS) light has been proven to reduce environmental contamination in hospital isolation rooms, and there is potential to develop this technology for application in orthopaedic surgery. Cultured rat osteoblasts were exposed to 405 nm light to investigate if bactericidal doses of light could be used safely in the presence of mammalian cells. Cell viability was measured by MTT reduction and microscopy techniques, function by alkaline phosphatase activity, and proliferation by the BrdU assay. Exposures of up to a dose of 36 J/cm. 2. had no significant effect on osteoblast cell viability, whilst exposure of a variety of clinically relevant bacteria, to 36 J/cm. 2. resulted in up to 100% kill. Exposure to a higher dose of 54 J/cm. 2. significantly affected the osteoblast cell viability, indicating dose dependency. Work also demonstrated that 405 nm light exposure induces reactive oxygen species (ROS) production in both mammalian and bacterial cells, as shown by fluorescence generated from 6-carboxy-2′,7′-dichlorodihydrofluorescein diacetate dye. The mammalian cells were significantly protected from dying at 54 J/cm. 2. by catalase, which detoxifies H. 2. O. 2. Bacterial cells were significantly protected by sodium pyruvate (H. 2. O. 2. scavenger) and by a combination of free radical scavengers (sodium pyruvate, dimethyl thiourea (·OH scavenger), catalase) at 162 and 324 J/cm. 2. Thus the cytotoxic mechanism of 405 nm light in mammalian cells and bacteria is likely oxidative stress involving predominantly H. 2. O. 2. generation, with other ROS contributing to the damage. Additional work describing the potential for incorporation of this antimicrobial light within operating theatre lighting systems will also be discussed, and this, coupled with the cell viability and cytotoxicity results, suggests that 405 nm light could have great potential for continual patient safe decontamination during orthopaedic replacement surgeries and thereby reduce the incidence of infections


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 264 - 264
1 Jul 2014
Kwan K Yeung K Cheung K To M
Full Access

Summary. Silver nanoparticles improve the tensile property of the repaired Achilles tendon by modulating the synthesis and deposition of collagen. This makes silver nanoparticles a potential drug for tendon healing process with less undesirable side effect. Introduction. Tendon injury is a common injury that usually takes a long time to fully recover and often lead to problems of joint stiffness and re-rupture due to tissue adhesions and scarring on the repaired tendon respectively. Recently, it has been proven that silver nanoparticles (AgNPs) are capable of regenerating skin tissue with minimal scarring and comparable tensile property to normal skin. Hence, it is hypothesised that AgNPs could also improve the healing in tendon injury as both tissues are predominating with fibroblasts. The objective of this study is to look at the in vitro response of primary tenocytes to AgNPs and to investigate the mechanical and histological outcome in vivo. Methods and Materials. Primary tenocytes were harvested from 4 weeks old Sprague Dawley rat. 1.5×10. 4. cells per cm. 2. were seeded in triplicate for BrdU incorporation assay and Sirius red/ fast green staining to study the proliferation and collagen synthesis respectively. In vivo rat Achilles tendon injury model was used to investigate the effect of AgNPs to tendon regeneration. Briefly, the Achilles tendon was transected at 0.5cm from its insertion. The wound was either treated with 1mM AgNPs every 5 days or left untreated as the control. Skin incision was done without transecting the tendon in the sham group. The tendons were harvested on day 42 post operation. Tensile test and immunohistological staining on 7μm cryosections were performed to assess the mechanical property and biological events in healing respectively. SHG imaging was used to determine the collagen fibre orientation and abundance. Results. In vitro BrdU incorporation and Sirius red fast green assay suggested that AgNPs promoted the proliferation and collagen synthesis of tenocytes between 1 to 20μM and 10 to 20μM respectively. Tensile test on in vivo tissue showed that AgNPs-treated samples had significantly better tensile modulus compared to the untreated ones (p<0.05). SHG imaging suggested a better collagen alignment and density in AgNPs-treated samples. Immunohistochemistry demonstrated that AgNPs suppressed tumor necrosis factor (TNF α) whilst promoted fibromodulin (Fmod) and proliferating cell nucleus antigen (PCNA) expression. Discussion. Collagen is the major component that contributes to the tensile strength of a tendon. Its thickness, abundance and alignment directly affect the strength. In this study, it is found that AgNPs stimulate cell proliferation both in vitro and in vivo which is believed to be the reason of the increase in collagen synthesis. Fmod is an important proteoglycan responsible for collagen fibrillogenesis and TNF α is related to ECM degradation which directly affects collagen integrity. Stimulation of Fmod and alleviation of TNF α therefore promote collagen maturity and integrity which attributes to the improvement in the tensile property of the regenerated tissue. Furthermore, inflammation is known to relate to fibrosis and scarring in healing of many types of tissue. It is therefore postulated that the anti-inflammatory effect of AgNPs is one of the major reasons for this phenomenal healing of tendon. To conclude, this study demonstrates a positive effect of AgNPs to the early events of tendon healing which is important for accelerating the whole healing process and shortening of rehabilitation time


Orthopaedic Proceedings
Vol. 96-B, Issue SUPP_11 | Pages 241 - 241
1 Jul 2014
McCarthy H Archer C
Full Access

Summary Statement. Extended expansion of cells derived from equine articular cartilage reveal maintenance of chondrogenic potency and no evidence of senescence up to 100 population doublings. The data suggests the reclassification of these cells from progenitor cells to stem cells. Introduction. One sign of ‘in vitro aging’ is the diminishing capacity for cell division. In contrast to embryonic stem cells that show no loss of proliferative potency, the maximal population doublings (PD) for mesenchymal stem cells (MSCs) in vitro is reported to be between 30 and 40 replications 1,2,3. We have isolated a population of chondroprogenitor cells from articular cartilage of several species, including equine4. These cells have demonstrated functional equivalence in their differentiation capacity when compared with MSCs but have the advantage of retaining the highly desirable stable (permanent) chondrocyte phenotype. In this study, we examined the age-related capacity of these cells for extended division and retention of potency. Methods. Chondroprogenitors were isolated from equine articular cartilage by adhesion onto fibronectin5. Cells were isolated from both skeletally immature (1 year-old) and mature animals (8 year-old). Clonal and polyclonal cell lines (at least 5 of each for each age) were cultured in the presence of 10% FCS, 1ng/ml TGFb-1 & 2.5 ng/ml FGF-2. Cells were seeded at low density and passaged weekly. Results. Chondroprogenitors from both animals reached over 40 (mean) PD in 50 days with growth remaining linear. Little difference in growth rates was observed between clonal and polyclonal cell lines. For the mature animal, 96% of cells were BrDU positive at 22 PD whilst none of cells were (senescence associated) β-gal positive. At 44 PD, 88% of cells were BrDU positive and just 15% of cells were β-gal positive. Three clonal and three polyclonal cell lines from the mature animal were cultured beyond the 50-day time point. At 120 days, cells reached up to 90 PD with the same pattern of linear growth observed. When tested at 70 PD, 79% of these cells were still BrDU positive (range 55–97%) and just 11% of cells were β-gal positive (range 2–22%). Furthermore, little difference in cell morphology was observed throughout this extended expansion. At 70 PD, we found that both clonal and polyclonal cell lines in monolayer culture were still expressing the chondrogenic transcription factor; Sox-9. Expression of genes for aggrecan and collagen type II was also detected in cells that were chondrogenically induced for 72 hours. Discussion & Conclusions. We have demonstrated for the first time the extended expansion of cells derived from articular cartilage that retain chondrogenic potency. These equine cells have since been cultured to over 100 PD without evidence of senescence. One hundred PD is equivalent to 1 × 1030 cells originating from a single cell. We have previously reported that the human equivalents of these cells surpass MSCs in doubling capacity but senesce at approximately 60 PD6. The properties of these equine chondroprogenitor cells make them ideal candidates for allogeneic cell therapy for articular cartilage repair. In addition, the data suggest the reclassification of these cells from progenitor cells to stem cells


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XLI | Pages 11 - 11
1 Sep 2012
Little D El-Hoss J Sullivan K Schindeler A
Full Access

CPT is a uniquely difficult condition, often associated with Neurofibromatosis (NF1), where bone healing is compromised. Although rare, the severity of this condition and the multiple procedures often entailed in treating it, warrant research attention. As study material is limited, animal models of the disorder are desirable for testing new treatments. We sought to create a model of CPT where both copies of the NF1 gene were ablated at the fracture site, as has been found in some clinical specimens. NF1 floxed mice had fracture surgery; both closed fracture and open osteotomy were performed. Either a Cre- or control GFP-adenovirus was injected into the fracture site at day zero. Recombination was confirmed in ZAP reporter mice. Additionally, cell culture studies were used to examine the possible responses of NF1+/+ (wild type) NF1+/− or NF1−/− to drugs which may rescue the dysregulated Ras/MAPK pathway in NF1. In closed fractures, radiographic bridging was 100% in NF1+/+ calluses and <40% in NF1−/− calluses (P<0.05). In open fractures, radiographic bridging was 75% in NF1+/+ calluses and <30% in NF1−/− calluses (P<0.05). In both fracture repair models the NF1−/− state was associated with a significant up to 15-fold increase in fibrotic tissue invading the callus by week 3. In NF1−/− fractures, large numbers of TRAP+ cells were observed histologically in the fibrotic tissue. Closed fractures also showed a significant increase in BRDU labelled proliferating cells in the callus. In cell culture models of NF1 deficient osteogenesis, NF1−/− progenitors were found to be significantly impaired in their capacity to form a calcified matrix as measured by Alizarin Red S staining and osteogenic markers (Runx2, Osteocalcin, Alp expression). However, when differentiated calvarial NF1 floxed osteoblasts were treated with Cre adenovirus, mineralization was not affected, suggesting that NF1 impacts on osteogenic differentiation rather than mature cell function. Treatment with MEK inhibitor PD0325901 was found to rescue the NF1−/− progenitor differentiation phenotype and permit robust mineralization. Treatment with the JNK inhibitor SP600125 was also able to improve ALP activity and mineralization in NF1+/− osteoprogenitors compared to control cells. This model of NF1 −/− induction at a fracture or osteotomy site closely replicates the clinical condition of CPT, with lack of bone healing and fibrous tissue invasion. Underlying defects in bone cell differentiation in NF1 deficiencies can be at least partially rescued by JNK and MEK inhibitors


The Journal of Bone & Joint Surgery British Volume
Vol. 94-B, Issue 7 | Pages 998 - 1006
1 Jul 2012
Kodama A Kamei N Kamei G Kongcharoensombat W Ohkawa S Nakabayashi A Ochi M

For the treatment of ununited fractures, we developed a system of delivering magnetic labelled mesenchymal stromal cells (MSCs) using an extracorporeal magnetic device. In this study, we transplanted ferucarbotran-labelled and luciferase-positive bone marrow-derived MSCs into a non-healing femoral fracture rat model in the presence of a magnetic field. The biological fate of the transplanted MSCs was observed using luciferase-based bioluminescence imaging and we found that the number of MSC derived photons increased from day one to day three and thereafter decreased over time. The magnetic cell delivery system induced the accumulation of photons at the fracture site, while also retaining higher photon intensity from day three to week four. Furthermore, radiological and histological findings suggested improved callus formation and endochondral ossification. We therefore believe that this delivery system may be a promising option for bone regeneration.


Orthopaedic Proceedings
Vol. 94-B, Issue SUPP_XVIII | Pages 6 - 6
1 May 2012
Franklin S Zargar N Willett K Hulley P Thompson M
Full Access

Introduction. The use of platelet-rich concentrate (PRC) to enhance the healing response in tendon repair is currently an area of considerable interest. Activated platelets release a cocktail of growth factors and ECM regulating molecules. Previous work suggests that tenocytes are activated by contact with these clot-derived molecules. Our studies on tenocytes and PRC aim to establish the direct molecular and functional effects of PRC on tenocytes and to support the clinical research on Achilles tendon repair taking place within our group. We hypothesise that applying PRC to human tenocytes in culture will increase proliferation rate and survival by activating relevant signalling pathways. Materials and Methods. Using a centrifugation method, PRC was extracted from fresh human whole blood. The PRC was immediately clotted and left in medium overnight to release biological factors (at least 95% of presynthesized growth factors are secreted in the first hour of activation). 1. Human tenocytes derived from explanted healthy hamstring were used for up to three passages. Cells were treated with varying concentrations of PRC-conditioned medium and assessed for viable cell number (Alamar Blue™ fluorescence) and proliferation (Ziva™ Ultrasensitive BrdU assay) after 72hrs. For western blotting, cells were treated with 10% PRC for 5 or 30 minutes. Antibodies to P-ERK and P-Akt detected the active protein state on the blot, followed by membrane stripping and re-probing with pan antibodies. Quantification was achieved by densitometry using Visionworks software v. 6.7.1. Results. PRC-conditioned medium affected tenocytes in a dose-dependent manner. Viable number of tenocytes was significantly increased by 10% PRC-conditioned medium compared to controls (One-way ANOVA, Tukey's post-hoc test P<0.001) after 72hrs. 10% PRC-conditioned medium also demonstrated time-dependence with viable tenocyte number significantly increasing between 24 and 72hrs (One-way ANOVA, Bonferroni's post-hoc test P<0.001). After 72hrs, tenocyte proliferation significantly increased in the presence of 5% and 10% PRC-conditioned media compared to controls (One-way ANOVA, Tukey's post-hoc test P<0.05 and P<0.001 respectively). ERK and Akt phosphorylation was strongly stimulated by treatment with 10% PRC-conditioned medium for 5 minutes compared to controls, and remained high after a 30 minute application time. Discussion and Conclusions. Factors released by activated PRC act upon human tendon cells to strongly increase viable cell number and proliferation, which would, in vivo, directly support the healing response, independent of any additional beneficial effects on vascular repair. Both ERK and Akt are pivotal kinases in signalling pathways that favour survival and proliferation. It is clear that both signalling pathways are immediately and strongly activated by PRC, suggesting a clear benefit via both stimulated cell cycle and cell survival in the environmentally compromised conditions of a healing ruptured tendon. This conclusion is strongly supported by previous work on platelet releasates and ERK signalling in other cell types


Bone & Joint 360
Vol. 1, Issue 2 | Pages 30 - 32
1 Apr 2012

The April 2012 Research Roundup360 looks at who is capable of being an arthroscopist, bupivacaine, triamcinolone and chondrotoxicity, reducing scarring in injured skeletal muscle, horny Goat Weed and the repair of osseous defects, platelet-derived growth factor and fracture healing, the importance of the reserve zone in a child’s growth plate, coping with advanced arthritis, hydroxyapatite and platelet-rich plasma for bone defects, and calcium phosphate and bone regeneration


The Journal of Bone & Joint Surgery British Volume
Vol. 93-B, Issue 12 | Pages 1653 - 1659
1 Dec 2011
Bordei P

Platelet-derived growth factor (PDGF) is known to stimulate osteoblast or osteoprogenitor cell activity. We investigated the effect of locally applied PDGF from poly-. d. ,l-lactide (PDLLA)-coated implants on fracture healing in a rat model. A closed fracture of the right tibia of four-month-old Sprague-Dawley rats (n = 40) was stabilised with implants coated with a biodegradable PDLLA versus implants coated with PDLLA and PDGF. Radiographs were taken throughout the study, and a marker of DNA activity, bromodeoxyuridine (BrdU), was injected before the rats were killed at three, seven and ten days. The radiographs showed consolidation of the callus in the PDGF-treated group compared with the control group at all three time points. In the PDGF-treated group, immunohistochemical staining of BrdU showed that the distribution of proliferating cells in all cellular events was higher after ten days compared with that at three and seven days. These results indicate that local application of PDGF from biodegradable PDLLA-coated implants significantly accelerates fracture healing in experimental animals. Further development may help fracture healing in the clinical situation.


The Journal of Bone & Joint Surgery British Volume
Vol. 92-B, Issue 11 | Pages 1606 - 1613
1 Nov 2010
Oshima S Ishikawa M Mochizuki Y Kobayashi T Yasunaga Y Ochi M

We used interconnected porous calcium hydroxyapatite ceramic to bridge a rabbit ulnar defect. Two weeks after inducing the defect we percutaneously injected rabbit bone marrow-derived mesenchymal stromal cells labelled with ferumoxide. The contribution of an external magnetic targeting system to attract these cells into the ceramic and their effect on subsequent bone formation were evaluated.

This technique significantly facilitated the infiltration of ferumoxide-labelled cells into ceramic and significantly contributed to the enhancement of bone formation even in the chronic phase. As such, it is potentially of clinical use to treat fractures, bone defects, delayed union and nonunion.


Orthopaedic Proceedings
Vol. 90-B, Issue SUPP_II | Pages 398 - 398
1 Jul 2008
+Watts A Porter D Simpson A Noble B
Full Access

Introduction: In hereditary multiple exostosis (HME) the synthesis of the polysaccharide heparan sulphate (HS) is disrupted. HS-proteoglycans are low affinity receptors involved in fibroblast growth factor signaling. Activation of FGF receptor 3 (FGFr3) on mature chondrocytes leads to growth attenuation rather than stimulation. We tested the hypothesis that in HME chondrocytes with absent or reduced HS-PG synthesis there is impaired response to the FGFr3 ligand and loss of control of chondrocyte proliferation. Materials and methods: Chondrocytes were harvested from normal growth plate (epiphyseodesis) or HME osteochondroma cartilage cap obtained as surgical discard and cultured to 70% confluence in growth media. Cells were re-plated for experimentation. Growth curves were obtained for cells over a period of 5 days. In addition proliferative responses of healthy and HME chondrocytes were determined after low serum synchronization followed by challenge with FGF 9 (10 and 100ng/ml) and incorporation of BrdU for 2hours every two hours over a twenty eight hour period. Using these techniques it is possible to describe in detail the time dependent entry of cells into S-phase of the cell cycle and compare cell lines and treatment. Results: Significant differences were observed in the growth characteristics over a five-day period (p< 0.05). Under baseline growing conditions the chondrocytes derived from osteochondroma had a more rapid doubling time when compared with the normal growth plate chondrocyte (2.6+/− 0.6 vs 4.9+/−1.0, p< 0.05). In response to incubation with FGF-9 cells from normal growth plate have a lower peak proportion of cells entering the s-phase than with media alone (7% vs 25%). This inhibition is not observed in chondrocytes from osteochondroma. Conclusions: It would appear that osteochondroma chondrocytes are resistant to the normal regulatory effect of FGF-9 on cell proliferation. The differential response to FGF may be responsible for the growth differences observed both in-vitro and in-vivo


The Journal of Bone & Joint Surgery British Volume
Vol. 88-B, Issue 12 | Pages 1666 - 1669
1 Dec 2006
Shisha T Kiss S Pap K Simpson H Szöke G

The response of the muscle is critical in determining the functional outcome of limb lengthening. We hypothesised that muscle response would vary with age and therefore studied the response of the muscles during tibial lengthening in ten young and ten mature rabbits. A bromodeoxyuridine technique was used to identify the dividing cells.

The young rabbits demonstrated a significantly greater proliferative response to the distraction stimulus than the mature ones. This was particularly pronounced at the myotendinous junction, but was also evident within the muscle belly.

Younger muscle adapted better to lengthening, suggesting that in patients in whom a large degree of muscle lengthening is required it may be beneficial to carry out this procedure when they are young, in order to achieve the optimal functional result.


The Journal of Bone & Joint Surgery British Volume
Vol. 87-B, Issue 4 | Pages 583 - 587
1 Apr 2005
Szöke G Lee S Simpson AHRW Prescott J

Little is known about the increase in length of tendons in postnatal life or of their response to limb lengthening procedures. A study was carried out in ten young and nine adult rabbits in which the tibia was lengthened by 20% at two rates 0.8 mm/day and 1.6 mm/day.

The tendon of the flexor digitorum longus (FDL) muscle showed a significant increase in length in response to lengthening of the tibia. The young rabbits exhibited a significantly higher increase in length in the FDL tendon compared with the adults. There was no difference in the amount of lengthening of the FDL tendon at the different rates. Of the increase in length which occurred, 77% was in the proximal half of the tendon.

This investigation demonstrated that tendons have the ability to lengthen during limb distraction. This occurred to a greater extent in the young who showed a higher proliferative response, suggesting that there may be less need for formal tendon lengthening in young children.


Orthopaedic Proceedings
Vol. 87-B, Issue SUPP_I | Pages 84 - 84
1 Mar 2005
Forriol F Pons J Ripalda P Izal I
Full Access

Introduction and purpose: We have studied the in-vitro response of older and osteoarthritic chondrocytes when confronted with various factors in order to analyze the possible reversion of their phenotype to that of healthy chondrocytes. Materials and methods: The study used cartilage from young (3 months’ old) and old (7 years old) lambs with an osteoarthritic pathology. The latter group was obtained by means of a meniscectomy after a two-month evolution. Cells coming from the femur cartilage were isolated by means of collagenase digestion and cultured in a single layer using a DMEM culture medium supplemented with 10% fetal serum, penicilin and streptomycin, hepes and L-cystein (Gibco-BRL®). BrdU incorporation assays were performed by means of an ELISA protocol in order to analyze the proliferation rate. Later, a gene expression analysis was conducted using RT-PCR. The treatment was carried out at a concentration of 50 ng/mL using FGFa, IGF-a, TGF-b (Peprotech Inc) and OP-1 (Stryker) growth factors, and later growth factor combinations FGFa/IGF-1, FGFa/OP-1, FGFa/TGF-b and TGF-b/OP-1. Results and conclusions: Comparison between the three groups showed that the proliferation rate was lower in older and osteoarthritic cells. These last two groups, however, did not have the same expression pattern as the genes studied. The analysis of the response to growth factors showed that FGFa and IGF-1 were the most efficient ones, and their combination proved to be the most powerful of all